Properties

Label 6050.2.a.cl
Level $6050$
Weight $2$
Character orbit 6050.a
Self dual yes
Analytic conductor $48.309$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6050,2,Mod(1,6050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6050.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6050 = 2 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6050.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,-2,2,0,-2,1,2,6,0,0,-2,-7,1,0,2,-4,6,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.3094932229\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - 2 \beta q^{3} + q^{4} - 2 \beta q^{6} + \beta q^{7} + q^{8} + (4 \beta + 1) q^{9} - 2 \beta q^{12} + ( - \beta - 3) q^{13} + \beta q^{14} + q^{16} + (4 \beta - 4) q^{17} + (4 \beta + 1) q^{18} + \cdots + (\beta - 6) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{6} + q^{7} + 2 q^{8} + 6 q^{9} - 2 q^{12} - 7 q^{13} + q^{14} + 2 q^{16} - 4 q^{17} + 6 q^{18} + 5 q^{19} - 6 q^{21} - 7 q^{23} - 2 q^{24} - 7 q^{26} - 20 q^{27}+ \cdots - 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
1.00000 −3.23607 1.00000 0 −3.23607 1.61803 1.00000 7.47214 0
1.2 1.00000 1.23607 1.00000 0 1.23607 −0.618034 1.00000 −1.47214 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6050.2.a.cl 2
5.b even 2 1 6050.2.a.ce 2
5.c odd 4 2 1210.2.b.f 4
11.b odd 2 1 6050.2.a.bv 2
11.c even 5 2 550.2.h.d 4
55.d odd 2 1 6050.2.a.ct 2
55.e even 4 2 1210.2.b.g 4
55.j even 10 2 550.2.h.e 4
55.k odd 20 4 110.2.j.a 8
165.v even 20 4 990.2.ba.b 8
220.v even 20 4 880.2.cd.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.2.j.a 8 55.k odd 20 4
550.2.h.d 4 11.c even 5 2
550.2.h.e 4 55.j even 10 2
880.2.cd.a 8 220.v even 20 4
990.2.ba.b 8 165.v even 20 4
1210.2.b.f 4 5.c odd 4 2
1210.2.b.g 4 55.e even 4 2
6050.2.a.bv 2 11.b odd 2 1
6050.2.a.ce 2 5.b even 2 1
6050.2.a.cl 2 1.a even 1 1 trivial
6050.2.a.ct 2 55.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6050))\):

\( T_{3}^{2} + 2T_{3} - 4 \) Copy content Toggle raw display
\( T_{7}^{2} - T_{7} - 1 \) Copy content Toggle raw display
\( T_{13}^{2} + 7T_{13} + 11 \) Copy content Toggle raw display
\( T_{17}^{2} + 4T_{17} - 16 \) Copy content Toggle raw display
\( T_{19}^{2} - 5T_{19} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 7T + 11 \) Copy content Toggle raw display
$17$ \( T^{2} + 4T - 16 \) Copy content Toggle raw display
$19$ \( T^{2} - 5T + 5 \) Copy content Toggle raw display
$23$ \( T^{2} + 7T + 11 \) Copy content Toggle raw display
$29$ \( T^{2} - 20 \) Copy content Toggle raw display
$31$ \( (T - 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 9T + 19 \) Copy content Toggle raw display
$41$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
$47$ \( T^{2} + 9T - 11 \) Copy content Toggle raw display
$53$ \( T^{2} - 3T - 29 \) Copy content Toggle raw display
$59$ \( T^{2} + 15T + 45 \) Copy content Toggle raw display
$61$ \( T^{2} - 4T - 76 \) Copy content Toggle raw display
$67$ \( T^{2} + 14T + 44 \) Copy content Toggle raw display
$71$ \( (T - 2)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 12T + 16 \) Copy content Toggle raw display
$79$ \( T^{2} - 10T - 100 \) Copy content Toggle raw display
$83$ \( T^{2} + 2T - 124 \) Copy content Toggle raw display
$89$ \( T^{2} - 25T + 155 \) Copy content Toggle raw display
$97$ \( T^{2} + 14T + 44 \) Copy content Toggle raw display
show more
show less