Properties

Label 605.4.a.g.1.1
Level $605$
Weight $4$
Character 605.1
Self dual yes
Analytic conductor $35.696$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,4,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.6961555535\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 605.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.43845 q^{2} +0.561553 q^{3} -5.93087 q^{4} +5.00000 q^{5} +0.807764 q^{6} +31.0540 q^{7} -20.0388 q^{8} -26.6847 q^{9} +7.19224 q^{10} -3.33050 q^{12} +45.6155 q^{13} +44.6695 q^{14} +2.80776 q^{15} +18.6222 q^{16} +40.4536 q^{17} -38.3845 q^{18} -91.2699 q^{19} -29.6543 q^{20} +17.4384 q^{21} +32.2462 q^{23} -11.2529 q^{24} +25.0000 q^{25} +65.6155 q^{26} -30.1468 q^{27} -184.177 q^{28} -35.8702 q^{29} +4.03882 q^{30} +311.702 q^{31} +187.098 q^{32} +58.1904 q^{34} +155.270 q^{35} +158.263 q^{36} -368.147 q^{37} -131.287 q^{38} +25.6155 q^{39} -100.194 q^{40} +393.602 q^{41} +25.0843 q^{42} +351.602 q^{43} -133.423 q^{45} +46.3845 q^{46} -230.155 q^{47} +10.4573 q^{48} +621.349 q^{49} +35.9612 q^{50} +22.7168 q^{51} -270.540 q^{52} +406.902 q^{53} -43.3645 q^{54} -622.285 q^{56} -51.2529 q^{57} -51.5975 q^{58} -368.725 q^{59} -16.6525 q^{60} +322.825 q^{61} +448.366 q^{62} -828.665 q^{63} +120.153 q^{64} +228.078 q^{65} +442.233 q^{67} -239.925 q^{68} +18.1080 q^{69} +223.348 q^{70} +667.745 q^{71} +534.729 q^{72} +84.5701 q^{73} -529.560 q^{74} +14.0388 q^{75} +541.310 q^{76} +36.8466 q^{78} +411.983 q^{79} +93.1109 q^{80} +703.557 q^{81} +566.176 q^{82} +835.619 q^{83} -103.425 q^{84} +202.268 q^{85} +505.761 q^{86} -20.1430 q^{87} -799.853 q^{89} -191.922 q^{90} +1416.54 q^{91} -191.248 q^{92} +175.037 q^{93} -331.066 q^{94} -456.349 q^{95} +105.065 q^{96} +768.945 q^{97} +893.778 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 7 q^{2} - 3 q^{3} + 17 q^{4} + 10 q^{5} - 19 q^{6} + 25 q^{7} + 63 q^{8} - 41 q^{9} + 35 q^{10} - 85 q^{12} + 50 q^{13} + 11 q^{14} - 15 q^{15} + 297 q^{16} + 151 q^{17} - 118 q^{18} + 3 q^{19} + 85 q^{20}+ \cdots - 810 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.43845 0.508568 0.254284 0.967130i \(-0.418160\pi\)
0.254284 + 0.967130i \(0.418160\pi\)
\(3\) 0.561553 0.108071 0.0540354 0.998539i \(-0.482792\pi\)
0.0540354 + 0.998539i \(0.482792\pi\)
\(4\) −5.93087 −0.741359
\(5\) 5.00000 0.447214
\(6\) 0.807764 0.0549614
\(7\) 31.0540 1.67676 0.838379 0.545088i \(-0.183504\pi\)
0.838379 + 0.545088i \(0.183504\pi\)
\(8\) −20.0388 −0.885599
\(9\) −26.6847 −0.988321
\(10\) 7.19224 0.227438
\(11\) 0 0
\(12\) −3.33050 −0.0801193
\(13\) 45.6155 0.973190 0.486595 0.873628i \(-0.338239\pi\)
0.486595 + 0.873628i \(0.338239\pi\)
\(14\) 44.6695 0.852745
\(15\) 2.80776 0.0483308
\(16\) 18.6222 0.290971
\(17\) 40.4536 0.577144 0.288572 0.957458i \(-0.406820\pi\)
0.288572 + 0.957458i \(0.406820\pi\)
\(18\) −38.3845 −0.502628
\(19\) −91.2699 −1.10204 −0.551020 0.834492i \(-0.685761\pi\)
−0.551020 + 0.834492i \(0.685761\pi\)
\(20\) −29.6543 −0.331546
\(21\) 17.4384 0.181209
\(22\) 0 0
\(23\) 32.2462 0.292339 0.146170 0.989260i \(-0.453305\pi\)
0.146170 + 0.989260i \(0.453305\pi\)
\(24\) −11.2529 −0.0957075
\(25\) 25.0000 0.200000
\(26\) 65.6155 0.494933
\(27\) −30.1468 −0.214880
\(28\) −184.177 −1.24308
\(29\) −35.8702 −0.229688 −0.114844 0.993384i \(-0.536637\pi\)
−0.114844 + 0.993384i \(0.536637\pi\)
\(30\) 4.03882 0.0245795
\(31\) 311.702 1.80591 0.902956 0.429733i \(-0.141392\pi\)
0.902956 + 0.429733i \(0.141392\pi\)
\(32\) 187.098 1.03358
\(33\) 0 0
\(34\) 58.1904 0.293517
\(35\) 155.270 0.749869
\(36\) 158.263 0.732700
\(37\) −368.147 −1.63576 −0.817878 0.575392i \(-0.804850\pi\)
−0.817878 + 0.575392i \(0.804850\pi\)
\(38\) −131.287 −0.560462
\(39\) 25.6155 0.105174
\(40\) −100.194 −0.396052
\(41\) 393.602 1.49928 0.749638 0.661848i \(-0.230227\pi\)
0.749638 + 0.661848i \(0.230227\pi\)
\(42\) 25.0843 0.0921569
\(43\) 351.602 1.24695 0.623475 0.781843i \(-0.285720\pi\)
0.623475 + 0.781843i \(0.285720\pi\)
\(44\) 0 0
\(45\) −133.423 −0.441990
\(46\) 46.3845 0.148674
\(47\) −230.155 −0.714289 −0.357145 0.934049i \(-0.616250\pi\)
−0.357145 + 0.934049i \(0.616250\pi\)
\(48\) 10.4573 0.0314455
\(49\) 621.349 1.81151
\(50\) 35.9612 0.101714
\(51\) 22.7168 0.0623724
\(52\) −270.540 −0.721483
\(53\) 406.902 1.05457 0.527286 0.849688i \(-0.323210\pi\)
0.527286 + 0.849688i \(0.323210\pi\)
\(54\) −43.3645 −0.109281
\(55\) 0 0
\(56\) −622.285 −1.48493
\(57\) −51.2529 −0.119098
\(58\) −51.5975 −0.116812
\(59\) −368.725 −0.813626 −0.406813 0.913511i \(-0.633360\pi\)
−0.406813 + 0.913511i \(0.633360\pi\)
\(60\) −16.6525 −0.0358304
\(61\) 322.825 0.677598 0.338799 0.940859i \(-0.389979\pi\)
0.338799 + 0.940859i \(0.389979\pi\)
\(62\) 448.366 0.918429
\(63\) −828.665 −1.65717
\(64\) 120.153 0.234673
\(65\) 228.078 0.435224
\(66\) 0 0
\(67\) 442.233 0.806378 0.403189 0.915117i \(-0.367902\pi\)
0.403189 + 0.915117i \(0.367902\pi\)
\(68\) −239.925 −0.427870
\(69\) 18.1080 0.0315933
\(70\) 223.348 0.381359
\(71\) 667.745 1.11615 0.558076 0.829790i \(-0.311540\pi\)
0.558076 + 0.829790i \(0.311540\pi\)
\(72\) 534.729 0.875256
\(73\) 84.5701 0.135591 0.0677957 0.997699i \(-0.478403\pi\)
0.0677957 + 0.997699i \(0.478403\pi\)
\(74\) −529.560 −0.831893
\(75\) 14.0388 0.0216142
\(76\) 541.310 0.817006
\(77\) 0 0
\(78\) 36.8466 0.0534879
\(79\) 411.983 0.586730 0.293365 0.956000i \(-0.405225\pi\)
0.293365 + 0.956000i \(0.405225\pi\)
\(80\) 93.1109 0.130126
\(81\) 703.557 0.965098
\(82\) 566.176 0.762484
\(83\) 835.619 1.10507 0.552537 0.833488i \(-0.313660\pi\)
0.552537 + 0.833488i \(0.313660\pi\)
\(84\) −103.425 −0.134341
\(85\) 202.268 0.258106
\(86\) 505.761 0.634159
\(87\) −20.1430 −0.0248225
\(88\) 0 0
\(89\) −799.853 −0.952632 −0.476316 0.879274i \(-0.658028\pi\)
−0.476316 + 0.879274i \(0.658028\pi\)
\(90\) −191.922 −0.224782
\(91\) 1416.54 1.63180
\(92\) −191.248 −0.216728
\(93\) 175.037 0.195167
\(94\) −331.066 −0.363265
\(95\) −456.349 −0.492847
\(96\) 105.065 0.111700
\(97\) 768.945 0.804892 0.402446 0.915444i \(-0.368160\pi\)
0.402446 + 0.915444i \(0.368160\pi\)
\(98\) 893.778 0.921278
\(99\) 0 0
\(100\) −148.272 −0.148272
\(101\) 1412.31 1.39139 0.695696 0.718337i \(-0.255096\pi\)
0.695696 + 0.718337i \(0.255096\pi\)
\(102\) 32.6770 0.0317206
\(103\) 24.4185 0.0233595 0.0116797 0.999932i \(-0.496282\pi\)
0.0116797 + 0.999932i \(0.496282\pi\)
\(104\) −914.081 −0.861856
\(105\) 87.1922 0.0810390
\(106\) 585.308 0.536322
\(107\) −532.155 −0.480798 −0.240399 0.970674i \(-0.577278\pi\)
−0.240399 + 0.970674i \(0.577278\pi\)
\(108\) 178.797 0.159303
\(109\) 1234.62 1.08491 0.542455 0.840085i \(-0.317495\pi\)
0.542455 + 0.840085i \(0.317495\pi\)
\(110\) 0 0
\(111\) −206.734 −0.176778
\(112\) 578.292 0.487888
\(113\) −1304.45 −1.08595 −0.542976 0.839748i \(-0.682703\pi\)
−0.542976 + 0.839748i \(0.682703\pi\)
\(114\) −73.7245 −0.0605696
\(115\) 161.231 0.130738
\(116\) 212.742 0.170281
\(117\) −1217.23 −0.961824
\(118\) −530.392 −0.413784
\(119\) 1256.25 0.967729
\(120\) −56.2643 −0.0428017
\(121\) 0 0
\(122\) 464.366 0.344605
\(123\) 221.028 0.162028
\(124\) −1848.66 −1.33883
\(125\) 125.000 0.0894427
\(126\) −1191.99 −0.842785
\(127\) −1167.88 −0.816004 −0.408002 0.912981i \(-0.633774\pi\)
−0.408002 + 0.912981i \(0.633774\pi\)
\(128\) −1323.95 −0.914231
\(129\) 197.443 0.134759
\(130\) 328.078 0.221341
\(131\) −1549.95 −1.03374 −0.516869 0.856065i \(-0.672902\pi\)
−0.516869 + 0.856065i \(0.672902\pi\)
\(132\) 0 0
\(133\) −2834.29 −1.84785
\(134\) 636.129 0.410098
\(135\) −150.734 −0.0960971
\(136\) −810.642 −0.511118
\(137\) −2440.68 −1.52205 −0.761026 0.648722i \(-0.775304\pi\)
−0.761026 + 0.648722i \(0.775304\pi\)
\(138\) 26.0473 0.0160674
\(139\) 1861.43 1.13586 0.567930 0.823077i \(-0.307744\pi\)
0.567930 + 0.823077i \(0.307744\pi\)
\(140\) −920.885 −0.555922
\(141\) −129.244 −0.0771939
\(142\) 960.516 0.567639
\(143\) 0 0
\(144\) −496.926 −0.287573
\(145\) −179.351 −0.102719
\(146\) 121.650 0.0689575
\(147\) 348.920 0.195772
\(148\) 2183.43 1.21268
\(149\) −814.376 −0.447760 −0.223880 0.974617i \(-0.571872\pi\)
−0.223880 + 0.974617i \(0.571872\pi\)
\(150\) 20.1941 0.0109923
\(151\) −3666.43 −1.97596 −0.987979 0.154591i \(-0.950594\pi\)
−0.987979 + 0.154591i \(0.950594\pi\)
\(152\) 1828.94 0.975965
\(153\) −1079.49 −0.570403
\(154\) 0 0
\(155\) 1558.51 0.807628
\(156\) −151.922 −0.0779713
\(157\) 2671.96 1.35825 0.679127 0.734021i \(-0.262359\pi\)
0.679127 + 0.734021i \(0.262359\pi\)
\(158\) 592.616 0.298392
\(159\) 228.497 0.113969
\(160\) 935.488 0.462230
\(161\) 1001.37 0.490182
\(162\) 1012.03 0.490818
\(163\) −1728.53 −0.830605 −0.415302 0.909683i \(-0.636324\pi\)
−0.415302 + 0.909683i \(0.636324\pi\)
\(164\) −2334.40 −1.11150
\(165\) 0 0
\(166\) 1201.99 0.562005
\(167\) 0.0653990 3.03037e−5 0 1.51519e−5 1.00000i \(-0.499995\pi\)
1.51519e−5 1.00000i \(0.499995\pi\)
\(168\) −349.446 −0.160478
\(169\) −116.224 −0.0529010
\(170\) 290.952 0.131265
\(171\) 2435.51 1.08917
\(172\) −2085.31 −0.924437
\(173\) 1816.75 0.798411 0.399205 0.916861i \(-0.369286\pi\)
0.399205 + 0.916861i \(0.369286\pi\)
\(174\) −28.9747 −0.0126239
\(175\) 776.349 0.335351
\(176\) 0 0
\(177\) −207.059 −0.0879293
\(178\) −1150.55 −0.484478
\(179\) 2381.23 0.994312 0.497156 0.867661i \(-0.334378\pi\)
0.497156 + 0.867661i \(0.334378\pi\)
\(180\) 791.316 0.327673
\(181\) 1275.61 0.523840 0.261920 0.965090i \(-0.415644\pi\)
0.261920 + 0.965090i \(0.415644\pi\)
\(182\) 2037.62 0.829883
\(183\) 181.283 0.0732286
\(184\) −646.176 −0.258895
\(185\) −1840.73 −0.731532
\(186\) 251.781 0.0992554
\(187\) 0 0
\(188\) 1365.02 0.529545
\(189\) −936.177 −0.360301
\(190\) −656.434 −0.250646
\(191\) −3699.04 −1.40133 −0.700663 0.713492i \(-0.747112\pi\)
−0.700663 + 0.713492i \(0.747112\pi\)
\(192\) 67.4720 0.0253613
\(193\) −1231.22 −0.459196 −0.229598 0.973285i \(-0.573741\pi\)
−0.229598 + 0.973285i \(0.573741\pi\)
\(194\) 1106.09 0.409342
\(195\) 128.078 0.0470350
\(196\) −3685.14 −1.34298
\(197\) −728.087 −0.263320 −0.131660 0.991295i \(-0.542031\pi\)
−0.131660 + 0.991295i \(0.542031\pi\)
\(198\) 0 0
\(199\) −1650.81 −0.588055 −0.294027 0.955797i \(-0.594996\pi\)
−0.294027 + 0.955797i \(0.594996\pi\)
\(200\) −500.971 −0.177120
\(201\) 248.337 0.0871460
\(202\) 2031.54 0.707617
\(203\) −1113.91 −0.385130
\(204\) −134.731 −0.0462403
\(205\) 1968.01 0.670497
\(206\) 35.1247 0.0118799
\(207\) −860.479 −0.288925
\(208\) 849.460 0.283171
\(209\) 0 0
\(210\) 125.421 0.0412138
\(211\) −1587.01 −0.517792 −0.258896 0.965905i \(-0.583359\pi\)
−0.258896 + 0.965905i \(0.583359\pi\)
\(212\) −2413.29 −0.781817
\(213\) 374.974 0.120624
\(214\) −765.477 −0.244518
\(215\) 1758.01 0.557653
\(216\) 604.106 0.190297
\(217\) 9679.58 3.02808
\(218\) 1775.94 0.551751
\(219\) 47.4906 0.0146535
\(220\) 0 0
\(221\) 1845.31 0.561670
\(222\) −297.376 −0.0899034
\(223\) −1998.59 −0.600160 −0.300080 0.953914i \(-0.597013\pi\)
−0.300080 + 0.953914i \(0.597013\pi\)
\(224\) 5810.12 1.73306
\(225\) −667.116 −0.197664
\(226\) −1876.39 −0.552280
\(227\) −4212.00 −1.23154 −0.615771 0.787925i \(-0.711155\pi\)
−0.615771 + 0.787925i \(0.711155\pi\)
\(228\) 303.974 0.0882946
\(229\) 1371.82 0.395863 0.197931 0.980216i \(-0.436578\pi\)
0.197931 + 0.980216i \(0.436578\pi\)
\(230\) 231.922 0.0664892
\(231\) 0 0
\(232\) 718.797 0.203411
\(233\) 1718.37 0.483152 0.241576 0.970382i \(-0.422336\pi\)
0.241576 + 0.970382i \(0.422336\pi\)
\(234\) −1750.93 −0.489153
\(235\) −1150.78 −0.319440
\(236\) 2186.86 0.603189
\(237\) 231.350 0.0634085
\(238\) 1807.04 0.492156
\(239\) 1794.77 0.485749 0.242875 0.970058i \(-0.421910\pi\)
0.242875 + 0.970058i \(0.421910\pi\)
\(240\) 52.2867 0.0140629
\(241\) −5185.02 −1.38588 −0.692939 0.720996i \(-0.743685\pi\)
−0.692939 + 0.720996i \(0.743685\pi\)
\(242\) 0 0
\(243\) 1209.05 0.319179
\(244\) −1914.63 −0.502343
\(245\) 3106.75 0.810134
\(246\) 317.938 0.0824023
\(247\) −4163.32 −1.07249
\(248\) −6246.13 −1.59931
\(249\) 469.244 0.119426
\(250\) 179.806 0.0454877
\(251\) −3827.69 −0.962556 −0.481278 0.876568i \(-0.659827\pi\)
−0.481278 + 0.876568i \(0.659827\pi\)
\(252\) 4914.70 1.22856
\(253\) 0 0
\(254\) −1679.93 −0.414993
\(255\) 113.584 0.0278938
\(256\) −2865.65 −0.699621
\(257\) −2671.37 −0.648387 −0.324193 0.945991i \(-0.605093\pi\)
−0.324193 + 0.945991i \(0.605093\pi\)
\(258\) 284.012 0.0685341
\(259\) −11432.4 −2.74276
\(260\) −1352.70 −0.322657
\(261\) 957.185 0.227005
\(262\) −2229.52 −0.525726
\(263\) −6659.10 −1.56128 −0.780642 0.624979i \(-0.785108\pi\)
−0.780642 + 0.624979i \(0.785108\pi\)
\(264\) 0 0
\(265\) 2034.51 0.471619
\(266\) −4076.98 −0.939758
\(267\) −449.160 −0.102952
\(268\) −2622.83 −0.597816
\(269\) 8473.05 1.92049 0.960244 0.279162i \(-0.0900567\pi\)
0.960244 + 0.279162i \(0.0900567\pi\)
\(270\) −216.823 −0.0488719
\(271\) 2643.21 0.592486 0.296243 0.955113i \(-0.404266\pi\)
0.296243 + 0.955113i \(0.404266\pi\)
\(272\) 753.334 0.167932
\(273\) 795.464 0.176350
\(274\) −3510.78 −0.774066
\(275\) 0 0
\(276\) −107.396 −0.0234220
\(277\) 386.962 0.0839361 0.0419680 0.999119i \(-0.486637\pi\)
0.0419680 + 0.999119i \(0.486637\pi\)
\(278\) 2677.57 0.577662
\(279\) −8317.65 −1.78482
\(280\) −3111.43 −0.664083
\(281\) 1106.42 0.234887 0.117444 0.993080i \(-0.462530\pi\)
0.117444 + 0.993080i \(0.462530\pi\)
\(282\) −185.911 −0.0392583
\(283\) −1165.71 −0.244855 −0.122428 0.992477i \(-0.539068\pi\)
−0.122428 + 0.992477i \(0.539068\pi\)
\(284\) −3960.31 −0.827469
\(285\) −256.264 −0.0532624
\(286\) 0 0
\(287\) 12222.9 2.51392
\(288\) −4992.63 −1.02151
\(289\) −3276.51 −0.666905
\(290\) −257.987 −0.0522398
\(291\) 431.803 0.0869854
\(292\) −501.574 −0.100522
\(293\) 3646.82 0.727131 0.363566 0.931569i \(-0.381559\pi\)
0.363566 + 0.931569i \(0.381559\pi\)
\(294\) 501.904 0.0995633
\(295\) −1843.63 −0.363865
\(296\) 7377.23 1.44862
\(297\) 0 0
\(298\) −1171.44 −0.227716
\(299\) 1470.93 0.284502
\(300\) −83.2624 −0.0160239
\(301\) 10918.6 2.09083
\(302\) −5273.96 −1.00491
\(303\) 793.089 0.150369
\(304\) −1699.64 −0.320662
\(305\) 1614.12 0.303031
\(306\) −1552.79 −0.290089
\(307\) 816.066 0.151711 0.0758556 0.997119i \(-0.475831\pi\)
0.0758556 + 0.997119i \(0.475831\pi\)
\(308\) 0 0
\(309\) 13.7123 0.00252448
\(310\) 2241.83 0.410734
\(311\) 3146.99 0.573793 0.286896 0.957962i \(-0.407376\pi\)
0.286896 + 0.957962i \(0.407376\pi\)
\(312\) −513.305 −0.0931416
\(313\) −5085.49 −0.918367 −0.459184 0.888341i \(-0.651858\pi\)
−0.459184 + 0.888341i \(0.651858\pi\)
\(314\) 3843.48 0.690764
\(315\) −4143.32 −0.741111
\(316\) −2443.42 −0.434978
\(317\) −4801.89 −0.850791 −0.425396 0.905007i \(-0.639865\pi\)
−0.425396 + 0.905007i \(0.639865\pi\)
\(318\) 328.681 0.0579608
\(319\) 0 0
\(320\) 600.763 0.104949
\(321\) −298.833 −0.0519603
\(322\) 1440.42 0.249291
\(323\) −3692.20 −0.636035
\(324\) −4172.70 −0.715484
\(325\) 1140.39 0.194638
\(326\) −2486.39 −0.422419
\(327\) 693.305 0.117247
\(328\) −7887.32 −1.32776
\(329\) −7147.24 −1.19769
\(330\) 0 0
\(331\) −2597.31 −0.431302 −0.215651 0.976470i \(-0.569187\pi\)
−0.215651 + 0.976470i \(0.569187\pi\)
\(332\) −4955.95 −0.819256
\(333\) 9823.87 1.61665
\(334\) 0.0940730 1.54115e−5 0
\(335\) 2211.16 0.360623
\(336\) 324.742 0.0527265
\(337\) −2695.45 −0.435698 −0.217849 0.975982i \(-0.569904\pi\)
−0.217849 + 0.975982i \(0.569904\pi\)
\(338\) −167.182 −0.0269038
\(339\) −732.519 −0.117360
\(340\) −1199.63 −0.191349
\(341\) 0 0
\(342\) 3503.35 0.553916
\(343\) 8643.85 1.36071
\(344\) −7045.69 −1.10430
\(345\) 90.5398 0.0141290
\(346\) 2613.30 0.406046
\(347\) 9239.79 1.42945 0.714723 0.699407i \(-0.246553\pi\)
0.714723 + 0.699407i \(0.246553\pi\)
\(348\) 119.466 0.0184024
\(349\) −3857.67 −0.591680 −0.295840 0.955237i \(-0.595600\pi\)
−0.295840 + 0.955237i \(0.595600\pi\)
\(350\) 1116.74 0.170549
\(351\) −1375.16 −0.209119
\(352\) 0 0
\(353\) −3378.21 −0.509360 −0.254680 0.967025i \(-0.581970\pi\)
−0.254680 + 0.967025i \(0.581970\pi\)
\(354\) −297.843 −0.0447180
\(355\) 3338.73 0.499158
\(356\) 4743.83 0.706242
\(357\) 705.448 0.104583
\(358\) 3425.28 0.505675
\(359\) 9892.96 1.45440 0.727201 0.686425i \(-0.240821\pi\)
0.727201 + 0.686425i \(0.240821\pi\)
\(360\) 2673.65 0.391426
\(361\) 1471.19 0.214491
\(362\) 1834.89 0.266408
\(363\) 0 0
\(364\) −8401.33 −1.20975
\(365\) 422.850 0.0606383
\(366\) 260.766 0.0372417
\(367\) 5295.58 0.753208 0.376604 0.926374i \(-0.377092\pi\)
0.376604 + 0.926374i \(0.377092\pi\)
\(368\) 600.495 0.0850623
\(369\) −10503.1 −1.48177
\(370\) −2647.80 −0.372034
\(371\) 12635.9 1.76826
\(372\) −1038.12 −0.144688
\(373\) −7786.10 −1.08083 −0.540414 0.841399i \(-0.681732\pi\)
−0.540414 + 0.841399i \(0.681732\pi\)
\(374\) 0 0
\(375\) 70.1941 0.00966615
\(376\) 4612.04 0.632574
\(377\) −1636.24 −0.223530
\(378\) −1346.64 −0.183237
\(379\) −1940.17 −0.262955 −0.131477 0.991319i \(-0.541972\pi\)
−0.131477 + 0.991319i \(0.541972\pi\)
\(380\) 2706.55 0.365376
\(381\) −655.826 −0.0881863
\(382\) −5320.88 −0.712669
\(383\) 10805.6 1.44161 0.720807 0.693136i \(-0.243772\pi\)
0.720807 + 0.693136i \(0.243772\pi\)
\(384\) −743.466 −0.0988017
\(385\) 0 0
\(386\) −1771.04 −0.233533
\(387\) −9382.39 −1.23239
\(388\) −4560.51 −0.596714
\(389\) −9225.11 −1.20239 −0.601197 0.799101i \(-0.705309\pi\)
−0.601197 + 0.799101i \(0.705309\pi\)
\(390\) 184.233 0.0239205
\(391\) 1304.48 0.168722
\(392\) −12451.1 −1.60428
\(393\) −870.378 −0.111717
\(394\) −1047.31 −0.133916
\(395\) 2059.91 0.262394
\(396\) 0 0
\(397\) 13364.3 1.68951 0.844753 0.535156i \(-0.179747\pi\)
0.844753 + 0.535156i \(0.179747\pi\)
\(398\) −2374.61 −0.299066
\(399\) −1591.60 −0.199699
\(400\) 465.554 0.0581943
\(401\) −6030.88 −0.751042 −0.375521 0.926814i \(-0.622536\pi\)
−0.375521 + 0.926814i \(0.622536\pi\)
\(402\) 357.220 0.0443197
\(403\) 14218.4 1.75750
\(404\) −8376.25 −1.03152
\(405\) 3517.78 0.431605
\(406\) −1602.31 −0.195865
\(407\) 0 0
\(408\) −455.219 −0.0552370
\(409\) −931.381 −0.112601 −0.0563005 0.998414i \(-0.517931\pi\)
−0.0563005 + 0.998414i \(0.517931\pi\)
\(410\) 2830.88 0.340993
\(411\) −1370.57 −0.164489
\(412\) −144.823 −0.0173178
\(413\) −11450.4 −1.36425
\(414\) −1237.75 −0.146938
\(415\) 4178.10 0.494204
\(416\) 8534.55 1.00587
\(417\) 1045.29 0.122753
\(418\) 0 0
\(419\) −13161.8 −1.53460 −0.767300 0.641289i \(-0.778400\pi\)
−0.767300 + 0.641289i \(0.778400\pi\)
\(420\) −517.126 −0.0600789
\(421\) −1127.05 −0.130473 −0.0652365 0.997870i \(-0.520780\pi\)
−0.0652365 + 0.997870i \(0.520780\pi\)
\(422\) −2282.83 −0.263332
\(423\) 6141.62 0.705947
\(424\) −8153.84 −0.933929
\(425\) 1011.34 0.115429
\(426\) 539.381 0.0613453
\(427\) 10025.0 1.13617
\(428\) 3156.14 0.356444
\(429\) 0 0
\(430\) 2528.81 0.283604
\(431\) 4386.13 0.490191 0.245096 0.969499i \(-0.421181\pi\)
0.245096 + 0.969499i \(0.421181\pi\)
\(432\) −561.398 −0.0625238
\(433\) 10905.5 1.21035 0.605177 0.796091i \(-0.293102\pi\)
0.605177 + 0.796091i \(0.293102\pi\)
\(434\) 13923.6 1.53998
\(435\) −100.715 −0.0111010
\(436\) −7322.38 −0.804308
\(437\) −2943.11 −0.322169
\(438\) 68.3127 0.00745229
\(439\) 3900.94 0.424104 0.212052 0.977258i \(-0.431985\pi\)
0.212052 + 0.977258i \(0.431985\pi\)
\(440\) 0 0
\(441\) −16580.5 −1.79036
\(442\) 2654.38 0.285647
\(443\) −15537.5 −1.66638 −0.833192 0.552985i \(-0.813489\pi\)
−0.833192 + 0.552985i \(0.813489\pi\)
\(444\) 1226.11 0.131056
\(445\) −3999.27 −0.426030
\(446\) −2874.87 −0.305222
\(447\) −457.315 −0.0483898
\(448\) 3731.22 0.393490
\(449\) −3464.47 −0.364139 −0.182070 0.983286i \(-0.558280\pi\)
−0.182070 + 0.983286i \(0.558280\pi\)
\(450\) −959.612 −0.100526
\(451\) 0 0
\(452\) 7736.54 0.805080
\(453\) −2058.89 −0.213543
\(454\) −6058.74 −0.626323
\(455\) 7082.72 0.729765
\(456\) 1027.05 0.105473
\(457\) 14410.6 1.47506 0.737528 0.675317i \(-0.235993\pi\)
0.737528 + 0.675317i \(0.235993\pi\)
\(458\) 1973.29 0.201323
\(459\) −1219.55 −0.124016
\(460\) −956.240 −0.0969238
\(461\) 3219.12 0.325226 0.162613 0.986690i \(-0.448008\pi\)
0.162613 + 0.986690i \(0.448008\pi\)
\(462\) 0 0
\(463\) −1338.77 −0.134380 −0.0671899 0.997740i \(-0.521403\pi\)
−0.0671899 + 0.997740i \(0.521403\pi\)
\(464\) −667.982 −0.0668325
\(465\) 875.185 0.0872811
\(466\) 2471.79 0.245716
\(467\) −12221.6 −1.21102 −0.605512 0.795836i \(-0.707032\pi\)
−0.605512 + 0.795836i \(0.707032\pi\)
\(468\) 7219.26 0.713057
\(469\) 13733.1 1.35210
\(470\) −1655.33 −0.162457
\(471\) 1500.45 0.146788
\(472\) 7388.82 0.720547
\(473\) 0 0
\(474\) 332.785 0.0322475
\(475\) −2281.75 −0.220408
\(476\) −7450.63 −0.717435
\(477\) −10858.1 −1.04226
\(478\) 2581.68 0.247036
\(479\) 20290.0 1.93544 0.967718 0.252036i \(-0.0811001\pi\)
0.967718 + 0.252036i \(0.0811001\pi\)
\(480\) 525.326 0.0499536
\(481\) −16793.2 −1.59190
\(482\) −7458.38 −0.704813
\(483\) 562.324 0.0529744
\(484\) 0 0
\(485\) 3844.72 0.359959
\(486\) 1739.15 0.162324
\(487\) 17360.7 1.61538 0.807688 0.589610i \(-0.200718\pi\)
0.807688 + 0.589610i \(0.200718\pi\)
\(488\) −6469.03 −0.600080
\(489\) −970.658 −0.0897642
\(490\) 4468.89 0.412008
\(491\) −5129.01 −0.471424 −0.235712 0.971823i \(-0.575742\pi\)
−0.235712 + 0.971823i \(0.575742\pi\)
\(492\) −1310.89 −0.120121
\(493\) −1451.08 −0.132563
\(494\) −5988.72 −0.545436
\(495\) 0 0
\(496\) 5804.56 0.525469
\(497\) 20736.1 1.87152
\(498\) 674.983 0.0607364
\(499\) 13009.6 1.16712 0.583558 0.812072i \(-0.301660\pi\)
0.583558 + 0.812072i \(0.301660\pi\)
\(500\) −741.359 −0.0663091
\(501\) 0.0367250 3.27495e−6 0
\(502\) −5505.93 −0.489525
\(503\) −3972.02 −0.352095 −0.176047 0.984382i \(-0.556331\pi\)
−0.176047 + 0.984382i \(0.556331\pi\)
\(504\) 16605.5 1.46759
\(505\) 7061.57 0.622249
\(506\) 0 0
\(507\) −65.2657 −0.00571706
\(508\) 6926.54 0.604952
\(509\) 11174.1 0.973048 0.486524 0.873667i \(-0.338265\pi\)
0.486524 + 0.873667i \(0.338265\pi\)
\(510\) 163.385 0.0141859
\(511\) 2626.24 0.227354
\(512\) 6469.49 0.558426
\(513\) 2751.49 0.236806
\(514\) −3842.62 −0.329749
\(515\) 122.093 0.0104467
\(516\) −1171.01 −0.0999047
\(517\) 0 0
\(518\) −16444.9 −1.39488
\(519\) 1020.20 0.0862850
\(520\) −4570.41 −0.385434
\(521\) −18614.6 −1.56530 −0.782648 0.622464i \(-0.786132\pi\)
−0.782648 + 0.622464i \(0.786132\pi\)
\(522\) 1376.86 0.115447
\(523\) −3792.30 −0.317066 −0.158533 0.987354i \(-0.550676\pi\)
−0.158533 + 0.987354i \(0.550676\pi\)
\(524\) 9192.54 0.766370
\(525\) 435.961 0.0362417
\(526\) −9578.76 −0.794019
\(527\) 12609.5 1.04227
\(528\) 0 0
\(529\) −11127.2 −0.914538
\(530\) 2926.54 0.239850
\(531\) 9839.31 0.804124
\(532\) 16809.8 1.36992
\(533\) 17954.4 1.45908
\(534\) −646.093 −0.0523580
\(535\) −2660.78 −0.215019
\(536\) −8861.83 −0.714128
\(537\) 1337.19 0.107456
\(538\) 12188.0 0.976698
\(539\) 0 0
\(540\) 893.983 0.0712424
\(541\) −5187.61 −0.412260 −0.206130 0.978525i \(-0.566087\pi\)
−0.206130 + 0.978525i \(0.566087\pi\)
\(542\) 3802.12 0.301319
\(543\) 716.320 0.0566119
\(544\) 7568.77 0.596523
\(545\) 6173.11 0.485187
\(546\) 1144.23 0.0896862
\(547\) 15642.1 1.22268 0.611342 0.791366i \(-0.290630\pi\)
0.611342 + 0.791366i \(0.290630\pi\)
\(548\) 14475.3 1.12839
\(549\) −8614.47 −0.669684
\(550\) 0 0
\(551\) 3273.87 0.253125
\(552\) −362.862 −0.0279790
\(553\) 12793.7 0.983804
\(554\) 556.624 0.0426872
\(555\) −1033.67 −0.0790573
\(556\) −11039.9 −0.842080
\(557\) −15798.8 −1.20182 −0.600912 0.799315i \(-0.705196\pi\)
−0.600912 + 0.799315i \(0.705196\pi\)
\(558\) −11964.5 −0.907702
\(559\) 16038.5 1.21352
\(560\) 2891.46 0.218190
\(561\) 0 0
\(562\) 1591.52 0.119456
\(563\) −5028.68 −0.376436 −0.188218 0.982127i \(-0.560271\pi\)
−0.188218 + 0.982127i \(0.560271\pi\)
\(564\) 766.531 0.0572284
\(565\) −6522.26 −0.485652
\(566\) −1676.81 −0.124526
\(567\) 21848.2 1.61824
\(568\) −13380.8 −0.988463
\(569\) −24194.1 −1.78255 −0.891273 0.453467i \(-0.850187\pi\)
−0.891273 + 0.453467i \(0.850187\pi\)
\(570\) −368.623 −0.0270875
\(571\) 8184.61 0.599852 0.299926 0.953963i \(-0.403038\pi\)
0.299926 + 0.953963i \(0.403038\pi\)
\(572\) 0 0
\(573\) −2077.21 −0.151443
\(574\) 17582.0 1.27850
\(575\) 806.155 0.0584678
\(576\) −3206.23 −0.231932
\(577\) 550.908 0.0397480 0.0198740 0.999802i \(-0.493673\pi\)
0.0198740 + 0.999802i \(0.493673\pi\)
\(578\) −4713.08 −0.339167
\(579\) −691.393 −0.0496258
\(580\) 1063.71 0.0761519
\(581\) 25949.3 1.85294
\(582\) 621.126 0.0442380
\(583\) 0 0
\(584\) −1694.68 −0.120080
\(585\) −6086.17 −0.430141
\(586\) 5245.76 0.369796
\(587\) 3080.03 0.216570 0.108285 0.994120i \(-0.465464\pi\)
0.108285 + 0.994120i \(0.465464\pi\)
\(588\) −2069.40 −0.145137
\(589\) −28449.0 −1.99019
\(590\) −2651.96 −0.185050
\(591\) −408.859 −0.0284572
\(592\) −6855.69 −0.475958
\(593\) −5257.89 −0.364108 −0.182054 0.983289i \(-0.558274\pi\)
−0.182054 + 0.983289i \(0.558274\pi\)
\(594\) 0 0
\(595\) 6281.23 0.432782
\(596\) 4829.96 0.331951
\(597\) −927.018 −0.0635516
\(598\) 2115.85 0.144688
\(599\) −1181.80 −0.0806125 −0.0403062 0.999187i \(-0.512833\pi\)
−0.0403062 + 0.999187i \(0.512833\pi\)
\(600\) −281.321 −0.0191415
\(601\) 27879.8 1.89225 0.946123 0.323807i \(-0.104963\pi\)
0.946123 + 0.323807i \(0.104963\pi\)
\(602\) 15705.9 1.06333
\(603\) −11800.8 −0.796960
\(604\) 21745.1 1.46489
\(605\) 0 0
\(606\) 1140.82 0.0764728
\(607\) 4500.25 0.300922 0.150461 0.988616i \(-0.451924\pi\)
0.150461 + 0.988616i \(0.451924\pi\)
\(608\) −17076.4 −1.13904
\(609\) −625.521 −0.0416214
\(610\) 2321.83 0.154112
\(611\) −10498.7 −0.695139
\(612\) 6402.32 0.422873
\(613\) −8963.16 −0.590569 −0.295284 0.955409i \(-0.595414\pi\)
−0.295284 + 0.955409i \(0.595414\pi\)
\(614\) 1173.87 0.0771555
\(615\) 1105.14 0.0724612
\(616\) 0 0
\(617\) −9394.42 −0.612974 −0.306487 0.951875i \(-0.599154\pi\)
−0.306487 + 0.951875i \(0.599154\pi\)
\(618\) 19.7244 0.00128387
\(619\) 4816.38 0.312741 0.156371 0.987698i \(-0.450021\pi\)
0.156371 + 0.987698i \(0.450021\pi\)
\(620\) −9243.31 −0.598742
\(621\) −972.119 −0.0628177
\(622\) 4526.78 0.291813
\(623\) −24838.6 −1.59733
\(624\) 477.017 0.0306025
\(625\) 625.000 0.0400000
\(626\) −7315.21 −0.467052
\(627\) 0 0
\(628\) −15847.1 −1.00695
\(629\) −14892.9 −0.944066
\(630\) −5959.95 −0.376905
\(631\) −24847.7 −1.56763 −0.783814 0.620996i \(-0.786728\pi\)
−0.783814 + 0.620996i \(0.786728\pi\)
\(632\) −8255.65 −0.519608
\(633\) −891.189 −0.0559583
\(634\) −6907.26 −0.432685
\(635\) −5839.39 −0.364928
\(636\) −1355.19 −0.0844916
\(637\) 28343.2 1.76295
\(638\) 0 0
\(639\) −17818.6 −1.10312
\(640\) −6619.74 −0.408856
\(641\) −30497.0 −1.87919 −0.939594 0.342290i \(-0.888798\pi\)
−0.939594 + 0.342290i \(0.888798\pi\)
\(642\) −429.856 −0.0264253
\(643\) 5407.75 0.331665 0.165833 0.986154i \(-0.446969\pi\)
0.165833 + 0.986154i \(0.446969\pi\)
\(644\) −5939.01 −0.363400
\(645\) 987.216 0.0602660
\(646\) −5311.03 −0.323467
\(647\) 22118.8 1.34402 0.672011 0.740542i \(-0.265431\pi\)
0.672011 + 0.740542i \(0.265431\pi\)
\(648\) −14098.4 −0.854690
\(649\) 0 0
\(650\) 1640.39 0.0989866
\(651\) 5435.59 0.327247
\(652\) 10251.7 0.615776
\(653\) −12862.4 −0.770817 −0.385409 0.922746i \(-0.625940\pi\)
−0.385409 + 0.922746i \(0.625940\pi\)
\(654\) 997.283 0.0596282
\(655\) −7749.74 −0.462301
\(656\) 7329.73 0.436247
\(657\) −2256.72 −0.134008
\(658\) −10280.9 −0.609106
\(659\) −13216.0 −0.781218 −0.390609 0.920557i \(-0.627736\pi\)
−0.390609 + 0.920557i \(0.627736\pi\)
\(660\) 0 0
\(661\) 32098.3 1.88878 0.944388 0.328833i \(-0.106655\pi\)
0.944388 + 0.328833i \(0.106655\pi\)
\(662\) −3736.09 −0.219347
\(663\) 1036.24 0.0607002
\(664\) −16744.8 −0.978652
\(665\) −14171.5 −0.826385
\(666\) 14131.1 0.822177
\(667\) −1156.68 −0.0671466
\(668\) −0.387873 −2.24659e−5 0
\(669\) −1122.32 −0.0648599
\(670\) 3180.64 0.183401
\(671\) 0 0
\(672\) 3262.69 0.187293
\(673\) 19956.4 1.14304 0.571518 0.820590i \(-0.306355\pi\)
0.571518 + 0.820590i \(0.306355\pi\)
\(674\) −3877.26 −0.221582
\(675\) −753.669 −0.0429759
\(676\) 689.307 0.0392186
\(677\) 1483.58 0.0842223 0.0421111 0.999113i \(-0.486592\pi\)
0.0421111 + 0.999113i \(0.486592\pi\)
\(678\) −1053.69 −0.0596854
\(679\) 23878.8 1.34961
\(680\) −4053.21 −0.228579
\(681\) −2365.26 −0.133094
\(682\) 0 0
\(683\) 23228.2 1.30132 0.650659 0.759370i \(-0.274493\pi\)
0.650659 + 0.759370i \(0.274493\pi\)
\(684\) −14444.7 −0.807464
\(685\) −12203.4 −0.680682
\(686\) 12433.7 0.692015
\(687\) 770.350 0.0427812
\(688\) 6547.60 0.362827
\(689\) 18561.1 1.02630
\(690\) 130.237 0.00718554
\(691\) −7333.20 −0.403717 −0.201858 0.979415i \(-0.564698\pi\)
−0.201858 + 0.979415i \(0.564698\pi\)
\(692\) −10774.9 −0.591909
\(693\) 0 0
\(694\) 13290.9 0.726971
\(695\) 9307.16 0.507972
\(696\) 403.643 0.0219828
\(697\) 15922.6 0.865298
\(698\) −5549.06 −0.300909
\(699\) 964.958 0.0522147
\(700\) −4604.43 −0.248616
\(701\) 19481.6 1.04966 0.524829 0.851208i \(-0.324129\pi\)
0.524829 + 0.851208i \(0.324129\pi\)
\(702\) −1978.10 −0.106351
\(703\) 33600.7 1.80267
\(704\) 0 0
\(705\) −646.222 −0.0345222
\(706\) −4859.38 −0.259044
\(707\) 43858.0 2.33303
\(708\) 1228.04 0.0651872
\(709\) 14807.5 0.784353 0.392177 0.919890i \(-0.371722\pi\)
0.392177 + 0.919890i \(0.371722\pi\)
\(710\) 4802.58 0.253856
\(711\) −10993.6 −0.579878
\(712\) 16028.1 0.843650
\(713\) 10051.2 0.527939
\(714\) 1014.75 0.0531877
\(715\) 0 0
\(716\) −14122.8 −0.737142
\(717\) 1007.86 0.0524953
\(718\) 14230.5 0.739662
\(719\) 22891.1 1.18734 0.593669 0.804709i \(-0.297679\pi\)
0.593669 + 0.804709i \(0.297679\pi\)
\(720\) −2484.63 −0.128607
\(721\) 758.292 0.0391682
\(722\) 2116.23 0.109083
\(723\) −2911.66 −0.149773
\(724\) −7565.45 −0.388353
\(725\) −896.756 −0.0459375
\(726\) 0 0
\(727\) 24318.7 1.24062 0.620309 0.784357i \(-0.287007\pi\)
0.620309 + 0.784357i \(0.287007\pi\)
\(728\) −28385.9 −1.44512
\(729\) −18317.1 −0.930605
\(730\) 608.248 0.0308387
\(731\) 14223.6 0.719669
\(732\) −1075.17 −0.0542887
\(733\) 34939.0 1.76057 0.880287 0.474441i \(-0.157350\pi\)
0.880287 + 0.474441i \(0.157350\pi\)
\(734\) 7617.42 0.383057
\(735\) 1744.60 0.0875519
\(736\) 6033.19 0.302155
\(737\) 0 0
\(738\) −15108.2 −0.753579
\(739\) 12663.1 0.630337 0.315168 0.949036i \(-0.397939\pi\)
0.315168 + 0.949036i \(0.397939\pi\)
\(740\) 10917.2 0.542328
\(741\) −2337.93 −0.115905
\(742\) 18176.1 0.899281
\(743\) 1711.32 0.0844985 0.0422492 0.999107i \(-0.486548\pi\)
0.0422492 + 0.999107i \(0.486548\pi\)
\(744\) −3507.53 −0.172839
\(745\) −4071.88 −0.200244
\(746\) −11199.9 −0.549675
\(747\) −22298.2 −1.09217
\(748\) 0 0
\(749\) −16525.5 −0.806182
\(750\) 100.971 0.00491590
\(751\) −5165.32 −0.250979 −0.125489 0.992095i \(-0.540050\pi\)
−0.125489 + 0.992095i \(0.540050\pi\)
\(752\) −4285.99 −0.207838
\(753\) −2149.45 −0.104024
\(754\) −2353.65 −0.113680
\(755\) −18332.1 −0.883675
\(756\) 5552.34 0.267112
\(757\) −40684.0 −1.95335 −0.976675 0.214722i \(-0.931115\pi\)
−0.976675 + 0.214722i \(0.931115\pi\)
\(758\) −2790.83 −0.133730
\(759\) 0 0
\(760\) 9144.70 0.436465
\(761\) −26564.1 −1.26537 −0.632687 0.774408i \(-0.718048\pi\)
−0.632687 + 0.774408i \(0.718048\pi\)
\(762\) −943.370 −0.0448487
\(763\) 38339.9 1.81913
\(764\) 21938.5 1.03889
\(765\) −5397.45 −0.255092
\(766\) 15543.2 0.733158
\(767\) −16819.6 −0.791813
\(768\) −1609.21 −0.0756087
\(769\) −24381.9 −1.14335 −0.571674 0.820481i \(-0.693706\pi\)
−0.571674 + 0.820481i \(0.693706\pi\)
\(770\) 0 0
\(771\) −1500.11 −0.0700717
\(772\) 7302.19 0.340429
\(773\) −18945.0 −0.881508 −0.440754 0.897628i \(-0.645289\pi\)
−0.440754 + 0.897628i \(0.645289\pi\)
\(774\) −13496.1 −0.626752
\(775\) 7792.54 0.361182
\(776\) −15408.8 −0.712812
\(777\) −6419.91 −0.296413
\(778\) −13269.8 −0.611499
\(779\) −35924.0 −1.65226
\(780\) −759.612 −0.0348698
\(781\) 0 0
\(782\) 1876.42 0.0858064
\(783\) 1081.37 0.0493552
\(784\) 11570.9 0.527099
\(785\) 13359.8 0.607430
\(786\) −1251.99 −0.0568156
\(787\) 7610.70 0.344717 0.172359 0.985034i \(-0.444861\pi\)
0.172359 + 0.985034i \(0.444861\pi\)
\(788\) 4318.19 0.195215
\(789\) −3739.44 −0.168729
\(790\) 2963.08 0.133445
\(791\) −40508.4 −1.82088
\(792\) 0 0
\(793\) 14725.8 0.659432
\(794\) 19223.8 0.859229
\(795\) 1142.49 0.0509683
\(796\) 9790.75 0.435960
\(797\) 3732.50 0.165887 0.0829435 0.996554i \(-0.473568\pi\)
0.0829435 + 0.996554i \(0.473568\pi\)
\(798\) −2289.44 −0.101561
\(799\) −9310.61 −0.412247
\(800\) 4677.44 0.206716
\(801\) 21343.8 0.941506
\(802\) −8675.11 −0.381956
\(803\) 0 0
\(804\) −1472.86 −0.0646065
\(805\) 5006.87 0.219216
\(806\) 20452.5 0.893806
\(807\) 4758.07 0.207549
\(808\) −28301.1 −1.23221
\(809\) 27621.8 1.20041 0.600204 0.799847i \(-0.295086\pi\)
0.600204 + 0.799847i \(0.295086\pi\)
\(810\) 5060.15 0.219501
\(811\) 29996.0 1.29877 0.649384 0.760461i \(-0.275027\pi\)
0.649384 + 0.760461i \(0.275027\pi\)
\(812\) 6606.48 0.285520
\(813\) 1484.30 0.0640305
\(814\) 0 0
\(815\) −8642.63 −0.371458
\(816\) 423.037 0.0181486
\(817\) −32090.7 −1.37419
\(818\) −1339.74 −0.0572653
\(819\) −37800.0 −1.61275
\(820\) −11672.0 −0.497079
\(821\) −18075.1 −0.768362 −0.384181 0.923258i \(-0.625516\pi\)
−0.384181 + 0.923258i \(0.625516\pi\)
\(822\) −1971.49 −0.0836540
\(823\) −26723.7 −1.13187 −0.565935 0.824450i \(-0.691485\pi\)
−0.565935 + 0.824450i \(0.691485\pi\)
\(824\) −489.318 −0.0206871
\(825\) 0 0
\(826\) −16470.8 −0.693816
\(827\) −36788.1 −1.54685 −0.773427 0.633885i \(-0.781459\pi\)
−0.773427 + 0.633885i \(0.781459\pi\)
\(828\) 5103.39 0.214197
\(829\) −1260.15 −0.0527948 −0.0263974 0.999652i \(-0.508404\pi\)
−0.0263974 + 0.999652i \(0.508404\pi\)
\(830\) 6009.97 0.251336
\(831\) 217.300 0.00907105
\(832\) 5480.82 0.228381
\(833\) 25135.8 1.04550
\(834\) 1503.60 0.0624284
\(835\) 0.326995 1.35522e−5 0
\(836\) 0 0
\(837\) −9396.80 −0.388054
\(838\) −18932.6 −0.780448
\(839\) −4023.16 −0.165548 −0.0827742 0.996568i \(-0.526378\pi\)
−0.0827742 + 0.996568i \(0.526378\pi\)
\(840\) −1747.23 −0.0717680
\(841\) −23102.3 −0.947244
\(842\) −1621.20 −0.0663543
\(843\) 621.312 0.0253845
\(844\) 9412.34 0.383870
\(845\) −581.118 −0.0236581
\(846\) 8834.39 0.359022
\(847\) 0 0
\(848\) 7577.41 0.306851
\(849\) −654.605 −0.0264617
\(850\) 1454.76 0.0587033
\(851\) −11871.3 −0.478195
\(852\) −2223.92 −0.0894253
\(853\) −40707.7 −1.63400 −0.817001 0.576636i \(-0.804365\pi\)
−0.817001 + 0.576636i \(0.804365\pi\)
\(854\) 14420.4 0.577818
\(855\) 12177.5 0.487091
\(856\) 10663.8 0.425794
\(857\) −24321.4 −0.969431 −0.484715 0.874672i \(-0.661077\pi\)
−0.484715 + 0.874672i \(0.661077\pi\)
\(858\) 0 0
\(859\) 16912.7 0.671776 0.335888 0.941902i \(-0.390964\pi\)
0.335888 + 0.941902i \(0.390964\pi\)
\(860\) −10426.5 −0.413421
\(861\) 6863.81 0.271682
\(862\) 6309.22 0.249295
\(863\) −25793.8 −1.01742 −0.508708 0.860939i \(-0.669877\pi\)
−0.508708 + 0.860939i \(0.669877\pi\)
\(864\) −5640.39 −0.222095
\(865\) 9083.76 0.357060
\(866\) 15686.9 0.615547
\(867\) −1839.93 −0.0720731
\(868\) −57408.3 −2.24489
\(869\) 0 0
\(870\) −144.873 −0.00564560
\(871\) 20172.7 0.784759
\(872\) −24740.4 −0.960796
\(873\) −20519.0 −0.795492
\(874\) −4233.51 −0.163845
\(875\) 3881.75 0.149974
\(876\) −281.660 −0.0108635
\(877\) −20143.8 −0.775607 −0.387803 0.921742i \(-0.626766\pi\)
−0.387803 + 0.921742i \(0.626766\pi\)
\(878\) 5611.30 0.215686
\(879\) 2047.88 0.0785817
\(880\) 0 0
\(881\) −18231.3 −0.697196 −0.348598 0.937272i \(-0.613342\pi\)
−0.348598 + 0.937272i \(0.613342\pi\)
\(882\) −23850.2 −0.910518
\(883\) −34487.5 −1.31438 −0.657189 0.753725i \(-0.728255\pi\)
−0.657189 + 0.753725i \(0.728255\pi\)
\(884\) −10944.3 −0.416399
\(885\) −1035.29 −0.0393232
\(886\) −22349.8 −0.847469
\(887\) 16039.9 0.607180 0.303590 0.952803i \(-0.401815\pi\)
0.303590 + 0.952803i \(0.401815\pi\)
\(888\) 4142.70 0.156554
\(889\) −36267.3 −1.36824
\(890\) −5752.73 −0.216665
\(891\) 0 0
\(892\) 11853.4 0.444934
\(893\) 21006.2 0.787175
\(894\) −657.824 −0.0246095
\(895\) 11906.2 0.444670
\(896\) −41113.8 −1.53294
\(897\) 826.004 0.0307463
\(898\) −4983.46 −0.185189
\(899\) −11180.8 −0.414795
\(900\) 3956.58 0.146540
\(901\) 16460.7 0.608640
\(902\) 0 0
\(903\) 6131.40 0.225958
\(904\) 26139.7 0.961718
\(905\) 6378.03 0.234268
\(906\) −2961.61 −0.108601
\(907\) −23029.2 −0.843077 −0.421539 0.906810i \(-0.638510\pi\)
−0.421539 + 0.906810i \(0.638510\pi\)
\(908\) 24980.8 0.913015
\(909\) −37687.1 −1.37514
\(910\) 10188.1 0.371135
\(911\) −9206.00 −0.334806 −0.167403 0.985889i \(-0.553538\pi\)
−0.167403 + 0.985889i \(0.553538\pi\)
\(912\) −954.440 −0.0346542
\(913\) 0 0
\(914\) 20728.9 0.750166
\(915\) 906.416 0.0327488
\(916\) −8136.10 −0.293476
\(917\) −48132.0 −1.73333
\(918\) −1754.25 −0.0630707
\(919\) −13329.5 −0.478456 −0.239228 0.970963i \(-0.576894\pi\)
−0.239228 + 0.970963i \(0.576894\pi\)
\(920\) −3230.88 −0.115781
\(921\) 458.264 0.0163956
\(922\) 4630.53 0.165400
\(923\) 30459.6 1.08623
\(924\) 0 0
\(925\) −9203.67 −0.327151
\(926\) −1925.75 −0.0683412
\(927\) −651.600 −0.0230867
\(928\) −6711.24 −0.237400
\(929\) 1819.10 0.0642442 0.0321221 0.999484i \(-0.489773\pi\)
0.0321221 + 0.999484i \(0.489773\pi\)
\(930\) 1258.91 0.0443884
\(931\) −56710.5 −1.99636
\(932\) −10191.5 −0.358189
\(933\) 1767.20 0.0620103
\(934\) −17580.1 −0.615888
\(935\) 0 0
\(936\) 24391.9 0.851790
\(937\) −4012.08 −0.139882 −0.0699408 0.997551i \(-0.522281\pi\)
−0.0699408 + 0.997551i \(0.522281\pi\)
\(938\) 19754.3 0.687635
\(939\) −2855.77 −0.0992488
\(940\) 6825.10 0.236820
\(941\) −8444.53 −0.292544 −0.146272 0.989244i \(-0.546727\pi\)
−0.146272 + 0.989244i \(0.546727\pi\)
\(942\) 2158.32 0.0746515
\(943\) 12692.2 0.438297
\(944\) −6866.47 −0.236742
\(945\) −4680.89 −0.161131
\(946\) 0 0
\(947\) 45316.0 1.55499 0.777493 0.628892i \(-0.216491\pi\)
0.777493 + 0.628892i \(0.216491\pi\)
\(948\) −1372.11 −0.0470084
\(949\) 3857.71 0.131956
\(950\) −3282.17 −0.112092
\(951\) −2696.51 −0.0919458
\(952\) −25173.7 −0.857020
\(953\) −96.7143 −0.00328739 −0.00164370 0.999999i \(-0.500523\pi\)
−0.00164370 + 0.999999i \(0.500523\pi\)
\(954\) −15618.7 −0.530058
\(955\) −18495.2 −0.626692
\(956\) −10644.6 −0.360114
\(957\) 0 0
\(958\) 29186.1 0.984300
\(959\) −75792.7 −2.55211
\(960\) 337.360 0.0113419
\(961\) 67366.9 2.26132
\(962\) −24156.1 −0.809590
\(963\) 14200.4 0.475183
\(964\) 30751.7 1.02743
\(965\) −6156.08 −0.205359
\(966\) 808.873 0.0269411
\(967\) −7666.63 −0.254956 −0.127478 0.991841i \(-0.540688\pi\)
−0.127478 + 0.991841i \(0.540688\pi\)
\(968\) 0 0
\(969\) −2073.36 −0.0687368
\(970\) 5530.43 0.183063
\(971\) −5221.18 −0.172560 −0.0862799 0.996271i \(-0.527498\pi\)
−0.0862799 + 0.996271i \(0.527498\pi\)
\(972\) −7170.70 −0.236626
\(973\) 57804.9 1.90456
\(974\) 24972.4 0.821529
\(975\) 640.388 0.0210347
\(976\) 6011.70 0.197162
\(977\) −45769.9 −1.49878 −0.749390 0.662129i \(-0.769653\pi\)
−0.749390 + 0.662129i \(0.769653\pi\)
\(978\) −1396.24 −0.0456512
\(979\) 0 0
\(980\) −18425.7 −0.600600
\(981\) −32945.4 −1.07224
\(982\) −7377.81 −0.239751
\(983\) −14777.8 −0.479488 −0.239744 0.970836i \(-0.577064\pi\)
−0.239744 + 0.970836i \(0.577064\pi\)
\(984\) −4429.15 −0.143492
\(985\) −3640.44 −0.117760
\(986\) −2087.30 −0.0674171
\(987\) −4013.55 −0.129435
\(988\) 24692.1 0.795103
\(989\) 11337.8 0.364532
\(990\) 0 0
\(991\) −16783.9 −0.538001 −0.269001 0.963140i \(-0.586693\pi\)
−0.269001 + 0.963140i \(0.586693\pi\)
\(992\) 58318.6 1.86655
\(993\) −1458.53 −0.0466112
\(994\) 29827.9 0.951793
\(995\) −8254.06 −0.262986
\(996\) −2783.03 −0.0885377
\(997\) 8720.36 0.277008 0.138504 0.990362i \(-0.455771\pi\)
0.138504 + 0.990362i \(0.455771\pi\)
\(998\) 18713.7 0.593557
\(999\) 11098.4 0.351490
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.4.a.g.1.1 2
11.10 odd 2 55.4.a.b.1.2 2
33.32 even 2 495.4.a.e.1.1 2
44.43 even 2 880.4.a.r.1.1 2
55.32 even 4 275.4.b.b.199.2 4
55.43 even 4 275.4.b.b.199.3 4
55.54 odd 2 275.4.a.c.1.1 2
165.164 even 2 2475.4.a.l.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.a.b.1.2 2 11.10 odd 2
275.4.a.c.1.1 2 55.54 odd 2
275.4.b.b.199.2 4 55.32 even 4
275.4.b.b.199.3 4 55.43 even 4
495.4.a.e.1.1 2 33.32 even 2
605.4.a.g.1.1 2 1.1 even 1 trivial
880.4.a.r.1.1 2 44.43 even 2
2475.4.a.l.1.2 2 165.164 even 2