Properties

Label 605.4.a.g.1.2
Level $605$
Weight $4$
Character 605.1
Self dual yes
Analytic conductor $35.696$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,4,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.6961555535\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 605.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.56155 q^{2} -3.56155 q^{3} +22.9309 q^{4} +5.00000 q^{5} -19.8078 q^{6} -6.05398 q^{7} +83.0388 q^{8} -14.3153 q^{9} +27.8078 q^{10} -81.6695 q^{12} +4.38447 q^{13} -33.6695 q^{14} -17.8078 q^{15} +278.378 q^{16} +110.546 q^{17} -79.6155 q^{18} +94.2699 q^{19} +114.654 q^{20} +21.5616 q^{21} +15.7538 q^{23} -295.747 q^{24} +25.0000 q^{25} +24.3845 q^{26} +147.147 q^{27} -138.823 q^{28} +256.870 q^{29} -99.0388 q^{30} -170.702 q^{31} +883.902 q^{32} +614.810 q^{34} -30.2699 q^{35} -328.263 q^{36} -190.853 q^{37} +524.287 q^{38} -15.6155 q^{39} +415.194 q^{40} -249.602 q^{41} +119.916 q^{42} -291.602 q^{43} -71.5767 q^{45} +87.6155 q^{46} +182.155 q^{47} -991.457 q^{48} -306.349 q^{49} +139.039 q^{50} -393.717 q^{51} +100.540 q^{52} -289.902 q^{53} +818.365 q^{54} -502.715 q^{56} -335.747 q^{57} +1428.60 q^{58} +282.725 q^{59} -408.348 q^{60} -167.825 q^{61} -949.366 q^{62} +86.6647 q^{63} +2688.85 q^{64} +21.9224 q^{65} -176.233 q^{67} +2534.93 q^{68} -56.1080 q^{69} -168.348 q^{70} +919.255 q^{71} -1188.73 q^{72} -154.570 q^{73} -1061.44 q^{74} -89.0388 q^{75} +2161.69 q^{76} -86.8466 q^{78} +882.017 q^{79} +1391.89 q^{80} -137.557 q^{81} -1388.18 q^{82} -277.619 q^{83} +494.425 q^{84} +552.732 q^{85} -1621.76 q^{86} -914.857 q^{87} -977.147 q^{89} -398.078 q^{90} -26.5435 q^{91} +361.248 q^{92} +607.963 q^{93} +1013.07 q^{94} +471.349 q^{95} -3148.07 q^{96} -1102.94 q^{97} -1703.78 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 7 q^{2} - 3 q^{3} + 17 q^{4} + 10 q^{5} - 19 q^{6} + 25 q^{7} + 63 q^{8} - 41 q^{9} + 35 q^{10} - 85 q^{12} + 50 q^{13} + 11 q^{14} - 15 q^{15} + 297 q^{16} + 151 q^{17} - 118 q^{18} + 3 q^{19} + 85 q^{20}+ \cdots - 810 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.56155 1.96631 0.983153 0.182785i \(-0.0585112\pi\)
0.983153 + 0.182785i \(0.0585112\pi\)
\(3\) −3.56155 −0.685421 −0.342711 0.939441i \(-0.611345\pi\)
−0.342711 + 0.939441i \(0.611345\pi\)
\(4\) 22.9309 2.86636
\(5\) 5.00000 0.447214
\(6\) −19.8078 −1.34775
\(7\) −6.05398 −0.326884 −0.163442 0.986553i \(-0.552260\pi\)
−0.163442 + 0.986553i \(0.552260\pi\)
\(8\) 83.0388 3.66983
\(9\) −14.3153 −0.530198
\(10\) 27.8078 0.879359
\(11\) 0 0
\(12\) −81.6695 −1.96466
\(13\) 4.38447 0.0935411 0.0467705 0.998906i \(-0.485107\pi\)
0.0467705 + 0.998906i \(0.485107\pi\)
\(14\) −33.6695 −0.642754
\(15\) −17.8078 −0.306530
\(16\) 278.378 4.34965
\(17\) 110.546 1.57714 0.788572 0.614943i \(-0.210821\pi\)
0.788572 + 0.614943i \(0.210821\pi\)
\(18\) −79.6155 −1.04253
\(19\) 94.2699 1.13826 0.569131 0.822247i \(-0.307280\pi\)
0.569131 + 0.822247i \(0.307280\pi\)
\(20\) 114.654 1.28187
\(21\) 21.5616 0.224053
\(22\) 0 0
\(23\) 15.7538 0.142821 0.0714107 0.997447i \(-0.477250\pi\)
0.0714107 + 0.997447i \(0.477250\pi\)
\(24\) −295.747 −2.51538
\(25\) 25.0000 0.200000
\(26\) 24.3845 0.183930
\(27\) 147.147 1.04883
\(28\) −138.823 −0.936967
\(29\) 256.870 1.64481 0.822407 0.568900i \(-0.192631\pi\)
0.822407 + 0.568900i \(0.192631\pi\)
\(30\) −99.0388 −0.602731
\(31\) −170.702 −0.988998 −0.494499 0.869178i \(-0.664648\pi\)
−0.494499 + 0.869178i \(0.664648\pi\)
\(32\) 883.902 4.88292
\(33\) 0 0
\(34\) 614.810 3.10115
\(35\) −30.2699 −0.146187
\(36\) −328.263 −1.51974
\(37\) −190.853 −0.848002 −0.424001 0.905662i \(-0.639375\pi\)
−0.424001 + 0.905662i \(0.639375\pi\)
\(38\) 524.287 2.23817
\(39\) −15.6155 −0.0641150
\(40\) 415.194 1.64120
\(41\) −249.602 −0.950764 −0.475382 0.879780i \(-0.657690\pi\)
−0.475382 + 0.879780i \(0.657690\pi\)
\(42\) 119.916 0.440557
\(43\) −291.602 −1.03416 −0.517081 0.855937i \(-0.672981\pi\)
−0.517081 + 0.855937i \(0.672981\pi\)
\(44\) 0 0
\(45\) −71.5767 −0.237112
\(46\) 87.6155 0.280831
\(47\) 182.155 0.565321 0.282660 0.959220i \(-0.408783\pi\)
0.282660 + 0.959220i \(0.408783\pi\)
\(48\) −991.457 −2.98134
\(49\) −306.349 −0.893147
\(50\) 139.039 0.393261
\(51\) −393.717 −1.08101
\(52\) 100.540 0.268122
\(53\) −289.902 −0.751343 −0.375671 0.926753i \(-0.622588\pi\)
−0.375671 + 0.926753i \(0.622588\pi\)
\(54\) 818.365 2.06232
\(55\) 0 0
\(56\) −502.715 −1.19961
\(57\) −335.747 −0.780189
\(58\) 1428.60 3.23421
\(59\) 282.725 0.623859 0.311930 0.950105i \(-0.399025\pi\)
0.311930 + 0.950105i \(0.399025\pi\)
\(60\) −408.348 −0.878624
\(61\) −167.825 −0.352258 −0.176129 0.984367i \(-0.556358\pi\)
−0.176129 + 0.984367i \(0.556358\pi\)
\(62\) −949.366 −1.94467
\(63\) 86.6647 0.173313
\(64\) 2688.85 5.25166
\(65\) 21.9224 0.0418328
\(66\) 0 0
\(67\) −176.233 −0.321347 −0.160674 0.987008i \(-0.551367\pi\)
−0.160674 + 0.987008i \(0.551367\pi\)
\(68\) 2534.93 4.52066
\(69\) −56.1080 −0.0978928
\(70\) −168.348 −0.287448
\(71\) 919.255 1.53656 0.768278 0.640116i \(-0.221114\pi\)
0.768278 + 0.640116i \(0.221114\pi\)
\(72\) −1188.73 −1.94574
\(73\) −154.570 −0.247823 −0.123911 0.992293i \(-0.539544\pi\)
−0.123911 + 0.992293i \(0.539544\pi\)
\(74\) −1061.44 −1.66743
\(75\) −89.0388 −0.137084
\(76\) 2161.69 3.26267
\(77\) 0 0
\(78\) −86.8466 −0.126070
\(79\) 882.017 1.25614 0.628068 0.778159i \(-0.283846\pi\)
0.628068 + 0.778159i \(0.283846\pi\)
\(80\) 1391.89 1.94522
\(81\) −137.557 −0.188692
\(82\) −1388.18 −1.86949
\(83\) −277.619 −0.367141 −0.183570 0.983007i \(-0.558766\pi\)
−0.183570 + 0.983007i \(0.558766\pi\)
\(84\) 494.425 0.642217
\(85\) 552.732 0.705320
\(86\) −1621.76 −2.03348
\(87\) −914.857 −1.12739
\(88\) 0 0
\(89\) −977.147 −1.16379 −0.581895 0.813264i \(-0.697689\pi\)
−0.581895 + 0.813264i \(0.697689\pi\)
\(90\) −398.078 −0.466234
\(91\) −26.5435 −0.0305771
\(92\) 361.248 0.409377
\(93\) 607.963 0.677880
\(94\) 1013.07 1.11159
\(95\) 471.349 0.509047
\(96\) −3148.07 −3.34685
\(97\) −1102.94 −1.15451 −0.577253 0.816565i \(-0.695875\pi\)
−0.577253 + 0.816565i \(0.695875\pi\)
\(98\) −1703.78 −1.75620
\(99\) 0 0
\(100\) 573.272 0.573272
\(101\) −484.314 −0.477139 −0.238570 0.971125i \(-0.576679\pi\)
−0.238570 + 0.971125i \(0.576679\pi\)
\(102\) −2189.68 −2.12559
\(103\) −874.419 −0.836495 −0.418248 0.908333i \(-0.637356\pi\)
−0.418248 + 0.908333i \(0.637356\pi\)
\(104\) 364.081 0.343280
\(105\) 107.808 0.100200
\(106\) −1612.31 −1.47737
\(107\) −119.845 −0.108279 −0.0541394 0.998533i \(-0.517242\pi\)
−0.0541394 + 0.998533i \(0.517242\pi\)
\(108\) 3374.20 3.00632
\(109\) −414.621 −0.364344 −0.182172 0.983267i \(-0.558313\pi\)
−0.182172 + 0.983267i \(0.558313\pi\)
\(110\) 0 0
\(111\) 679.734 0.581239
\(112\) −1685.29 −1.42183
\(113\) 534.453 0.444930 0.222465 0.974941i \(-0.428590\pi\)
0.222465 + 0.974941i \(0.428590\pi\)
\(114\) −1867.28 −1.53409
\(115\) 78.7689 0.0638717
\(116\) 5890.26 4.71463
\(117\) −62.7652 −0.0495953
\(118\) 1572.39 1.22670
\(119\) −669.245 −0.515543
\(120\) −1478.74 −1.12491
\(121\) 0 0
\(122\) −933.366 −0.692648
\(123\) 888.972 0.651674
\(124\) −3914.34 −2.83482
\(125\) 125.000 0.0894427
\(126\) 481.990 0.340787
\(127\) −640.121 −0.447256 −0.223628 0.974675i \(-0.571790\pi\)
−0.223628 + 0.974675i \(0.571790\pi\)
\(128\) 7882.95 5.44344
\(129\) 1038.56 0.708836
\(130\) 121.922 0.0822561
\(131\) −1051.05 −0.700999 −0.350499 0.936563i \(-0.613988\pi\)
−0.350499 + 0.936563i \(0.613988\pi\)
\(132\) 0 0
\(133\) −570.708 −0.372080
\(134\) −980.129 −0.631867
\(135\) 735.734 0.469051
\(136\) 9179.64 5.78785
\(137\) 1690.68 1.05434 0.527169 0.849761i \(-0.323254\pi\)
0.527169 + 0.849761i \(0.323254\pi\)
\(138\) −312.047 −0.192487
\(139\) −2789.43 −1.70213 −0.851067 0.525058i \(-0.824044\pi\)
−0.851067 + 0.525058i \(0.824044\pi\)
\(140\) −694.115 −0.419024
\(141\) −648.756 −0.387483
\(142\) 5112.48 3.02134
\(143\) 0 0
\(144\) −3985.07 −2.30618
\(145\) 1284.35 0.735583
\(146\) −859.650 −0.487295
\(147\) 1091.08 0.612182
\(148\) −4376.43 −2.43068
\(149\) −1090.62 −0.599647 −0.299823 0.953995i \(-0.596928\pi\)
−0.299823 + 0.953995i \(0.596928\pi\)
\(150\) −495.194 −0.269550
\(151\) −623.574 −0.336064 −0.168032 0.985782i \(-0.553741\pi\)
−0.168032 + 0.985782i \(0.553741\pi\)
\(152\) 7828.06 4.17723
\(153\) −1582.51 −0.836198
\(154\) 0 0
\(155\) −853.508 −0.442293
\(156\) −358.078 −0.183777
\(157\) −2114.96 −1.07511 −0.537555 0.843228i \(-0.680652\pi\)
−0.537555 + 0.843228i \(0.680652\pi\)
\(158\) 4905.38 2.46995
\(159\) 1032.50 0.514986
\(160\) 4419.51 2.18371
\(161\) −95.3730 −0.0466860
\(162\) −765.029 −0.371027
\(163\) 1153.53 0.554301 0.277151 0.960827i \(-0.410610\pi\)
0.277151 + 0.960827i \(0.410610\pi\)
\(164\) −5723.60 −2.72523
\(165\) 0 0
\(166\) −1543.99 −0.721911
\(167\) 1100.93 0.510137 0.255068 0.966923i \(-0.417902\pi\)
0.255068 + 0.966923i \(0.417902\pi\)
\(168\) 1790.45 0.822238
\(169\) −2177.78 −0.991250
\(170\) 3074.05 1.38687
\(171\) −1349.51 −0.603504
\(172\) −6686.69 −2.96428
\(173\) 2369.25 1.04122 0.520609 0.853795i \(-0.325705\pi\)
0.520609 + 0.853795i \(0.325705\pi\)
\(174\) −5088.03 −2.21679
\(175\) −151.349 −0.0653768
\(176\) 0 0
\(177\) −1006.94 −0.427606
\(178\) −5434.45 −2.28837
\(179\) 1226.77 0.512250 0.256125 0.966644i \(-0.417554\pi\)
0.256125 + 0.966644i \(0.417554\pi\)
\(180\) −1641.32 −0.679647
\(181\) −439.606 −0.180528 −0.0902642 0.995918i \(-0.528771\pi\)
−0.0902642 + 0.995918i \(0.528771\pi\)
\(182\) −147.623 −0.0601239
\(183\) 597.717 0.241445
\(184\) 1308.18 0.524131
\(185\) −954.266 −0.379238
\(186\) 3381.22 1.33292
\(187\) 0 0
\(188\) 4176.98 1.62041
\(189\) −890.823 −0.342846
\(190\) 2621.43 1.00094
\(191\) −4968.96 −1.88241 −0.941207 0.337829i \(-0.890307\pi\)
−0.941207 + 0.337829i \(0.890307\pi\)
\(192\) −9576.47 −3.59960
\(193\) 1362.22 0.508054 0.254027 0.967197i \(-0.418245\pi\)
0.254027 + 0.967197i \(0.418245\pi\)
\(194\) −6134.09 −2.27011
\(195\) −78.0776 −0.0286731
\(196\) −7024.86 −2.56008
\(197\) −2195.91 −0.794174 −0.397087 0.917781i \(-0.629979\pi\)
−0.397087 + 0.917781i \(0.629979\pi\)
\(198\) 0 0
\(199\) −558.189 −0.198839 −0.0994194 0.995046i \(-0.531699\pi\)
−0.0994194 + 0.995046i \(0.531699\pi\)
\(200\) 2075.97 0.733966
\(201\) 627.663 0.220258
\(202\) −2693.54 −0.938202
\(203\) −1555.09 −0.537663
\(204\) −9028.27 −3.09856
\(205\) −1248.01 −0.425195
\(206\) −4863.12 −1.64481
\(207\) −225.521 −0.0757236
\(208\) 1220.54 0.406871
\(209\) 0 0
\(210\) 599.579 0.197023
\(211\) 3002.01 0.979463 0.489732 0.871873i \(-0.337095\pi\)
0.489732 + 0.871873i \(0.337095\pi\)
\(212\) −6647.71 −2.15362
\(213\) −3273.97 −1.05319
\(214\) −666.523 −0.212909
\(215\) −1458.01 −0.462491
\(216\) 12218.9 3.84903
\(217\) 1033.42 0.323287
\(218\) −2305.94 −0.716412
\(219\) 550.509 0.169863
\(220\) 0 0
\(221\) 484.688 0.147528
\(222\) 3780.38 1.14289
\(223\) 854.595 0.256627 0.128314 0.991734i \(-0.459044\pi\)
0.128314 + 0.991734i \(0.459044\pi\)
\(224\) −5351.12 −1.59615
\(225\) −357.884 −0.106040
\(226\) 2972.39 0.874868
\(227\) −394.002 −0.115202 −0.0576010 0.998340i \(-0.518345\pi\)
−0.0576010 + 0.998340i \(0.518345\pi\)
\(228\) −7698.97 −2.23630
\(229\) −491.822 −0.141924 −0.0709618 0.997479i \(-0.522607\pi\)
−0.0709618 + 0.997479i \(0.522607\pi\)
\(230\) 438.078 0.125591
\(231\) 0 0
\(232\) 21330.2 6.03619
\(233\) 6884.63 1.93574 0.967869 0.251456i \(-0.0809094\pi\)
0.967869 + 0.251456i \(0.0809094\pi\)
\(234\) −349.072 −0.0975195
\(235\) 910.776 0.252819
\(236\) 6483.14 1.78820
\(237\) −3141.35 −0.860982
\(238\) −3722.04 −1.01371
\(239\) −3012.77 −0.815397 −0.407699 0.913117i \(-0.633669\pi\)
−0.407699 + 0.913117i \(0.633669\pi\)
\(240\) −4957.29 −1.33330
\(241\) −3106.98 −0.830448 −0.415224 0.909719i \(-0.636297\pi\)
−0.415224 + 0.909719i \(0.636297\pi\)
\(242\) 0 0
\(243\) −3483.05 −0.919496
\(244\) −3848.37 −1.00970
\(245\) −1531.75 −0.399427
\(246\) 4944.06 1.28139
\(247\) 413.324 0.106474
\(248\) −14174.9 −3.62946
\(249\) 988.756 0.251646
\(250\) 695.194 0.175872
\(251\) −834.313 −0.209806 −0.104903 0.994482i \(-0.533453\pi\)
−0.104903 + 0.994482i \(0.533453\pi\)
\(252\) 1987.30 0.496778
\(253\) 0 0
\(254\) −3560.07 −0.879443
\(255\) −1968.58 −0.483441
\(256\) 22330.6 5.45182
\(257\) −7536.63 −1.82927 −0.914635 0.404281i \(-0.867522\pi\)
−0.914635 + 0.404281i \(0.867522\pi\)
\(258\) 5775.99 1.39379
\(259\) 1155.42 0.277198
\(260\) 502.699 0.119908
\(261\) −3677.19 −0.872077
\(262\) −5845.48 −1.37838
\(263\) 6242.10 1.46351 0.731757 0.681565i \(-0.238700\pi\)
0.731757 + 0.681565i \(0.238700\pi\)
\(264\) 0 0
\(265\) −1449.51 −0.336011
\(266\) −3174.02 −0.731623
\(267\) 3480.16 0.797687
\(268\) −4041.17 −0.921097
\(269\) 1636.95 0.371027 0.185514 0.982642i \(-0.440605\pi\)
0.185514 + 0.982642i \(0.440605\pi\)
\(270\) 4091.82 0.922298
\(271\) −787.212 −0.176457 −0.0882283 0.996100i \(-0.528120\pi\)
−0.0882283 + 0.996100i \(0.528120\pi\)
\(272\) 30773.7 6.86003
\(273\) 94.5360 0.0209582
\(274\) 9402.78 2.07315
\(275\) 0 0
\(276\) −1286.60 −0.280596
\(277\) −1954.96 −0.424052 −0.212026 0.977264i \(-0.568006\pi\)
−0.212026 + 0.977264i \(0.568006\pi\)
\(278\) −15513.6 −3.34691
\(279\) 2443.65 0.524364
\(280\) −2513.57 −0.536482
\(281\) 5097.58 1.08219 0.541097 0.840960i \(-0.318009\pi\)
0.541097 + 0.840960i \(0.318009\pi\)
\(282\) −3608.09 −0.761910
\(283\) 7187.71 1.50977 0.754885 0.655857i \(-0.227693\pi\)
0.754885 + 0.655857i \(0.227693\pi\)
\(284\) 21079.3 4.40432
\(285\) −1678.74 −0.348911
\(286\) 0 0
\(287\) 1511.09 0.310789
\(288\) −12653.4 −2.58891
\(289\) 7307.51 1.48738
\(290\) 7142.99 1.44638
\(291\) 3928.20 0.791323
\(292\) −3544.43 −0.710349
\(293\) −6388.82 −1.27385 −0.636926 0.770925i \(-0.719794\pi\)
−0.636926 + 0.770925i \(0.719794\pi\)
\(294\) 6068.10 1.20374
\(295\) 1413.63 0.278998
\(296\) −15848.2 −3.11203
\(297\) 0 0
\(298\) −6065.56 −1.17909
\(299\) 69.0720 0.0133597
\(300\) −2041.74 −0.392933
\(301\) 1765.35 0.338051
\(302\) −3468.04 −0.660806
\(303\) 1724.91 0.327041
\(304\) 26242.6 4.95105
\(305\) −839.124 −0.157535
\(306\) −8801.21 −1.64422
\(307\) −4882.07 −0.907603 −0.453802 0.891103i \(-0.649933\pi\)
−0.453802 + 0.891103i \(0.649933\pi\)
\(308\) 0 0
\(309\) 3114.29 0.573352
\(310\) −4746.83 −0.869684
\(311\) 2846.01 0.518914 0.259457 0.965755i \(-0.416456\pi\)
0.259457 + 0.965755i \(0.416456\pi\)
\(312\) −1296.70 −0.235291
\(313\) 8009.49 1.44640 0.723200 0.690639i \(-0.242670\pi\)
0.723200 + 0.690639i \(0.242670\pi\)
\(314\) −11762.5 −2.11400
\(315\) 433.324 0.0775080
\(316\) 20225.4 3.60053
\(317\) 4668.89 0.827227 0.413613 0.910453i \(-0.364267\pi\)
0.413613 + 0.910453i \(0.364267\pi\)
\(318\) 5742.32 1.01262
\(319\) 0 0
\(320\) 13444.2 2.34861
\(321\) 426.833 0.0742165
\(322\) −530.422 −0.0917990
\(323\) 10421.2 1.79520
\(324\) −3154.30 −0.540860
\(325\) 109.612 0.0187082
\(326\) 6415.39 1.08993
\(327\) 1476.70 0.249729
\(328\) −20726.7 −3.48914
\(329\) −1102.76 −0.184794
\(330\) 0 0
\(331\) 2581.31 0.428645 0.214323 0.976763i \(-0.431246\pi\)
0.214323 + 0.976763i \(0.431246\pi\)
\(332\) −6366.05 −1.05236
\(333\) 2732.13 0.449609
\(334\) 6122.91 1.00309
\(335\) −881.165 −0.143711
\(336\) 6002.26 0.974554
\(337\) 8152.45 1.31778 0.658890 0.752239i \(-0.271026\pi\)
0.658890 + 0.752239i \(0.271026\pi\)
\(338\) −12111.8 −1.94910
\(339\) −1903.48 −0.304964
\(340\) 12674.6 2.02170
\(341\) 0 0
\(342\) −7505.35 −1.18667
\(343\) 3931.15 0.618839
\(344\) −24214.3 −3.79520
\(345\) −280.540 −0.0437790
\(346\) 13176.7 2.04735
\(347\) 3426.21 0.530054 0.265027 0.964241i \(-0.414619\pi\)
0.265027 + 0.964241i \(0.414619\pi\)
\(348\) −20978.5 −3.23151
\(349\) −1334.33 −0.204656 −0.102328 0.994751i \(-0.532629\pi\)
−0.102328 + 0.994751i \(0.532629\pi\)
\(350\) −841.738 −0.128551
\(351\) 645.161 0.0981087
\(352\) 0 0
\(353\) 4406.21 0.664360 0.332180 0.943216i \(-0.392216\pi\)
0.332180 + 0.943216i \(0.392216\pi\)
\(354\) −5600.16 −0.840805
\(355\) 4596.27 0.687169
\(356\) −22406.8 −3.33584
\(357\) 2383.55 0.353364
\(358\) 6822.72 1.00724
\(359\) 8623.04 1.26771 0.633853 0.773453i \(-0.281472\pi\)
0.633853 + 0.773453i \(0.281472\pi\)
\(360\) −5943.65 −0.870160
\(361\) 2027.81 0.295642
\(362\) −2444.89 −0.354974
\(363\) 0 0
\(364\) −608.665 −0.0876448
\(365\) −772.850 −0.110830
\(366\) 3324.23 0.474755
\(367\) −3585.58 −0.509989 −0.254995 0.966942i \(-0.582074\pi\)
−0.254995 + 0.966942i \(0.582074\pi\)
\(368\) 4385.51 0.621224
\(369\) 3573.14 0.504093
\(370\) −5307.20 −0.745698
\(371\) 1755.06 0.245602
\(372\) 13941.1 1.94305
\(373\) −9855.90 −1.36815 −0.684074 0.729413i \(-0.739793\pi\)
−0.684074 + 0.729413i \(0.739793\pi\)
\(374\) 0 0
\(375\) −445.194 −0.0613059
\(376\) 15126.0 2.07463
\(377\) 1126.24 0.153858
\(378\) −4954.36 −0.674139
\(379\) −10837.8 −1.46887 −0.734435 0.678679i \(-0.762553\pi\)
−0.734435 + 0.678679i \(0.762553\pi\)
\(380\) 10808.5 1.45911
\(381\) 2279.83 0.306559
\(382\) −27635.1 −3.70140
\(383\) −2025.55 −0.270237 −0.135119 0.990829i \(-0.543142\pi\)
−0.135119 + 0.990829i \(0.543142\pi\)
\(384\) −28075.5 −3.73105
\(385\) 0 0
\(386\) 7576.04 0.998990
\(387\) 4174.39 0.548310
\(388\) −25291.5 −3.30923
\(389\) −978.894 −0.127588 −0.0637942 0.997963i \(-0.520320\pi\)
−0.0637942 + 0.997963i \(0.520320\pi\)
\(390\) −434.233 −0.0563801
\(391\) 1741.52 0.225250
\(392\) −25438.9 −3.27770
\(393\) 3743.38 0.480479
\(394\) −12212.7 −1.56159
\(395\) 4410.09 0.561761
\(396\) 0 0
\(397\) −5008.28 −0.633144 −0.316572 0.948568i \(-0.602532\pi\)
−0.316572 + 0.948568i \(0.602532\pi\)
\(398\) −3104.39 −0.390978
\(399\) 2032.60 0.255031
\(400\) 6959.45 0.869931
\(401\) −15584.1 −1.94073 −0.970366 0.241639i \(-0.922315\pi\)
−0.970366 + 0.241639i \(0.922315\pi\)
\(402\) 3490.78 0.433095
\(403\) −748.437 −0.0925119
\(404\) −11105.7 −1.36765
\(405\) −687.784 −0.0843858
\(406\) −8648.69 −1.05721
\(407\) 0 0
\(408\) −32693.8 −3.96712
\(409\) −15106.6 −1.82634 −0.913171 0.407576i \(-0.866374\pi\)
−0.913171 + 0.407576i \(0.866374\pi\)
\(410\) −6940.88 −0.836063
\(411\) −6021.43 −0.722665
\(412\) −20051.2 −2.39770
\(413\) −1711.61 −0.203930
\(414\) −1254.25 −0.148896
\(415\) −1388.10 −0.164190
\(416\) 3875.45 0.456753
\(417\) 9934.71 1.16668
\(418\) 0 0
\(419\) −1518.17 −0.177011 −0.0885056 0.996076i \(-0.528209\pi\)
−0.0885056 + 0.996076i \(0.528209\pi\)
\(420\) 2472.13 0.287208
\(421\) 4637.05 0.536808 0.268404 0.963306i \(-0.413504\pi\)
0.268404 + 0.963306i \(0.413504\pi\)
\(422\) 16695.8 1.92592
\(423\) −2607.62 −0.299732
\(424\) −24073.2 −2.75730
\(425\) 2763.66 0.315429
\(426\) −18208.4 −2.07089
\(427\) 1016.01 0.115148
\(428\) −2748.14 −0.310366
\(429\) 0 0
\(430\) −8108.81 −0.909399
\(431\) 11477.9 1.28276 0.641380 0.767223i \(-0.278362\pi\)
0.641380 + 0.767223i \(0.278362\pi\)
\(432\) 40962.4 4.56205
\(433\) 10204.5 1.13256 0.566280 0.824213i \(-0.308382\pi\)
0.566280 + 0.824213i \(0.308382\pi\)
\(434\) 5747.44 0.635682
\(435\) −4574.28 −0.504184
\(436\) −9507.62 −1.04434
\(437\) 1485.11 0.162568
\(438\) 3061.69 0.334002
\(439\) 6919.06 0.752229 0.376115 0.926573i \(-0.377260\pi\)
0.376115 + 0.926573i \(0.377260\pi\)
\(440\) 0 0
\(441\) 4385.50 0.473545
\(442\) 2695.62 0.290085
\(443\) −2912.53 −0.312366 −0.156183 0.987728i \(-0.549919\pi\)
−0.156183 + 0.987728i \(0.549919\pi\)
\(444\) 15586.9 1.66604
\(445\) −4885.73 −0.520463
\(446\) 4752.87 0.504608
\(447\) 3884.32 0.411011
\(448\) −16278.2 −1.71668
\(449\) −1155.53 −0.121454 −0.0607270 0.998154i \(-0.519342\pi\)
−0.0607270 + 0.998154i \(0.519342\pi\)
\(450\) −1990.39 −0.208506
\(451\) 0 0
\(452\) 12255.5 1.27533
\(453\) 2220.89 0.230346
\(454\) −2191.26 −0.226522
\(455\) −132.717 −0.0136745
\(456\) −27880.0 −2.86316
\(457\) −2745.62 −0.281039 −0.140519 0.990078i \(-0.544877\pi\)
−0.140519 + 0.990078i \(0.544877\pi\)
\(458\) −2735.29 −0.279065
\(459\) 16266.5 1.65416
\(460\) 1806.24 0.183079
\(461\) −11224.1 −1.13397 −0.566984 0.823729i \(-0.691890\pi\)
−0.566984 + 0.823729i \(0.691890\pi\)
\(462\) 0 0
\(463\) 15994.8 1.60549 0.802743 0.596325i \(-0.203373\pi\)
0.802743 + 0.596325i \(0.203373\pi\)
\(464\) 71507.0 7.15437
\(465\) 3039.82 0.303157
\(466\) 38289.2 3.80625
\(467\) 6674.60 0.661378 0.330689 0.943740i \(-0.392719\pi\)
0.330689 + 0.943740i \(0.392719\pi\)
\(468\) −1439.26 −0.142158
\(469\) 1066.91 0.105043
\(470\) 5065.33 0.497120
\(471\) 7532.55 0.736904
\(472\) 23477.2 2.28946
\(473\) 0 0
\(474\) −17470.8 −1.69295
\(475\) 2356.75 0.227653
\(476\) −15346.4 −1.47773
\(477\) 4150.05 0.398360
\(478\) −16755.7 −1.60332
\(479\) 11582.0 1.10479 0.552396 0.833582i \(-0.313714\pi\)
0.552396 + 0.833582i \(0.313714\pi\)
\(480\) −15740.3 −1.49676
\(481\) −836.791 −0.0793230
\(482\) −17279.6 −1.63292
\(483\) 339.676 0.0319996
\(484\) 0 0
\(485\) −5514.72 −0.516311
\(486\) −19371.2 −1.80801
\(487\) −10618.7 −0.988047 −0.494024 0.869448i \(-0.664474\pi\)
−0.494024 + 0.869448i \(0.664474\pi\)
\(488\) −13936.0 −1.29273
\(489\) −4108.34 −0.379930
\(490\) −8518.89 −0.785396
\(491\) 17948.0 1.64966 0.824829 0.565382i \(-0.191271\pi\)
0.824829 + 0.565382i \(0.191271\pi\)
\(492\) 20384.9 1.86793
\(493\) 28396.1 2.59411
\(494\) 2298.72 0.209361
\(495\) 0 0
\(496\) −47519.6 −4.30180
\(497\) −5565.15 −0.502275
\(498\) 5499.02 0.494813
\(499\) −10409.6 −0.933865 −0.466932 0.884293i \(-0.654641\pi\)
−0.466932 + 0.884293i \(0.654641\pi\)
\(500\) 2866.36 0.256375
\(501\) −3921.04 −0.349659
\(502\) −4640.07 −0.412543
\(503\) −7319.98 −0.648870 −0.324435 0.945908i \(-0.605174\pi\)
−0.324435 + 0.945908i \(0.605174\pi\)
\(504\) 7196.54 0.636030
\(505\) −2421.57 −0.213383
\(506\) 0 0
\(507\) 7756.27 0.679424
\(508\) −14678.5 −1.28200
\(509\) 7619.94 0.663552 0.331776 0.943358i \(-0.392352\pi\)
0.331776 + 0.943358i \(0.392352\pi\)
\(510\) −10948.4 −0.950593
\(511\) 935.763 0.0810093
\(512\) 61129.5 5.27650
\(513\) 13871.5 1.19384
\(514\) −41915.4 −3.59690
\(515\) −4372.09 −0.374092
\(516\) 23815.0 2.03178
\(517\) 0 0
\(518\) 6425.93 0.545057
\(519\) −8438.20 −0.713672
\(520\) 1820.41 0.153519
\(521\) −12413.4 −1.04384 −0.521921 0.852994i \(-0.674785\pi\)
−0.521921 + 0.852994i \(0.674785\pi\)
\(522\) −20450.9 −1.71477
\(523\) 2524.30 0.211051 0.105526 0.994417i \(-0.466347\pi\)
0.105526 + 0.994417i \(0.466347\pi\)
\(524\) −24101.5 −2.00931
\(525\) 539.039 0.0448106
\(526\) 34715.8 2.87772
\(527\) −18870.5 −1.55979
\(528\) 0 0
\(529\) −11918.8 −0.979602
\(530\) −8061.54 −0.660700
\(531\) −4047.31 −0.330769
\(532\) −13086.8 −1.06651
\(533\) −1094.37 −0.0889355
\(534\) 19355.1 1.56850
\(535\) −599.224 −0.0484237
\(536\) −14634.2 −1.17929
\(537\) −4369.19 −0.351107
\(538\) 9103.96 0.729553
\(539\) 0 0
\(540\) 16871.0 1.34447
\(541\) −10271.4 −0.816269 −0.408135 0.912922i \(-0.633821\pi\)
−0.408135 + 0.912922i \(0.633821\pi\)
\(542\) −4378.12 −0.346968
\(543\) 1565.68 0.123738
\(544\) 97712.2 7.70106
\(545\) −2073.11 −0.162940
\(546\) 525.767 0.0412102
\(547\) −7810.11 −0.610487 −0.305243 0.952274i \(-0.598738\pi\)
−0.305243 + 0.952274i \(0.598738\pi\)
\(548\) 38768.7 3.02211
\(549\) 2402.47 0.186767
\(550\) 0 0
\(551\) 24215.1 1.87223
\(552\) −4659.14 −0.359250
\(553\) −5339.71 −0.410610
\(554\) −10872.6 −0.833815
\(555\) 3398.67 0.259938
\(556\) −63964.1 −4.87892
\(557\) 18348.8 1.39580 0.697902 0.716193i \(-0.254117\pi\)
0.697902 + 0.716193i \(0.254117\pi\)
\(558\) 13590.5 1.03106
\(559\) −1278.52 −0.0967365
\(560\) −8426.46 −0.635863
\(561\) 0 0
\(562\) 28350.5 2.12792
\(563\) 174.680 0.0130761 0.00653807 0.999979i \(-0.497919\pi\)
0.00653807 + 0.999979i \(0.497919\pi\)
\(564\) −14876.5 −1.11066
\(565\) 2672.26 0.198979
\(566\) 39974.8 2.96867
\(567\) 832.765 0.0616805
\(568\) 76333.8 5.63890
\(569\) 3208.08 0.236362 0.118181 0.992992i \(-0.462294\pi\)
0.118181 + 0.992992i \(0.462294\pi\)
\(570\) −9336.38 −0.686066
\(571\) 11660.4 0.854592 0.427296 0.904112i \(-0.359466\pi\)
0.427296 + 0.904112i \(0.359466\pi\)
\(572\) 0 0
\(573\) 17697.2 1.29025
\(574\) 8403.98 0.611107
\(575\) 393.845 0.0285643
\(576\) −38491.8 −2.78442
\(577\) −12906.9 −0.931233 −0.465617 0.884987i \(-0.654167\pi\)
−0.465617 + 0.884987i \(0.654167\pi\)
\(578\) 40641.1 2.92465
\(579\) −4851.61 −0.348231
\(580\) 29451.3 2.10845
\(581\) 1680.70 0.120012
\(582\) 21846.9 1.55598
\(583\) 0 0
\(584\) −12835.3 −0.909468
\(585\) −313.826 −0.0221797
\(586\) −35531.8 −2.50478
\(587\) 27427.0 1.92850 0.964252 0.264986i \(-0.0853673\pi\)
0.964252 + 0.264986i \(0.0853673\pi\)
\(588\) 25019.4 1.75473
\(589\) −16092.0 −1.12574
\(590\) 7861.96 0.548596
\(591\) 7820.86 0.544344
\(592\) −53129.3 −3.68852
\(593\) −5332.11 −0.369247 −0.184623 0.982809i \(-0.559107\pi\)
−0.184623 + 0.982809i \(0.559107\pi\)
\(594\) 0 0
\(595\) −3346.23 −0.230558
\(596\) −25009.0 −1.71880
\(597\) 1988.02 0.136288
\(598\) 384.148 0.0262692
\(599\) −22329.2 −1.52312 −0.761558 0.648097i \(-0.775565\pi\)
−0.761558 + 0.648097i \(0.775565\pi\)
\(600\) −7393.68 −0.503076
\(601\) −15511.8 −1.05281 −0.526405 0.850234i \(-0.676460\pi\)
−0.526405 + 0.850234i \(0.676460\pi\)
\(602\) 9818.10 0.664711
\(603\) 2522.83 0.170378
\(604\) −14299.1 −0.963281
\(605\) 0 0
\(606\) 9593.18 0.643063
\(607\) −7205.25 −0.481799 −0.240900 0.970550i \(-0.577442\pi\)
−0.240900 + 0.970550i \(0.577442\pi\)
\(608\) 83325.4 5.55804
\(609\) 5538.52 0.368526
\(610\) −4666.83 −0.309761
\(611\) 798.655 0.0528807
\(612\) −36288.3 −2.39684
\(613\) 2837.16 0.186936 0.0934682 0.995622i \(-0.470205\pi\)
0.0934682 + 0.995622i \(0.470205\pi\)
\(614\) −27151.9 −1.78463
\(615\) 4444.86 0.291437
\(616\) 0 0
\(617\) −7423.58 −0.484379 −0.242190 0.970229i \(-0.577866\pi\)
−0.242190 + 0.970229i \(0.577866\pi\)
\(618\) 17320.3 1.12738
\(619\) 9747.62 0.632940 0.316470 0.948603i \(-0.397502\pi\)
0.316470 + 0.948603i \(0.397502\pi\)
\(620\) −19571.7 −1.26777
\(621\) 2318.12 0.149795
\(622\) 15828.2 1.02034
\(623\) 5915.62 0.380424
\(624\) −4347.02 −0.278878
\(625\) 625.000 0.0400000
\(626\) 44545.2 2.84407
\(627\) 0 0
\(628\) −48497.9 −3.08165
\(629\) −21098.1 −1.33742
\(630\) 2409.95 0.152404
\(631\) 5914.75 0.373157 0.186579 0.982440i \(-0.440260\pi\)
0.186579 + 0.982440i \(0.440260\pi\)
\(632\) 73241.7 4.60980
\(633\) −10691.8 −0.671345
\(634\) 25966.3 1.62658
\(635\) −3200.61 −0.200019
\(636\) 23676.2 1.47614
\(637\) −1343.18 −0.0835459
\(638\) 0 0
\(639\) −13159.4 −0.814679
\(640\) 39414.7 2.43438
\(641\) −25438.0 −1.56746 −0.783728 0.621104i \(-0.786684\pi\)
−0.783728 + 0.621104i \(0.786684\pi\)
\(642\) 2373.86 0.145932
\(643\) 769.253 0.0471794 0.0235897 0.999722i \(-0.492490\pi\)
0.0235897 + 0.999722i \(0.492490\pi\)
\(644\) −2186.99 −0.133819
\(645\) 5192.78 0.317001
\(646\) 57958.0 3.52992
\(647\) 25813.2 1.56850 0.784250 0.620445i \(-0.213048\pi\)
0.784250 + 0.620445i \(0.213048\pi\)
\(648\) −11422.6 −0.692469
\(649\) 0 0
\(650\) 609.612 0.0367861
\(651\) −3680.59 −0.221588
\(652\) 26451.3 1.58883
\(653\) −13138.6 −0.787372 −0.393686 0.919245i \(-0.628800\pi\)
−0.393686 + 0.919245i \(0.628800\pi\)
\(654\) 8212.72 0.491044
\(655\) −5255.26 −0.313496
\(656\) −69483.7 −4.13549
\(657\) 2212.72 0.131395
\(658\) −6133.08 −0.363362
\(659\) 19105.0 1.12933 0.564663 0.825322i \(-0.309006\pi\)
0.564663 + 0.825322i \(0.309006\pi\)
\(660\) 0 0
\(661\) −31694.3 −1.86500 −0.932502 0.361166i \(-0.882379\pi\)
−0.932502 + 0.361166i \(0.882379\pi\)
\(662\) 14356.1 0.842848
\(663\) −1726.24 −0.101119
\(664\) −23053.2 −1.34734
\(665\) −2853.54 −0.166399
\(666\) 15194.9 0.884069
\(667\) 4046.68 0.234915
\(668\) 25245.4 1.46224
\(669\) −3043.68 −0.175898
\(670\) −4900.64 −0.282580
\(671\) 0 0
\(672\) 19058.3 1.09403
\(673\) 23110.6 1.32370 0.661848 0.749638i \(-0.269772\pi\)
0.661848 + 0.749638i \(0.269772\pi\)
\(674\) 45340.3 2.59116
\(675\) 3678.67 0.209766
\(676\) −49938.3 −2.84128
\(677\) 17052.4 0.968062 0.484031 0.875051i \(-0.339172\pi\)
0.484031 + 0.875051i \(0.339172\pi\)
\(678\) −10586.3 −0.599653
\(679\) 6677.20 0.377390
\(680\) 45898.2 2.58841
\(681\) 1403.26 0.0789618
\(682\) 0 0
\(683\) 28542.8 1.59907 0.799533 0.600623i \(-0.205081\pi\)
0.799533 + 0.600623i \(0.205081\pi\)
\(684\) −30945.3 −1.72986
\(685\) 8453.38 0.471514
\(686\) 21863.3 1.21683
\(687\) 1751.65 0.0972774
\(688\) −81175.6 −4.49824
\(689\) −1271.07 −0.0702814
\(690\) −1560.24 −0.0860829
\(691\) 6479.20 0.356701 0.178351 0.983967i \(-0.442924\pi\)
0.178351 + 0.983967i \(0.442924\pi\)
\(692\) 54328.9 2.98450
\(693\) 0 0
\(694\) 19055.1 1.04225
\(695\) −13947.2 −0.761217
\(696\) −75968.6 −4.13733
\(697\) −27592.6 −1.49949
\(698\) −7420.94 −0.402417
\(699\) −24520.0 −1.32680
\(700\) −3470.57 −0.187393
\(701\) −21118.6 −1.13786 −0.568929 0.822386i \(-0.692642\pi\)
−0.568929 + 0.822386i \(0.692642\pi\)
\(702\) 3588.10 0.192912
\(703\) −17991.7 −0.965249
\(704\) 0 0
\(705\) −3243.78 −0.173288
\(706\) 24505.4 1.30633
\(707\) 2932.03 0.155969
\(708\) −23090.0 −1.22567
\(709\) 7072.53 0.374632 0.187316 0.982300i \(-0.440021\pi\)
0.187316 + 0.982300i \(0.440021\pi\)
\(710\) 25562.4 1.35118
\(711\) −12626.4 −0.666000
\(712\) −81141.1 −4.27092
\(713\) −2689.20 −0.141250
\(714\) 13256.3 0.694822
\(715\) 0 0
\(716\) 28130.8 1.46829
\(717\) 10730.1 0.558890
\(718\) 47957.5 2.49270
\(719\) 22177.9 1.15034 0.575170 0.818034i \(-0.304936\pi\)
0.575170 + 0.818034i \(0.304936\pi\)
\(720\) −19925.4 −1.03135
\(721\) 5293.71 0.273437
\(722\) 11277.8 0.581323
\(723\) 11065.7 0.569207
\(724\) −10080.5 −0.517459
\(725\) 6421.76 0.328963
\(726\) 0 0
\(727\) −17390.7 −0.887186 −0.443593 0.896228i \(-0.646296\pi\)
−0.443593 + 0.896228i \(0.646296\pi\)
\(728\) −2204.14 −0.112213
\(729\) 16119.1 0.818935
\(730\) −4298.25 −0.217925
\(731\) −32235.6 −1.63102
\(732\) 13706.2 0.692069
\(733\) 21877.0 1.10238 0.551191 0.834379i \(-0.314174\pi\)
0.551191 + 0.834379i \(0.314174\pi\)
\(734\) −19941.4 −1.00279
\(735\) 5455.40 0.273776
\(736\) 13924.8 0.697385
\(737\) 0 0
\(738\) 19872.2 0.991201
\(739\) −14203.1 −0.706994 −0.353497 0.935436i \(-0.615008\pi\)
−0.353497 + 0.935436i \(0.615008\pi\)
\(740\) −21882.2 −1.08703
\(741\) −1472.07 −0.0729797
\(742\) 9760.87 0.482928
\(743\) 3933.68 0.194230 0.0971148 0.995273i \(-0.469039\pi\)
0.0971148 + 0.995273i \(0.469039\pi\)
\(744\) 50484.5 2.48771
\(745\) −5453.12 −0.268170
\(746\) −54814.1 −2.69020
\(747\) 3974.21 0.194657
\(748\) 0 0
\(749\) 725.537 0.0353946
\(750\) −2475.97 −0.120546
\(751\) 22554.3 1.09590 0.547949 0.836512i \(-0.315409\pi\)
0.547949 + 0.836512i \(0.315409\pi\)
\(752\) 50708.0 2.45895
\(753\) 2971.45 0.143806
\(754\) 6263.65 0.302531
\(755\) −3117.87 −0.150293
\(756\) −20427.3 −0.982719
\(757\) 11432.0 0.548883 0.274441 0.961604i \(-0.411507\pi\)
0.274441 + 0.961604i \(0.411507\pi\)
\(758\) −60275.2 −2.88825
\(759\) 0 0
\(760\) 39140.3 1.86812
\(761\) 32660.1 1.55575 0.777877 0.628416i \(-0.216296\pi\)
0.777877 + 0.628416i \(0.216296\pi\)
\(762\) 12679.4 0.602789
\(763\) 2510.11 0.119098
\(764\) −113943. −5.39568
\(765\) −7912.55 −0.373959
\(766\) −11265.2 −0.531369
\(767\) 1239.60 0.0583565
\(768\) −79531.8 −3.73679
\(769\) 8569.93 0.401872 0.200936 0.979604i \(-0.435602\pi\)
0.200936 + 0.979604i \(0.435602\pi\)
\(770\) 0 0
\(771\) 26842.1 1.25382
\(772\) 31236.8 1.45627
\(773\) −29158.0 −1.35671 −0.678357 0.734733i \(-0.737307\pi\)
−0.678357 + 0.734733i \(0.737307\pi\)
\(774\) 23216.1 1.07815
\(775\) −4267.54 −0.197800
\(776\) −91587.2 −4.23684
\(777\) −4115.09 −0.189998
\(778\) −5444.17 −0.250878
\(779\) −23530.0 −1.08222
\(780\) −1790.39 −0.0821874
\(781\) 0 0
\(782\) 9685.58 0.442910
\(783\) 37797.6 1.72513
\(784\) −85280.9 −3.88488
\(785\) −10574.8 −0.480804
\(786\) 20819.0 0.944770
\(787\) 8501.30 0.385055 0.192528 0.981292i \(-0.438332\pi\)
0.192528 + 0.981292i \(0.438332\pi\)
\(788\) −50354.2 −2.27639
\(789\) −22231.6 −1.00312
\(790\) 24526.9 1.10459
\(791\) −3235.56 −0.145440
\(792\) 0 0
\(793\) −735.823 −0.0329506
\(794\) −27853.8 −1.24496
\(795\) 5162.51 0.230309
\(796\) −12799.7 −0.569944
\(797\) 37459.5 1.66485 0.832424 0.554139i \(-0.186953\pi\)
0.832424 + 0.554139i \(0.186953\pi\)
\(798\) 11304.4 0.501470
\(799\) 20136.6 0.891592
\(800\) 22097.6 0.976583
\(801\) 13988.2 0.617039
\(802\) −86671.9 −3.81607
\(803\) 0 0
\(804\) 14392.9 0.631339
\(805\) −476.865 −0.0208786
\(806\) −4162.47 −0.181907
\(807\) −5830.07 −0.254310
\(808\) −40216.9 −1.75102
\(809\) −18045.8 −0.784246 −0.392123 0.919913i \(-0.628259\pi\)
−0.392123 + 0.919913i \(0.628259\pi\)
\(810\) −3825.15 −0.165928
\(811\) −914.961 −0.0396161 −0.0198080 0.999804i \(-0.506306\pi\)
−0.0198080 + 0.999804i \(0.506306\pi\)
\(812\) −35659.5 −1.54114
\(813\) 2803.70 0.120947
\(814\) 0 0
\(815\) 5767.63 0.247891
\(816\) −109602. −4.70201
\(817\) −27489.3 −1.17715
\(818\) −84016.3 −3.59115
\(819\) 379.979 0.0162119
\(820\) −28618.0 −1.21876
\(821\) −15188.9 −0.645672 −0.322836 0.946455i \(-0.604636\pi\)
−0.322836 + 0.946455i \(0.604636\pi\)
\(822\) −33488.5 −1.42098
\(823\) −37930.3 −1.60652 −0.803261 0.595628i \(-0.796903\pi\)
−0.803261 + 0.595628i \(0.796903\pi\)
\(824\) −72610.7 −3.06980
\(825\) 0 0
\(826\) −9519.22 −0.400988
\(827\) −29679.9 −1.24797 −0.623985 0.781437i \(-0.714487\pi\)
−0.623985 + 0.781437i \(0.714487\pi\)
\(828\) −5171.39 −0.217051
\(829\) 29094.2 1.21892 0.609458 0.792818i \(-0.291387\pi\)
0.609458 + 0.792818i \(0.291387\pi\)
\(830\) −7719.97 −0.322848
\(831\) 6962.70 0.290654
\(832\) 11789.2 0.491245
\(833\) −33865.8 −1.40862
\(834\) 55252.4 2.29405
\(835\) 5504.67 0.228140
\(836\) 0 0
\(837\) −25118.2 −1.03729
\(838\) −8443.41 −0.348058
\(839\) 38791.2 1.59621 0.798105 0.602519i \(-0.205836\pi\)
0.798105 + 0.602519i \(0.205836\pi\)
\(840\) 8952.23 0.367716
\(841\) 41593.3 1.70541
\(842\) 25789.2 1.05553
\(843\) −18155.3 −0.741758
\(844\) 68838.7 2.80749
\(845\) −10888.9 −0.443301
\(846\) −14502.4 −0.589365
\(847\) 0 0
\(848\) −80702.4 −3.26808
\(849\) −25599.4 −1.03483
\(850\) 15370.2 0.620229
\(851\) −3006.66 −0.121113
\(852\) −75075.1 −3.01881
\(853\) 42933.7 1.72335 0.861677 0.507458i \(-0.169415\pi\)
0.861677 + 0.507458i \(0.169415\pi\)
\(854\) 5650.58 0.226415
\(855\) −6747.53 −0.269895
\(856\) −9951.76 −0.397365
\(857\) 2664.36 0.106199 0.0530997 0.998589i \(-0.483090\pi\)
0.0530997 + 0.998589i \(0.483090\pi\)
\(858\) 0 0
\(859\) −25002.7 −0.993111 −0.496556 0.868005i \(-0.665402\pi\)
−0.496556 + 0.868005i \(0.665402\pi\)
\(860\) −33433.5 −1.32566
\(861\) −5381.81 −0.213022
\(862\) 63834.8 2.52230
\(863\) 27509.8 1.08510 0.542551 0.840023i \(-0.317459\pi\)
0.542551 + 0.840023i \(0.317459\pi\)
\(864\) 130063. 5.12135
\(865\) 11846.2 0.465647
\(866\) 56753.1 2.22696
\(867\) −26026.1 −1.01948
\(868\) 23697.3 0.926658
\(869\) 0 0
\(870\) −25440.1 −0.991381
\(871\) −772.688 −0.0300592
\(872\) −34429.6 −1.33708
\(873\) 15789.0 0.612117
\(874\) 8259.51 0.319659
\(875\) −756.747 −0.0292374
\(876\) 12623.7 0.486888
\(877\) 25993.8 1.00085 0.500426 0.865779i \(-0.333177\pi\)
0.500426 + 0.865779i \(0.333177\pi\)
\(878\) 38480.7 1.47911
\(879\) 22754.1 0.873126
\(880\) 0 0
\(881\) −29528.7 −1.12922 −0.564612 0.825357i \(-0.690974\pi\)
−0.564612 + 0.825357i \(0.690974\pi\)
\(882\) 24390.2 0.931133
\(883\) −50497.5 −1.92455 −0.962274 0.272081i \(-0.912288\pi\)
−0.962274 + 0.272081i \(0.912288\pi\)
\(884\) 11114.3 0.422867
\(885\) −5034.71 −0.191231
\(886\) −16198.2 −0.614208
\(887\) −36471.9 −1.38062 −0.690309 0.723515i \(-0.742525\pi\)
−0.690309 + 0.723515i \(0.742525\pi\)
\(888\) 56444.3 2.13305
\(889\) 3875.28 0.146201
\(890\) −27172.3 −1.02339
\(891\) 0 0
\(892\) 19596.6 0.735586
\(893\) 17171.8 0.643484
\(894\) 21602.8 0.808173
\(895\) 6133.83 0.229085
\(896\) −47723.2 −1.77937
\(897\) −246.004 −0.00915700
\(898\) −6426.54 −0.238816
\(899\) −43848.2 −1.62672
\(900\) −8206.58 −0.303947
\(901\) −32047.7 −1.18498
\(902\) 0 0
\(903\) −6287.40 −0.231707
\(904\) 44380.3 1.63282
\(905\) −2198.03 −0.0807348
\(906\) 12351.6 0.452930
\(907\) 15130.2 0.553902 0.276951 0.960884i \(-0.410676\pi\)
0.276951 + 0.960884i \(0.410676\pi\)
\(908\) −9034.81 −0.330210
\(909\) 6933.12 0.252978
\(910\) −738.115 −0.0268882
\(911\) 13937.0 0.506864 0.253432 0.967353i \(-0.418441\pi\)
0.253432 + 0.967353i \(0.418441\pi\)
\(912\) −93464.6 −3.39355
\(913\) 0 0
\(914\) −15269.9 −0.552608
\(915\) 2988.58 0.107978
\(916\) −11277.9 −0.406804
\(917\) 6363.04 0.229145
\(918\) 90467.3 3.25258
\(919\) 40897.5 1.46799 0.733996 0.679153i \(-0.237653\pi\)
0.733996 + 0.679153i \(0.237653\pi\)
\(920\) 6540.88 0.234398
\(921\) 17387.7 0.622091
\(922\) −62423.5 −2.22973
\(923\) 4030.45 0.143731
\(924\) 0 0
\(925\) −4771.33 −0.169600
\(926\) 88955.7 3.15688
\(927\) 12517.6 0.443508
\(928\) 227048. 8.03149
\(929\) −12154.1 −0.429239 −0.214620 0.976698i \(-0.568851\pi\)
−0.214620 + 0.976698i \(0.568851\pi\)
\(930\) 16906.1 0.596100
\(931\) −28879.5 −1.01664
\(932\) 157870. 5.54852
\(933\) −10136.2 −0.355675
\(934\) 37121.1 1.30047
\(935\) 0 0
\(936\) −5211.95 −0.182006
\(937\) 15754.1 0.549267 0.274634 0.961549i \(-0.411443\pi\)
0.274634 + 0.961549i \(0.411443\pi\)
\(938\) 5933.67 0.206547
\(939\) −28526.2 −0.991393
\(940\) 20884.9 0.724670
\(941\) 4217.53 0.146108 0.0730539 0.997328i \(-0.476725\pi\)
0.0730539 + 0.997328i \(0.476725\pi\)
\(942\) 41892.7 1.44898
\(943\) −3932.18 −0.135789
\(944\) 78704.5 2.71357
\(945\) −4454.11 −0.153325
\(946\) 0 0
\(947\) 49839.0 1.71019 0.855095 0.518471i \(-0.173498\pi\)
0.855095 + 0.518471i \(0.173498\pi\)
\(948\) −72033.9 −2.46788
\(949\) −677.708 −0.0231816
\(950\) 13107.2 0.447635
\(951\) −16628.5 −0.566999
\(952\) −55573.3 −1.89196
\(953\) 12845.7 0.436635 0.218318 0.975878i \(-0.429943\pi\)
0.218318 + 0.975878i \(0.429943\pi\)
\(954\) 23080.7 0.783298
\(955\) −24844.8 −0.841841
\(956\) −69085.4 −2.33722
\(957\) 0 0
\(958\) 64413.9 2.17236
\(959\) −10235.3 −0.344646
\(960\) −47882.4 −1.60979
\(961\) −651.937 −0.0218837
\(962\) −4653.86 −0.155973
\(963\) 1715.62 0.0574092
\(964\) −71245.7 −2.38036
\(965\) 6811.08 0.227209
\(966\) 1889.13 0.0629210
\(967\) 38829.6 1.29129 0.645645 0.763638i \(-0.276589\pi\)
0.645645 + 0.763638i \(0.276589\pi\)
\(968\) 0 0
\(969\) −37115.6 −1.23047
\(970\) −30670.4 −1.01523
\(971\) −11438.8 −0.378053 −0.189026 0.981972i \(-0.560533\pi\)
−0.189026 + 0.981972i \(0.560533\pi\)
\(972\) −79869.3 −2.63561
\(973\) 16887.1 0.556400
\(974\) −59056.4 −1.94280
\(975\) −390.388 −0.0128230
\(976\) −46718.7 −1.53220
\(977\) −12084.1 −0.395706 −0.197853 0.980232i \(-0.563397\pi\)
−0.197853 + 0.980232i \(0.563397\pi\)
\(978\) −22848.8 −0.747058
\(979\) 0 0
\(980\) −35124.3 −1.14490
\(981\) 5935.44 0.193174
\(982\) 99818.8 3.24373
\(983\) −23502.2 −0.762569 −0.381284 0.924458i \(-0.624518\pi\)
−0.381284 + 0.924458i \(0.624518\pi\)
\(984\) 73819.1 2.39153
\(985\) −10979.6 −0.355165
\(986\) 157926. 5.10081
\(987\) 3927.55 0.126662
\(988\) 9477.87 0.305194
\(989\) −4593.84 −0.147700
\(990\) 0 0
\(991\) −18664.1 −0.598268 −0.299134 0.954211i \(-0.596698\pi\)
−0.299134 + 0.954211i \(0.596698\pi\)
\(992\) −150884. −4.82919
\(993\) −9193.47 −0.293803
\(994\) −30950.9 −0.987627
\(995\) −2790.94 −0.0889234
\(996\) 22673.0 0.721308
\(997\) −24528.4 −0.779158 −0.389579 0.920993i \(-0.627380\pi\)
−0.389579 + 0.920993i \(0.627380\pi\)
\(998\) −57893.7 −1.83626
\(999\) −28083.4 −0.889410
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.4.a.g.1.2 2
11.10 odd 2 55.4.a.b.1.1 2
33.32 even 2 495.4.a.e.1.2 2
44.43 even 2 880.4.a.r.1.2 2
55.32 even 4 275.4.b.b.199.1 4
55.43 even 4 275.4.b.b.199.4 4
55.54 odd 2 275.4.a.c.1.2 2
165.164 even 2 2475.4.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.a.b.1.1 2 11.10 odd 2
275.4.a.c.1.2 2 55.54 odd 2
275.4.b.b.199.1 4 55.32 even 4
275.4.b.b.199.4 4 55.43 even 4
495.4.a.e.1.2 2 33.32 even 2
605.4.a.g.1.2 2 1.1 even 1 trivial
880.4.a.r.1.2 2 44.43 even 2
2475.4.a.l.1.1 2 165.164 even 2