# Properties

 Label 6050.2.a.bk Level $6050$ Weight $2$ Character orbit 6050.a Self dual yes Analytic conductor $48.309$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [6050,2,Mod(1,6050)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(6050, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("6050.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$6050 = 2 \cdot 5^{2} \cdot 11^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 6050.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$48.3094932229$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 110) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{3} + q^{4} + q^{6} + 3 q^{7} + q^{8} - 2 q^{9}+O(q^{10})$$ q + q^2 + q^3 + q^4 + q^6 + 3 * q^7 + q^8 - 2 * q^9 $$q + q^{2} + q^{3} + q^{4} + q^{6} + 3 q^{7} + q^{8} - 2 q^{9} + q^{12} + 4 q^{13} + 3 q^{14} + q^{16} + 3 q^{17} - 2 q^{18} + 5 q^{19} + 3 q^{21} - 4 q^{23} + q^{24} + 4 q^{26} - 5 q^{27} + 3 q^{28} - 5 q^{29} + 7 q^{31} + q^{32} + 3 q^{34} - 2 q^{36} + 7 q^{37} + 5 q^{38} + 4 q^{39} + 8 q^{41} + 3 q^{42} - 6 q^{43} - 4 q^{46} - 8 q^{47} + q^{48} + 2 q^{49} + 3 q^{51} + 4 q^{52} - 9 q^{53} - 5 q^{54} + 3 q^{56} + 5 q^{57} - 5 q^{58} + 13 q^{61} + 7 q^{62} - 6 q^{63} + q^{64} + 12 q^{67} + 3 q^{68} - 4 q^{69} - 3 q^{71} - 2 q^{72} - 6 q^{73} + 7 q^{74} + 5 q^{76} + 4 q^{78} + q^{81} + 8 q^{82} + 4 q^{83} + 3 q^{84} - 6 q^{86} - 5 q^{87} - 15 q^{89} + 12 q^{91} - 4 q^{92} + 7 q^{93} - 8 q^{94} + q^{96} + 12 q^{97} + 2 q^{98}+O(q^{100})$$ q + q^2 + q^3 + q^4 + q^6 + 3 * q^7 + q^8 - 2 * q^9 + q^12 + 4 * q^13 + 3 * q^14 + q^16 + 3 * q^17 - 2 * q^18 + 5 * q^19 + 3 * q^21 - 4 * q^23 + q^24 + 4 * q^26 - 5 * q^27 + 3 * q^28 - 5 * q^29 + 7 * q^31 + q^32 + 3 * q^34 - 2 * q^36 + 7 * q^37 + 5 * q^38 + 4 * q^39 + 8 * q^41 + 3 * q^42 - 6 * q^43 - 4 * q^46 - 8 * q^47 + q^48 + 2 * q^49 + 3 * q^51 + 4 * q^52 - 9 * q^53 - 5 * q^54 + 3 * q^56 + 5 * q^57 - 5 * q^58 + 13 * q^61 + 7 * q^62 - 6 * q^63 + q^64 + 12 * q^67 + 3 * q^68 - 4 * q^69 - 3 * q^71 - 2 * q^72 - 6 * q^73 + 7 * q^74 + 5 * q^76 + 4 * q^78 + q^81 + 8 * q^82 + 4 * q^83 + 3 * q^84 - 6 * q^86 - 5 * q^87 - 15 * q^89 + 12 * q^91 - 4 * q^92 + 7 * q^93 - 8 * q^94 + q^96 + 12 * q^97 + 2 * q^98

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 1.00000 1.00000 0 1.00000 3.00000 1.00000 −2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$11$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6050.2.a.bk 1
5.b even 2 1 6050.2.a.f 1
5.c odd 4 2 1210.2.b.a 2
11.b odd 2 1 550.2.a.e 1
33.d even 2 1 4950.2.a.ba 1
44.c even 2 1 4400.2.a.k 1
55.d odd 2 1 550.2.a.j 1
55.e even 4 2 110.2.b.a 2
165.d even 2 1 4950.2.a.q 1
165.l odd 4 2 990.2.c.d 2
220.g even 2 1 4400.2.a.s 1
220.i odd 4 2 880.2.b.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.2.b.a 2 55.e even 4 2
550.2.a.e 1 11.b odd 2 1
550.2.a.j 1 55.d odd 2 1
880.2.b.a 2 220.i odd 4 2
990.2.c.d 2 165.l odd 4 2
1210.2.b.a 2 5.c odd 4 2
4400.2.a.k 1 44.c even 2 1
4400.2.a.s 1 220.g even 2 1
4950.2.a.q 1 165.d even 2 1
4950.2.a.ba 1 33.d even 2 1
6050.2.a.f 1 5.b even 2 1
6050.2.a.bk 1 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(6050))$$:

 $$T_{3} - 1$$ T3 - 1 $$T_{7} - 3$$ T7 - 3 $$T_{13} - 4$$ T13 - 4 $$T_{17} - 3$$ T17 - 3 $$T_{19} - 5$$ T19 - 5

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T - 1$$
$5$ $$T$$
$7$ $$T - 3$$
$11$ $$T$$
$13$ $$T - 4$$
$17$ $$T - 3$$
$19$ $$T - 5$$
$23$ $$T + 4$$
$29$ $$T + 5$$
$31$ $$T - 7$$
$37$ $$T - 7$$
$41$ $$T - 8$$
$43$ $$T + 6$$
$47$ $$T + 8$$
$53$ $$T + 9$$
$59$ $$T$$
$61$ $$T - 13$$
$67$ $$T - 12$$
$71$ $$T + 3$$
$73$ $$T + 6$$
$79$ $$T$$
$83$ $$T - 4$$
$89$ $$T + 15$$
$97$ $$T - 12$$