Properties

Label 6050.2.a.cb.1.2
Level $6050$
Weight $2$
Character 6050.1
Self dual yes
Analytic conductor $48.309$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6050,2,Mod(1,6050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6050.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6050 = 2 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6050.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.3094932229\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.37228\) of defining polynomial
Character \(\chi\) \(=\) 6050.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +3.37228 q^{3} +1.00000 q^{4} -3.37228 q^{6} +3.37228 q^{7} -1.00000 q^{8} +8.37228 q^{9} +3.37228 q^{12} +2.00000 q^{13} -3.37228 q^{14} +1.00000 q^{16} +1.37228 q^{17} -8.37228 q^{18} -0.627719 q^{19} +11.3723 q^{21} -2.74456 q^{23} -3.37228 q^{24} -2.00000 q^{26} +18.1168 q^{27} +3.37228 q^{28} -1.37228 q^{29} +3.37228 q^{31} -1.00000 q^{32} -1.37228 q^{34} +8.37228 q^{36} -9.37228 q^{37} +0.627719 q^{38} +6.74456 q^{39} +11.4891 q^{41} -11.3723 q^{42} -4.00000 q^{43} +2.74456 q^{46} -2.74456 q^{47} +3.37228 q^{48} +4.37228 q^{49} +4.62772 q^{51} +2.00000 q^{52} +4.11684 q^{53} -18.1168 q^{54} -3.37228 q^{56} -2.11684 q^{57} +1.37228 q^{58} -2.74456 q^{59} +5.37228 q^{61} -3.37228 q^{62} +28.2337 q^{63} +1.00000 q^{64} -8.00000 q^{67} +1.37228 q^{68} -9.25544 q^{69} +10.1168 q^{71} -8.37228 q^{72} -15.4891 q^{73} +9.37228 q^{74} -0.627719 q^{76} -6.74456 q^{78} +1.25544 q^{79} +35.9783 q^{81} -11.4891 q^{82} -2.74456 q^{83} +11.3723 q^{84} +4.00000 q^{86} -4.62772 q^{87} -1.37228 q^{89} +6.74456 q^{91} -2.74456 q^{92} +11.3723 q^{93} +2.74456 q^{94} -3.37228 q^{96} +12.7446 q^{97} -4.37228 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + q^{3} + 2 q^{4} - q^{6} + q^{7} - 2 q^{8} + 11 q^{9} + q^{12} + 4 q^{13} - q^{14} + 2 q^{16} - 3 q^{17} - 11 q^{18} - 7 q^{19} + 17 q^{21} + 6 q^{23} - q^{24} - 4 q^{26} + 19 q^{27}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 3.37228 1.94699 0.973494 0.228714i \(-0.0734519\pi\)
0.973494 + 0.228714i \(0.0734519\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −3.37228 −1.37673
\(7\) 3.37228 1.27460 0.637301 0.770615i \(-0.280051\pi\)
0.637301 + 0.770615i \(0.280051\pi\)
\(8\) −1.00000 −0.353553
\(9\) 8.37228 2.79076
\(10\) 0 0
\(11\) 0 0
\(12\) 3.37228 0.973494
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −3.37228 −0.901280
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.37228 0.332827 0.166414 0.986056i \(-0.446781\pi\)
0.166414 + 0.986056i \(0.446781\pi\)
\(18\) −8.37228 −1.97337
\(19\) −0.627719 −0.144009 −0.0720043 0.997404i \(-0.522940\pi\)
−0.0720043 + 0.997404i \(0.522940\pi\)
\(20\) 0 0
\(21\) 11.3723 2.48164
\(22\) 0 0
\(23\) −2.74456 −0.572281 −0.286140 0.958188i \(-0.592372\pi\)
−0.286140 + 0.958188i \(0.592372\pi\)
\(24\) −3.37228 −0.688364
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 18.1168 3.48659
\(28\) 3.37228 0.637301
\(29\) −1.37228 −0.254826 −0.127413 0.991850i \(-0.540667\pi\)
−0.127413 + 0.991850i \(0.540667\pi\)
\(30\) 0 0
\(31\) 3.37228 0.605680 0.302840 0.953041i \(-0.402065\pi\)
0.302840 + 0.953041i \(0.402065\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −1.37228 −0.235344
\(35\) 0 0
\(36\) 8.37228 1.39538
\(37\) −9.37228 −1.54079 −0.770397 0.637565i \(-0.779942\pi\)
−0.770397 + 0.637565i \(0.779942\pi\)
\(38\) 0.627719 0.101829
\(39\) 6.74456 1.07999
\(40\) 0 0
\(41\) 11.4891 1.79430 0.897150 0.441726i \(-0.145634\pi\)
0.897150 + 0.441726i \(0.145634\pi\)
\(42\) −11.3723 −1.75478
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 2.74456 0.404664
\(47\) −2.74456 −0.400336 −0.200168 0.979762i \(-0.564149\pi\)
−0.200168 + 0.979762i \(0.564149\pi\)
\(48\) 3.37228 0.486747
\(49\) 4.37228 0.624612
\(50\) 0 0
\(51\) 4.62772 0.648010
\(52\) 2.00000 0.277350
\(53\) 4.11684 0.565492 0.282746 0.959195i \(-0.408755\pi\)
0.282746 + 0.959195i \(0.408755\pi\)
\(54\) −18.1168 −2.46539
\(55\) 0 0
\(56\) −3.37228 −0.450640
\(57\) −2.11684 −0.280383
\(58\) 1.37228 0.180189
\(59\) −2.74456 −0.357312 −0.178656 0.983912i \(-0.557175\pi\)
−0.178656 + 0.983912i \(0.557175\pi\)
\(60\) 0 0
\(61\) 5.37228 0.687850 0.343925 0.938997i \(-0.388243\pi\)
0.343925 + 0.938997i \(0.388243\pi\)
\(62\) −3.37228 −0.428280
\(63\) 28.2337 3.55711
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 1.37228 0.166414
\(69\) −9.25544 −1.11422
\(70\) 0 0
\(71\) 10.1168 1.20065 0.600324 0.799757i \(-0.295038\pi\)
0.600324 + 0.799757i \(0.295038\pi\)
\(72\) −8.37228 −0.986683
\(73\) −15.4891 −1.81286 −0.906432 0.422351i \(-0.861205\pi\)
−0.906432 + 0.422351i \(0.861205\pi\)
\(74\) 9.37228 1.08951
\(75\) 0 0
\(76\) −0.627719 −0.0720043
\(77\) 0 0
\(78\) −6.74456 −0.763671
\(79\) 1.25544 0.141248 0.0706239 0.997503i \(-0.477501\pi\)
0.0706239 + 0.997503i \(0.477501\pi\)
\(80\) 0 0
\(81\) 35.9783 3.99758
\(82\) −11.4891 −1.26876
\(83\) −2.74456 −0.301255 −0.150627 0.988591i \(-0.548129\pi\)
−0.150627 + 0.988591i \(0.548129\pi\)
\(84\) 11.3723 1.24082
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) −4.62772 −0.496144
\(88\) 0 0
\(89\) −1.37228 −0.145462 −0.0727308 0.997352i \(-0.523171\pi\)
−0.0727308 + 0.997352i \(0.523171\pi\)
\(90\) 0 0
\(91\) 6.74456 0.707022
\(92\) −2.74456 −0.286140
\(93\) 11.3723 1.17925
\(94\) 2.74456 0.283080
\(95\) 0 0
\(96\) −3.37228 −0.344182
\(97\) 12.7446 1.29401 0.647007 0.762484i \(-0.276020\pi\)
0.647007 + 0.762484i \(0.276020\pi\)
\(98\) −4.37228 −0.441667
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) −4.62772 −0.458212
\(103\) 9.48913 0.934991 0.467496 0.883995i \(-0.345156\pi\)
0.467496 + 0.883995i \(0.345156\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −4.11684 −0.399863
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 18.1168 1.74329
\(109\) 15.4891 1.48359 0.741795 0.670627i \(-0.233975\pi\)
0.741795 + 0.670627i \(0.233975\pi\)
\(110\) 0 0
\(111\) −31.6060 −2.99991
\(112\) 3.37228 0.318651
\(113\) −3.25544 −0.306246 −0.153123 0.988207i \(-0.548933\pi\)
−0.153123 + 0.988207i \(0.548933\pi\)
\(114\) 2.11684 0.198261
\(115\) 0 0
\(116\) −1.37228 −0.127413
\(117\) 16.7446 1.54804
\(118\) 2.74456 0.252657
\(119\) 4.62772 0.424222
\(120\) 0 0
\(121\) 0 0
\(122\) −5.37228 −0.486383
\(123\) 38.7446 3.49348
\(124\) 3.37228 0.302840
\(125\) 0 0
\(126\) −28.2337 −2.51526
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −13.4891 −1.18765
\(130\) 0 0
\(131\) −22.1168 −1.93236 −0.966179 0.257873i \(-0.916978\pi\)
−0.966179 + 0.257873i \(0.916978\pi\)
\(132\) 0 0
\(133\) −2.11684 −0.183554
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) −1.37228 −0.117672
\(137\) −8.74456 −0.747098 −0.373549 0.927610i \(-0.621859\pi\)
−0.373549 + 0.927610i \(0.621859\pi\)
\(138\) 9.25544 0.787875
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) −9.25544 −0.779448
\(142\) −10.1168 −0.848987
\(143\) 0 0
\(144\) 8.37228 0.697690
\(145\) 0 0
\(146\) 15.4891 1.28189
\(147\) 14.7446 1.21611
\(148\) −9.37228 −0.770397
\(149\) −21.6060 −1.77003 −0.885015 0.465563i \(-0.845852\pi\)
−0.885015 + 0.465563i \(0.845852\pi\)
\(150\) 0 0
\(151\) 12.2337 0.995563 0.497782 0.867302i \(-0.334148\pi\)
0.497782 + 0.867302i \(0.334148\pi\)
\(152\) 0.627719 0.0509147
\(153\) 11.4891 0.928841
\(154\) 0 0
\(155\) 0 0
\(156\) 6.74456 0.539997
\(157\) −9.37228 −0.747989 −0.373995 0.927431i \(-0.622012\pi\)
−0.373995 + 0.927431i \(0.622012\pi\)
\(158\) −1.25544 −0.0998772
\(159\) 13.8832 1.10101
\(160\) 0 0
\(161\) −9.25544 −0.729431
\(162\) −35.9783 −2.82672
\(163\) 5.88316 0.460804 0.230402 0.973095i \(-0.425996\pi\)
0.230402 + 0.973095i \(0.425996\pi\)
\(164\) 11.4891 0.897150
\(165\) 0 0
\(166\) 2.74456 0.213019
\(167\) −4.62772 −0.358104 −0.179052 0.983840i \(-0.557303\pi\)
−0.179052 + 0.983840i \(0.557303\pi\)
\(168\) −11.3723 −0.877391
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −5.25544 −0.401893
\(172\) −4.00000 −0.304997
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 4.62772 0.350826
\(175\) 0 0
\(176\) 0 0
\(177\) −9.25544 −0.695681
\(178\) 1.37228 0.102857
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) −6.74456 −0.499940
\(183\) 18.1168 1.33924
\(184\) 2.74456 0.202332
\(185\) 0 0
\(186\) −11.3723 −0.833856
\(187\) 0 0
\(188\) −2.74456 −0.200168
\(189\) 61.0951 4.44401
\(190\) 0 0
\(191\) −5.48913 −0.397179 −0.198590 0.980083i \(-0.563636\pi\)
−0.198590 + 0.980083i \(0.563636\pi\)
\(192\) 3.37228 0.243373
\(193\) 14.8614 1.06975 0.534874 0.844932i \(-0.320359\pi\)
0.534874 + 0.844932i \(0.320359\pi\)
\(194\) −12.7446 −0.915006
\(195\) 0 0
\(196\) 4.37228 0.312306
\(197\) −20.7446 −1.47799 −0.738994 0.673712i \(-0.764699\pi\)
−0.738994 + 0.673712i \(0.764699\pi\)
\(198\) 0 0
\(199\) 18.1168 1.28427 0.642135 0.766592i \(-0.278049\pi\)
0.642135 + 0.766592i \(0.278049\pi\)
\(200\) 0 0
\(201\) −26.9783 −1.90290
\(202\) 6.00000 0.422159
\(203\) −4.62772 −0.324802
\(204\) 4.62772 0.324005
\(205\) 0 0
\(206\) −9.48913 −0.661139
\(207\) −22.9783 −1.59710
\(208\) 2.00000 0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) −6.11684 −0.421101 −0.210550 0.977583i \(-0.567526\pi\)
−0.210550 + 0.977583i \(0.567526\pi\)
\(212\) 4.11684 0.282746
\(213\) 34.1168 2.33765
\(214\) 12.0000 0.820303
\(215\) 0 0
\(216\) −18.1168 −1.23270
\(217\) 11.3723 0.772001
\(218\) −15.4891 −1.04906
\(219\) −52.2337 −3.52963
\(220\) 0 0
\(221\) 2.74456 0.184619
\(222\) 31.6060 2.12125
\(223\) 18.7446 1.25523 0.627614 0.778524i \(-0.284031\pi\)
0.627614 + 0.778524i \(0.284031\pi\)
\(224\) −3.37228 −0.225320
\(225\) 0 0
\(226\) 3.25544 0.216548
\(227\) −2.74456 −0.182163 −0.0910815 0.995843i \(-0.529032\pi\)
−0.0910815 + 0.995843i \(0.529032\pi\)
\(228\) −2.11684 −0.140191
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.37228 0.0900947
\(233\) 1.37228 0.0899011 0.0449506 0.998989i \(-0.485687\pi\)
0.0449506 + 0.998989i \(0.485687\pi\)
\(234\) −16.7446 −1.09463
\(235\) 0 0
\(236\) −2.74456 −0.178656
\(237\) 4.23369 0.275008
\(238\) −4.62772 −0.299970
\(239\) 14.7446 0.953746 0.476873 0.878972i \(-0.341770\pi\)
0.476873 + 0.878972i \(0.341770\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 0 0
\(243\) 66.9783 4.29666
\(244\) 5.37228 0.343925
\(245\) 0 0
\(246\) −38.7446 −2.47026
\(247\) −1.25544 −0.0798816
\(248\) −3.37228 −0.214140
\(249\) −9.25544 −0.586540
\(250\) 0 0
\(251\) 2.74456 0.173235 0.0866176 0.996242i \(-0.472394\pi\)
0.0866176 + 0.996242i \(0.472394\pi\)
\(252\) 28.2337 1.77856
\(253\) 0 0
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 13.4891 0.839796
\(259\) −31.6060 −1.96390
\(260\) 0 0
\(261\) −11.4891 −0.711159
\(262\) 22.1168 1.36638
\(263\) −24.8614 −1.53302 −0.766510 0.642232i \(-0.778008\pi\)
−0.766510 + 0.642232i \(0.778008\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.11684 0.129792
\(267\) −4.62772 −0.283212
\(268\) −8.00000 −0.488678
\(269\) −8.74456 −0.533165 −0.266583 0.963812i \(-0.585895\pi\)
−0.266583 + 0.963812i \(0.585895\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 1.37228 0.0832068
\(273\) 22.7446 1.37656
\(274\) 8.74456 0.528278
\(275\) 0 0
\(276\) −9.25544 −0.557112
\(277\) −12.7446 −0.765747 −0.382873 0.923801i \(-0.625065\pi\)
−0.382873 + 0.923801i \(0.625065\pi\)
\(278\) −4.00000 −0.239904
\(279\) 28.2337 1.69031
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 9.25544 0.551153
\(283\) 5.25544 0.312403 0.156202 0.987725i \(-0.450075\pi\)
0.156202 + 0.987725i \(0.450075\pi\)
\(284\) 10.1168 0.600324
\(285\) 0 0
\(286\) 0 0
\(287\) 38.7446 2.28702
\(288\) −8.37228 −0.493341
\(289\) −15.1168 −0.889226
\(290\) 0 0
\(291\) 42.9783 2.51943
\(292\) −15.4891 −0.906432
\(293\) 23.4891 1.37225 0.686125 0.727484i \(-0.259310\pi\)
0.686125 + 0.727484i \(0.259310\pi\)
\(294\) −14.7446 −0.859920
\(295\) 0 0
\(296\) 9.37228 0.544753
\(297\) 0 0
\(298\) 21.6060 1.25160
\(299\) −5.48913 −0.317444
\(300\) 0 0
\(301\) −13.4891 −0.777500
\(302\) −12.2337 −0.703970
\(303\) −20.2337 −1.16240
\(304\) −0.627719 −0.0360021
\(305\) 0 0
\(306\) −11.4891 −0.656790
\(307\) 5.25544 0.299944 0.149972 0.988690i \(-0.452082\pi\)
0.149972 + 0.988690i \(0.452082\pi\)
\(308\) 0 0
\(309\) 32.0000 1.82042
\(310\) 0 0
\(311\) 19.3723 1.09850 0.549251 0.835658i \(-0.314913\pi\)
0.549251 + 0.835658i \(0.314913\pi\)
\(312\) −6.74456 −0.381836
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 9.37228 0.528908
\(315\) 0 0
\(316\) 1.25544 0.0706239
\(317\) 24.3505 1.36766 0.683831 0.729640i \(-0.260313\pi\)
0.683831 + 0.729640i \(0.260313\pi\)
\(318\) −13.8832 −0.778529
\(319\) 0 0
\(320\) 0 0
\(321\) −40.4674 −2.25867
\(322\) 9.25544 0.515785
\(323\) −0.861407 −0.0479299
\(324\) 35.9783 1.99879
\(325\) 0 0
\(326\) −5.88316 −0.325838
\(327\) 52.2337 2.88853
\(328\) −11.4891 −0.634381
\(329\) −9.25544 −0.510269
\(330\) 0 0
\(331\) 30.9783 1.70272 0.851359 0.524583i \(-0.175779\pi\)
0.851359 + 0.524583i \(0.175779\pi\)
\(332\) −2.74456 −0.150627
\(333\) −78.4674 −4.29999
\(334\) 4.62772 0.253217
\(335\) 0 0
\(336\) 11.3723 0.620409
\(337\) 24.1168 1.31373 0.656864 0.754009i \(-0.271883\pi\)
0.656864 + 0.754009i \(0.271883\pi\)
\(338\) 9.00000 0.489535
\(339\) −10.9783 −0.596257
\(340\) 0 0
\(341\) 0 0
\(342\) 5.25544 0.284182
\(343\) −8.86141 −0.478471
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) −32.2337 −1.73040 −0.865198 0.501431i \(-0.832807\pi\)
−0.865198 + 0.501431i \(0.832807\pi\)
\(348\) −4.62772 −0.248072
\(349\) −19.4891 −1.04323 −0.521614 0.853181i \(-0.674670\pi\)
−0.521614 + 0.853181i \(0.674670\pi\)
\(350\) 0 0
\(351\) 36.2337 1.93401
\(352\) 0 0
\(353\) 0.510875 0.0271911 0.0135956 0.999908i \(-0.495672\pi\)
0.0135956 + 0.999908i \(0.495672\pi\)
\(354\) 9.25544 0.491921
\(355\) 0 0
\(356\) −1.37228 −0.0727308
\(357\) 15.6060 0.825955
\(358\) 12.0000 0.634220
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −18.6060 −0.979262
\(362\) 10.0000 0.525588
\(363\) 0 0
\(364\) 6.74456 0.353511
\(365\) 0 0
\(366\) −18.1168 −0.946983
\(367\) 4.00000 0.208798 0.104399 0.994535i \(-0.466708\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(368\) −2.74456 −0.143070
\(369\) 96.1902 5.00746
\(370\) 0 0
\(371\) 13.8832 0.720778
\(372\) 11.3723 0.589625
\(373\) 31.4891 1.63045 0.815223 0.579148i \(-0.196615\pi\)
0.815223 + 0.579148i \(0.196615\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 2.74456 0.141540
\(377\) −2.74456 −0.141352
\(378\) −61.0951 −3.14239
\(379\) −0.233688 −0.0120037 −0.00600187 0.999982i \(-0.501910\pi\)
−0.00600187 + 0.999982i \(0.501910\pi\)
\(380\) 0 0
\(381\) 26.9783 1.38214
\(382\) 5.48913 0.280848
\(383\) −32.2337 −1.64706 −0.823532 0.567269i \(-0.808000\pi\)
−0.823532 + 0.567269i \(0.808000\pi\)
\(384\) −3.37228 −0.172091
\(385\) 0 0
\(386\) −14.8614 −0.756426
\(387\) −33.4891 −1.70235
\(388\) 12.7446 0.647007
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −3.76631 −0.190471
\(392\) −4.37228 −0.220834
\(393\) −74.5842 −3.76228
\(394\) 20.7446 1.04510
\(395\) 0 0
\(396\) 0 0
\(397\) −24.9783 −1.25362 −0.626811 0.779171i \(-0.715640\pi\)
−0.626811 + 0.779171i \(0.715640\pi\)
\(398\) −18.1168 −0.908115
\(399\) −7.13859 −0.357377
\(400\) 0 0
\(401\) 13.3723 0.667780 0.333890 0.942612i \(-0.391639\pi\)
0.333890 + 0.942612i \(0.391639\pi\)
\(402\) 26.9783 1.34555
\(403\) 6.74456 0.335971
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 4.62772 0.229670
\(407\) 0 0
\(408\) −4.62772 −0.229106
\(409\) 1.76631 0.0873385 0.0436693 0.999046i \(-0.486095\pi\)
0.0436693 + 0.999046i \(0.486095\pi\)
\(410\) 0 0
\(411\) −29.4891 −1.45459
\(412\) 9.48913 0.467496
\(413\) −9.25544 −0.455430
\(414\) 22.9783 1.12932
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 13.4891 0.660565
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 10.2337 0.498759 0.249380 0.968406i \(-0.419773\pi\)
0.249380 + 0.968406i \(0.419773\pi\)
\(422\) 6.11684 0.297763
\(423\) −22.9783 −1.11724
\(424\) −4.11684 −0.199932
\(425\) 0 0
\(426\) −34.1168 −1.65297
\(427\) 18.1168 0.876736
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) 34.9783 1.68484 0.842422 0.538819i \(-0.181129\pi\)
0.842422 + 0.538819i \(0.181129\pi\)
\(432\) 18.1168 0.871647
\(433\) −27.7228 −1.33227 −0.666137 0.745830i \(-0.732053\pi\)
−0.666137 + 0.745830i \(0.732053\pi\)
\(434\) −11.3723 −0.545887
\(435\) 0 0
\(436\) 15.4891 0.741795
\(437\) 1.72281 0.0824133
\(438\) 52.2337 2.49582
\(439\) −18.9783 −0.905782 −0.452891 0.891566i \(-0.649607\pi\)
−0.452891 + 0.891566i \(0.649607\pi\)
\(440\) 0 0
\(441\) 36.6060 1.74314
\(442\) −2.74456 −0.130546
\(443\) −29.4891 −1.40107 −0.700535 0.713618i \(-0.747055\pi\)
−0.700535 + 0.713618i \(0.747055\pi\)
\(444\) −31.6060 −1.49995
\(445\) 0 0
\(446\) −18.7446 −0.887581
\(447\) −72.8614 −3.44623
\(448\) 3.37228 0.159325
\(449\) 28.9783 1.36757 0.683784 0.729684i \(-0.260333\pi\)
0.683784 + 0.729684i \(0.260333\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −3.25544 −0.153123
\(453\) 41.2554 1.93835
\(454\) 2.74456 0.128809
\(455\) 0 0
\(456\) 2.11684 0.0991303
\(457\) −16.3505 −0.764846 −0.382423 0.923987i \(-0.624910\pi\)
−0.382423 + 0.923987i \(0.624910\pi\)
\(458\) 10.0000 0.467269
\(459\) 24.8614 1.16043
\(460\) 0 0
\(461\) −16.1168 −0.750636 −0.375318 0.926896i \(-0.622467\pi\)
−0.375318 + 0.926896i \(0.622467\pi\)
\(462\) 0 0
\(463\) 0.233688 0.0108604 0.00543020 0.999985i \(-0.498272\pi\)
0.00543020 + 0.999985i \(0.498272\pi\)
\(464\) −1.37228 −0.0637066
\(465\) 0 0
\(466\) −1.37228 −0.0635697
\(467\) 19.3723 0.896442 0.448221 0.893923i \(-0.352058\pi\)
0.448221 + 0.893923i \(0.352058\pi\)
\(468\) 16.7446 0.774018
\(469\) −26.9783 −1.24574
\(470\) 0 0
\(471\) −31.6060 −1.45633
\(472\) 2.74456 0.126329
\(473\) 0 0
\(474\) −4.23369 −0.194460
\(475\) 0 0
\(476\) 4.62772 0.212111
\(477\) 34.4674 1.57815
\(478\) −14.7446 −0.674401
\(479\) −5.48913 −0.250805 −0.125402 0.992106i \(-0.540022\pi\)
−0.125402 + 0.992106i \(0.540022\pi\)
\(480\) 0 0
\(481\) −18.7446 −0.854678
\(482\) −22.0000 −1.00207
\(483\) −31.2119 −1.42019
\(484\) 0 0
\(485\) 0 0
\(486\) −66.9783 −3.03820
\(487\) −20.0000 −0.906287 −0.453143 0.891438i \(-0.649697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(488\) −5.37228 −0.243192
\(489\) 19.8397 0.897180
\(490\) 0 0
\(491\) 7.37228 0.332706 0.166353 0.986066i \(-0.446801\pi\)
0.166353 + 0.986066i \(0.446801\pi\)
\(492\) 38.7446 1.74674
\(493\) −1.88316 −0.0848131
\(494\) 1.25544 0.0564848
\(495\) 0 0
\(496\) 3.37228 0.151420
\(497\) 34.1168 1.53035
\(498\) 9.25544 0.414746
\(499\) −33.4891 −1.49918 −0.749590 0.661903i \(-0.769749\pi\)
−0.749590 + 0.661903i \(0.769749\pi\)
\(500\) 0 0
\(501\) −15.6060 −0.697223
\(502\) −2.74456 −0.122496
\(503\) −34.9783 −1.55960 −0.779802 0.626027i \(-0.784680\pi\)
−0.779802 + 0.626027i \(0.784680\pi\)
\(504\) −28.2337 −1.25763
\(505\) 0 0
\(506\) 0 0
\(507\) −30.3505 −1.34791
\(508\) 8.00000 0.354943
\(509\) 9.76631 0.432884 0.216442 0.976295i \(-0.430555\pi\)
0.216442 + 0.976295i \(0.430555\pi\)
\(510\) 0 0
\(511\) −52.2337 −2.31068
\(512\) −1.00000 −0.0441942
\(513\) −11.3723 −0.502098
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) −13.4891 −0.593826
\(517\) 0 0
\(518\) 31.6060 1.38869
\(519\) −20.2337 −0.888160
\(520\) 0 0
\(521\) 12.5109 0.548111 0.274056 0.961714i \(-0.411635\pi\)
0.274056 + 0.961714i \(0.411635\pi\)
\(522\) 11.4891 0.502865
\(523\) 30.9783 1.35458 0.677292 0.735714i \(-0.263153\pi\)
0.677292 + 0.735714i \(0.263153\pi\)
\(524\) −22.1168 −0.966179
\(525\) 0 0
\(526\) 24.8614 1.08401
\(527\) 4.62772 0.201587
\(528\) 0 0
\(529\) −15.4674 −0.672495
\(530\) 0 0
\(531\) −22.9783 −0.997171
\(532\) −2.11684 −0.0917768
\(533\) 22.9783 0.995299
\(534\) 4.62772 0.200261
\(535\) 0 0
\(536\) 8.00000 0.345547
\(537\) −40.4674 −1.74630
\(538\) 8.74456 0.377005
\(539\) 0 0
\(540\) 0 0
\(541\) 20.1168 0.864891 0.432445 0.901660i \(-0.357651\pi\)
0.432445 + 0.901660i \(0.357651\pi\)
\(542\) −16.0000 −0.687259
\(543\) −33.7228 −1.44718
\(544\) −1.37228 −0.0588361
\(545\) 0 0
\(546\) −22.7446 −0.973377
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) −8.74456 −0.373549
\(549\) 44.9783 1.91962
\(550\) 0 0
\(551\) 0.861407 0.0366972
\(552\) 9.25544 0.393938
\(553\) 4.23369 0.180035
\(554\) 12.7446 0.541465
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) 4.97825 0.210935 0.105468 0.994423i \(-0.466366\pi\)
0.105468 + 0.994423i \(0.466366\pi\)
\(558\) −28.2337 −1.19523
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 18.0000 0.759284
\(563\) −8.23369 −0.347009 −0.173504 0.984833i \(-0.555509\pi\)
−0.173504 + 0.984833i \(0.555509\pi\)
\(564\) −9.25544 −0.389724
\(565\) 0 0
\(566\) −5.25544 −0.220903
\(567\) 121.329 5.09533
\(568\) −10.1168 −0.424493
\(569\) 15.2554 0.639541 0.319771 0.947495i \(-0.396394\pi\)
0.319771 + 0.947495i \(0.396394\pi\)
\(570\) 0 0
\(571\) −15.3723 −0.643310 −0.321655 0.946857i \(-0.604239\pi\)
−0.321655 + 0.946857i \(0.604239\pi\)
\(572\) 0 0
\(573\) −18.5109 −0.773303
\(574\) −38.7446 −1.61717
\(575\) 0 0
\(576\) 8.37228 0.348845
\(577\) −36.9783 −1.53942 −0.769712 0.638391i \(-0.779600\pi\)
−0.769712 + 0.638391i \(0.779600\pi\)
\(578\) 15.1168 0.628778
\(579\) 50.1168 2.08278
\(580\) 0 0
\(581\) −9.25544 −0.383980
\(582\) −42.9783 −1.78151
\(583\) 0 0
\(584\) 15.4891 0.640945
\(585\) 0 0
\(586\) −23.4891 −0.970327
\(587\) −24.8614 −1.02614 −0.513070 0.858347i \(-0.671492\pi\)
−0.513070 + 0.858347i \(0.671492\pi\)
\(588\) 14.7446 0.608056
\(589\) −2.11684 −0.0872230
\(590\) 0 0
\(591\) −69.9565 −2.87763
\(592\) −9.37228 −0.385198
\(593\) −12.5109 −0.513760 −0.256880 0.966443i \(-0.582695\pi\)
−0.256880 + 0.966443i \(0.582695\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −21.6060 −0.885015
\(597\) 61.0951 2.50046
\(598\) 5.48913 0.224467
\(599\) −39.6060 −1.61826 −0.809128 0.587632i \(-0.800060\pi\)
−0.809128 + 0.587632i \(0.800060\pi\)
\(600\) 0 0
\(601\) 16.5109 0.673493 0.336746 0.941595i \(-0.390674\pi\)
0.336746 + 0.941595i \(0.390674\pi\)
\(602\) 13.4891 0.549776
\(603\) −66.9783 −2.72757
\(604\) 12.2337 0.497782
\(605\) 0 0
\(606\) 20.2337 0.821937
\(607\) −5.88316 −0.238790 −0.119395 0.992847i \(-0.538095\pi\)
−0.119395 + 0.992847i \(0.538095\pi\)
\(608\) 0.627719 0.0254574
\(609\) −15.6060 −0.632386
\(610\) 0 0
\(611\) −5.48913 −0.222066
\(612\) 11.4891 0.464420
\(613\) 20.5109 0.828426 0.414213 0.910180i \(-0.364057\pi\)
0.414213 + 0.910180i \(0.364057\pi\)
\(614\) −5.25544 −0.212092
\(615\) 0 0
\(616\) 0 0
\(617\) 2.23369 0.0899249 0.0449624 0.998989i \(-0.485683\pi\)
0.0449624 + 0.998989i \(0.485683\pi\)
\(618\) −32.0000 −1.28723
\(619\) −44.4674 −1.78729 −0.893647 0.448770i \(-0.851862\pi\)
−0.893647 + 0.448770i \(0.851862\pi\)
\(620\) 0 0
\(621\) −49.7228 −1.99531
\(622\) −19.3723 −0.776758
\(623\) −4.62772 −0.185406
\(624\) 6.74456 0.269999
\(625\) 0 0
\(626\) −22.0000 −0.879297
\(627\) 0 0
\(628\) −9.37228 −0.373995
\(629\) −12.8614 −0.512818
\(630\) 0 0
\(631\) 42.1168 1.67665 0.838323 0.545175i \(-0.183537\pi\)
0.838323 + 0.545175i \(0.183537\pi\)
\(632\) −1.25544 −0.0499386
\(633\) −20.6277 −0.819878
\(634\) −24.3505 −0.967083
\(635\) 0 0
\(636\) 13.8832 0.550503
\(637\) 8.74456 0.346472
\(638\) 0 0
\(639\) 84.7011 3.35072
\(640\) 0 0
\(641\) −27.0951 −1.07019 −0.535096 0.844791i \(-0.679725\pi\)
−0.535096 + 0.844791i \(0.679725\pi\)
\(642\) 40.4674 1.59712
\(643\) 5.88316 0.232009 0.116005 0.993249i \(-0.462991\pi\)
0.116005 + 0.993249i \(0.462991\pi\)
\(644\) −9.25544 −0.364715
\(645\) 0 0
\(646\) 0.861407 0.0338916
\(647\) 37.7228 1.48304 0.741518 0.670933i \(-0.234106\pi\)
0.741518 + 0.670933i \(0.234106\pi\)
\(648\) −35.9783 −1.41336
\(649\) 0 0
\(650\) 0 0
\(651\) 38.3505 1.50308
\(652\) 5.88316 0.230402
\(653\) −10.6277 −0.415895 −0.207947 0.978140i \(-0.566678\pi\)
−0.207947 + 0.978140i \(0.566678\pi\)
\(654\) −52.2337 −2.04250
\(655\) 0 0
\(656\) 11.4891 0.448575
\(657\) −129.679 −5.05927
\(658\) 9.25544 0.360815
\(659\) −12.8614 −0.501009 −0.250505 0.968115i \(-0.580597\pi\)
−0.250505 + 0.968115i \(0.580597\pi\)
\(660\) 0 0
\(661\) 8.51087 0.331035 0.165517 0.986207i \(-0.447071\pi\)
0.165517 + 0.986207i \(0.447071\pi\)
\(662\) −30.9783 −1.20400
\(663\) 9.25544 0.359451
\(664\) 2.74456 0.106510
\(665\) 0 0
\(666\) 78.4674 3.04055
\(667\) 3.76631 0.145832
\(668\) −4.62772 −0.179052
\(669\) 63.2119 2.44391
\(670\) 0 0
\(671\) 0 0
\(672\) −11.3723 −0.438695
\(673\) 14.8614 0.572865 0.286433 0.958100i \(-0.407531\pi\)
0.286433 + 0.958100i \(0.407531\pi\)
\(674\) −24.1168 −0.928946
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 3.25544 0.125117 0.0625583 0.998041i \(-0.480074\pi\)
0.0625583 + 0.998041i \(0.480074\pi\)
\(678\) 10.9783 0.421617
\(679\) 42.9783 1.64935
\(680\) 0 0
\(681\) −9.25544 −0.354669
\(682\) 0 0
\(683\) 28.6277 1.09541 0.547705 0.836672i \(-0.315502\pi\)
0.547705 + 0.836672i \(0.315502\pi\)
\(684\) −5.25544 −0.200947
\(685\) 0 0
\(686\) 8.86141 0.338330
\(687\) −33.7228 −1.28661
\(688\) −4.00000 −0.152499
\(689\) 8.23369 0.313679
\(690\) 0 0
\(691\) 40.2337 1.53056 0.765281 0.643697i \(-0.222600\pi\)
0.765281 + 0.643697i \(0.222600\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 32.2337 1.22357
\(695\) 0 0
\(696\) 4.62772 0.175413
\(697\) 15.7663 0.597192
\(698\) 19.4891 0.737674
\(699\) 4.62772 0.175036
\(700\) 0 0
\(701\) 37.3723 1.41153 0.705766 0.708445i \(-0.250603\pi\)
0.705766 + 0.708445i \(0.250603\pi\)
\(702\) −36.2337 −1.36755
\(703\) 5.88316 0.221887
\(704\) 0 0
\(705\) 0 0
\(706\) −0.510875 −0.0192270
\(707\) −20.2337 −0.760966
\(708\) −9.25544 −0.347841
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 10.5109 0.394189
\(712\) 1.37228 0.0514284
\(713\) −9.25544 −0.346619
\(714\) −15.6060 −0.584039
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 49.7228 1.85693
\(718\) 0 0
\(719\) 13.8832 0.517754 0.258877 0.965910i \(-0.416648\pi\)
0.258877 + 0.965910i \(0.416648\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) 18.6060 0.692442
\(723\) 74.1902 2.75916
\(724\) −10.0000 −0.371647
\(725\) 0 0
\(726\) 0 0
\(727\) 24.2337 0.898778 0.449389 0.893336i \(-0.351642\pi\)
0.449389 + 0.893336i \(0.351642\pi\)
\(728\) −6.74456 −0.249970
\(729\) 117.935 4.36795
\(730\) 0 0
\(731\) −5.48913 −0.203023
\(732\) 18.1168 0.669618
\(733\) 46.2337 1.70768 0.853840 0.520535i \(-0.174268\pi\)
0.853840 + 0.520535i \(0.174268\pi\)
\(734\) −4.00000 −0.147643
\(735\) 0 0
\(736\) 2.74456 0.101166
\(737\) 0 0
\(738\) −96.1902 −3.54081
\(739\) 20.4674 0.752905 0.376452 0.926436i \(-0.377144\pi\)
0.376452 + 0.926436i \(0.377144\pi\)
\(740\) 0 0
\(741\) −4.23369 −0.155528
\(742\) −13.8832 −0.509667
\(743\) −4.62772 −0.169775 −0.0848873 0.996391i \(-0.527053\pi\)
−0.0848873 + 0.996391i \(0.527053\pi\)
\(744\) −11.3723 −0.416928
\(745\) 0 0
\(746\) −31.4891 −1.15290
\(747\) −22.9783 −0.840730
\(748\) 0 0
\(749\) −40.4674 −1.47865
\(750\) 0 0
\(751\) 8.86141 0.323357 0.161679 0.986843i \(-0.448309\pi\)
0.161679 + 0.986843i \(0.448309\pi\)
\(752\) −2.74456 −0.100084
\(753\) 9.25544 0.337287
\(754\) 2.74456 0.0999511
\(755\) 0 0
\(756\) 61.0951 2.22201
\(757\) 20.9783 0.762467 0.381234 0.924479i \(-0.375499\pi\)
0.381234 + 0.924479i \(0.375499\pi\)
\(758\) 0.233688 0.00848793
\(759\) 0 0
\(760\) 0 0
\(761\) −4.97825 −0.180461 −0.0902307 0.995921i \(-0.528760\pi\)
−0.0902307 + 0.995921i \(0.528760\pi\)
\(762\) −26.9783 −0.977319
\(763\) 52.2337 1.89099
\(764\) −5.48913 −0.198590
\(765\) 0 0
\(766\) 32.2337 1.16465
\(767\) −5.48913 −0.198201
\(768\) 3.37228 0.121687
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) −60.7011 −2.18610
\(772\) 14.8614 0.534874
\(773\) 33.6060 1.20872 0.604361 0.796710i \(-0.293428\pi\)
0.604361 + 0.796710i \(0.293428\pi\)
\(774\) 33.4891 1.20374
\(775\) 0 0
\(776\) −12.7446 −0.457503
\(777\) −106.584 −3.82369
\(778\) −6.00000 −0.215110
\(779\) −7.21194 −0.258395
\(780\) 0 0
\(781\) 0 0
\(782\) 3.76631 0.134683
\(783\) −24.8614 −0.888474
\(784\) 4.37228 0.156153
\(785\) 0 0
\(786\) 74.5842 2.66033
\(787\) −44.4674 −1.58509 −0.792545 0.609813i \(-0.791245\pi\)
−0.792545 + 0.609813i \(0.791245\pi\)
\(788\) −20.7446 −0.738994
\(789\) −83.8397 −2.98477
\(790\) 0 0
\(791\) −10.9783 −0.390342
\(792\) 0 0
\(793\) 10.7446 0.381551
\(794\) 24.9783 0.886445
\(795\) 0 0
\(796\) 18.1168 0.642135
\(797\) −11.4891 −0.406966 −0.203483 0.979079i \(-0.565226\pi\)
−0.203483 + 0.979079i \(0.565226\pi\)
\(798\) 7.13859 0.252703
\(799\) −3.76631 −0.133243
\(800\) 0 0
\(801\) −11.4891 −0.405948
\(802\) −13.3723 −0.472192
\(803\) 0 0
\(804\) −26.9783 −0.951450
\(805\) 0 0
\(806\) −6.74456 −0.237567
\(807\) −29.4891 −1.03807
\(808\) 6.00000 0.211079
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) −44.8614 −1.57530 −0.787649 0.616125i \(-0.788702\pi\)
−0.787649 + 0.616125i \(0.788702\pi\)
\(812\) −4.62772 −0.162401
\(813\) 53.9565 1.89234
\(814\) 0 0
\(815\) 0 0
\(816\) 4.62772 0.162003
\(817\) 2.51087 0.0878444
\(818\) −1.76631 −0.0617577
\(819\) 56.4674 1.97313
\(820\) 0 0
\(821\) −11.4891 −0.400973 −0.200487 0.979696i \(-0.564252\pi\)
−0.200487 + 0.979696i \(0.564252\pi\)
\(822\) 29.4891 1.02855
\(823\) 28.0000 0.976019 0.488009 0.872838i \(-0.337723\pi\)
0.488009 + 0.872838i \(0.337723\pi\)
\(824\) −9.48913 −0.330569
\(825\) 0 0
\(826\) 9.25544 0.322038
\(827\) 46.9783 1.63359 0.816797 0.576925i \(-0.195748\pi\)
0.816797 + 0.576925i \(0.195748\pi\)
\(828\) −22.9783 −0.798549
\(829\) −24.7446 −0.859414 −0.429707 0.902968i \(-0.641383\pi\)
−0.429707 + 0.902968i \(0.641383\pi\)
\(830\) 0 0
\(831\) −42.9783 −1.49090
\(832\) 2.00000 0.0693375
\(833\) 6.00000 0.207888
\(834\) −13.4891 −0.467090
\(835\) 0 0
\(836\) 0 0
\(837\) 61.0951 2.11176
\(838\) 12.0000 0.414533
\(839\) −10.9783 −0.379011 −0.189506 0.981880i \(-0.560689\pi\)
−0.189506 + 0.981880i \(0.560689\pi\)
\(840\) 0 0
\(841\) −27.1168 −0.935064
\(842\) −10.2337 −0.352676
\(843\) −60.7011 −2.09066
\(844\) −6.11684 −0.210550
\(845\) 0 0
\(846\) 22.9783 0.790009
\(847\) 0 0
\(848\) 4.11684 0.141373
\(849\) 17.7228 0.608245
\(850\) 0 0
\(851\) 25.7228 0.881767
\(852\) 34.1168 1.16882
\(853\) −38.4674 −1.31710 −0.658549 0.752538i \(-0.728829\pi\)
−0.658549 + 0.752538i \(0.728829\pi\)
\(854\) −18.1168 −0.619946
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) 36.3505 1.24171 0.620855 0.783925i \(-0.286785\pi\)
0.620855 + 0.783925i \(0.286785\pi\)
\(858\) 0 0
\(859\) −42.7446 −1.45843 −0.729213 0.684287i \(-0.760114\pi\)
−0.729213 + 0.684287i \(0.760114\pi\)
\(860\) 0 0
\(861\) 130.658 4.45280
\(862\) −34.9783 −1.19136
\(863\) −21.2554 −0.723544 −0.361772 0.932267i \(-0.617828\pi\)
−0.361772 + 0.932267i \(0.617828\pi\)
\(864\) −18.1168 −0.616348
\(865\) 0 0
\(866\) 27.7228 0.942060
\(867\) −50.9783 −1.73131
\(868\) 11.3723 0.386000
\(869\) 0 0
\(870\) 0 0
\(871\) −16.0000 −0.542139
\(872\) −15.4891 −0.524528
\(873\) 106.701 3.61128
\(874\) −1.72281 −0.0582750
\(875\) 0 0
\(876\) −52.2337 −1.76481
\(877\) 36.9783 1.24867 0.624333 0.781158i \(-0.285371\pi\)
0.624333 + 0.781158i \(0.285371\pi\)
\(878\) 18.9783 0.640485
\(879\) 79.2119 2.67175
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) −36.6060 −1.23259
\(883\) −3.37228 −0.113486 −0.0567432 0.998389i \(-0.518072\pi\)
−0.0567432 + 0.998389i \(0.518072\pi\)
\(884\) 2.74456 0.0923096
\(885\) 0 0
\(886\) 29.4891 0.990707
\(887\) −10.9783 −0.368614 −0.184307 0.982869i \(-0.559004\pi\)
−0.184307 + 0.982869i \(0.559004\pi\)
\(888\) 31.6060 1.06063
\(889\) 26.9783 0.904821
\(890\) 0 0
\(891\) 0 0
\(892\) 18.7446 0.627614
\(893\) 1.72281 0.0576517
\(894\) 72.8614 2.43685
\(895\) 0 0
\(896\) −3.37228 −0.112660
\(897\) −18.5109 −0.618060
\(898\) −28.9783 −0.967017
\(899\) −4.62772 −0.154343
\(900\) 0 0
\(901\) 5.64947 0.188211
\(902\) 0 0
\(903\) −45.4891 −1.51378
\(904\) 3.25544 0.108274
\(905\) 0 0
\(906\) −41.2554 −1.37062
\(907\) 0.394031 0.0130836 0.00654179 0.999979i \(-0.497918\pi\)
0.00654179 + 0.999979i \(0.497918\pi\)
\(908\) −2.74456 −0.0910815
\(909\) −50.2337 −1.66615
\(910\) 0 0
\(911\) −8.39403 −0.278107 −0.139053 0.990285i \(-0.544406\pi\)
−0.139053 + 0.990285i \(0.544406\pi\)
\(912\) −2.11684 −0.0700957
\(913\) 0 0
\(914\) 16.3505 0.540828
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) −74.5842 −2.46299
\(918\) −24.8614 −0.820549
\(919\) −18.9783 −0.626035 −0.313017 0.949747i \(-0.601340\pi\)
−0.313017 + 0.949747i \(0.601340\pi\)
\(920\) 0 0
\(921\) 17.7228 0.583987
\(922\) 16.1168 0.530780
\(923\) 20.2337 0.666000
\(924\) 0 0
\(925\) 0 0
\(926\) −0.233688 −0.00767946
\(927\) 79.4456 2.60934
\(928\) 1.37228 0.0450473
\(929\) 24.3505 0.798915 0.399458 0.916752i \(-0.369199\pi\)
0.399458 + 0.916752i \(0.369199\pi\)
\(930\) 0 0
\(931\) −2.74456 −0.0899494
\(932\) 1.37228 0.0449506
\(933\) 65.3288 2.13877
\(934\) −19.3723 −0.633880
\(935\) 0 0
\(936\) −16.7446 −0.547313
\(937\) −28.5109 −0.931410 −0.465705 0.884940i \(-0.654199\pi\)
−0.465705 + 0.884940i \(0.654199\pi\)
\(938\) 26.9783 0.880871
\(939\) 74.1902 2.42111
\(940\) 0 0
\(941\) 15.0951 0.492086 0.246043 0.969259i \(-0.420870\pi\)
0.246043 + 0.969259i \(0.420870\pi\)
\(942\) 31.6060 1.02978
\(943\) −31.5326 −1.02684
\(944\) −2.74456 −0.0893279
\(945\) 0 0
\(946\) 0 0
\(947\) −48.8614 −1.58778 −0.793891 0.608060i \(-0.791948\pi\)
−0.793891 + 0.608060i \(0.791948\pi\)
\(948\) 4.23369 0.137504
\(949\) −30.9783 −1.00560
\(950\) 0 0
\(951\) 82.1168 2.66282
\(952\) −4.62772 −0.149985
\(953\) 40.1168 1.29951 0.649756 0.760143i \(-0.274871\pi\)
0.649756 + 0.760143i \(0.274871\pi\)
\(954\) −34.4674 −1.11592
\(955\) 0 0
\(956\) 14.7446 0.476873
\(957\) 0 0
\(958\) 5.48913 0.177346
\(959\) −29.4891 −0.952254
\(960\) 0 0
\(961\) −19.6277 −0.633152
\(962\) 18.7446 0.604349
\(963\) −100.467 −3.23752
\(964\) 22.0000 0.708572
\(965\) 0 0
\(966\) 31.2119 1.00423
\(967\) 47.6060 1.53090 0.765452 0.643493i \(-0.222515\pi\)
0.765452 + 0.643493i \(0.222515\pi\)
\(968\) 0 0
\(969\) −2.90491 −0.0933190
\(970\) 0 0
\(971\) −1.02175 −0.0327895 −0.0163947 0.999866i \(-0.505219\pi\)
−0.0163947 + 0.999866i \(0.505219\pi\)
\(972\) 66.9783 2.14833
\(973\) 13.4891 0.432442
\(974\) 20.0000 0.640841
\(975\) 0 0
\(976\) 5.37228 0.171963
\(977\) −14.2337 −0.455376 −0.227688 0.973734i \(-0.573117\pi\)
−0.227688 + 0.973734i \(0.573117\pi\)
\(978\) −19.8397 −0.634402
\(979\) 0 0
\(980\) 0 0
\(981\) 129.679 4.14034
\(982\) −7.37228 −0.235259
\(983\) 13.7228 0.437690 0.218845 0.975760i \(-0.429771\pi\)
0.218845 + 0.975760i \(0.429771\pi\)
\(984\) −38.7446 −1.23513
\(985\) 0 0
\(986\) 1.88316 0.0599719
\(987\) −31.2119 −0.993487
\(988\) −1.25544 −0.0399408
\(989\) 10.9783 0.349088
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) −3.37228 −0.107070
\(993\) 104.467 3.31517
\(994\) −34.1168 −1.08212
\(995\) 0 0
\(996\) −9.25544 −0.293270
\(997\) 22.2337 0.704148 0.352074 0.935972i \(-0.385477\pi\)
0.352074 + 0.935972i \(0.385477\pi\)
\(998\) 33.4891 1.06008
\(999\) −169.796 −5.37211
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6050.2.a.cb.1.2 2
5.4 even 2 1210.2.a.r.1.1 2
11.10 odd 2 550.2.a.n.1.2 2
20.19 odd 2 9680.2.a.bt.1.2 2
33.32 even 2 4950.2.a.bw.1.1 2
44.43 even 2 4400.2.a.bl.1.1 2
55.32 even 4 550.2.b.f.199.3 4
55.43 even 4 550.2.b.f.199.2 4
55.54 odd 2 110.2.a.d.1.1 2
165.32 odd 4 4950.2.c.bc.199.1 4
165.98 odd 4 4950.2.c.bc.199.4 4
165.164 even 2 990.2.a.m.1.2 2
220.43 odd 4 4400.2.b.p.4049.1 4
220.87 odd 4 4400.2.b.p.4049.4 4
220.219 even 2 880.2.a.n.1.2 2
385.384 even 2 5390.2.a.bp.1.2 2
440.109 odd 2 3520.2.a.bq.1.2 2
440.219 even 2 3520.2.a.bj.1.1 2
660.659 odd 2 7920.2.a.bq.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.a.d.1.1 2 55.54 odd 2
550.2.a.n.1.2 2 11.10 odd 2
550.2.b.f.199.2 4 55.43 even 4
550.2.b.f.199.3 4 55.32 even 4
880.2.a.n.1.2 2 220.219 even 2
990.2.a.m.1.2 2 165.164 even 2
1210.2.a.r.1.1 2 5.4 even 2
3520.2.a.bj.1.1 2 440.219 even 2
3520.2.a.bq.1.2 2 440.109 odd 2
4400.2.a.bl.1.1 2 44.43 even 2
4400.2.b.p.4049.1 4 220.43 odd 4
4400.2.b.p.4049.4 4 220.87 odd 4
4950.2.a.bw.1.1 2 33.32 even 2
4950.2.c.bc.199.1 4 165.32 odd 4
4950.2.c.bc.199.4 4 165.98 odd 4
5390.2.a.bp.1.2 2 385.384 even 2
6050.2.a.cb.1.2 2 1.1 even 1 trivial
7920.2.a.bq.1.1 2 660.659 odd 2
9680.2.a.bt.1.2 2 20.19 odd 2