Properties

Label 605.4.a.g
Level $605$
Weight $4$
Character orbit 605.a
Self dual yes
Analytic conductor $35.696$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,4,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.6961555535\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 4) q^{2} + (\beta - 2) q^{3} + ( - 7 \beta + 12) q^{4} + 5 q^{5} + (5 \beta - 12) q^{6} + (9 \beta + 8) q^{7} + ( - 25 \beta + 44) q^{8} + ( - 3 \beta - 19) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta + 4) q^{2} + (\beta - 2) q^{3} + ( - 7 \beta + 12) q^{4} + 5 q^{5} + (5 \beta - 12) q^{6} + (9 \beta + 8) q^{7} + ( - 25 \beta + 44) q^{8} + ( - 3 \beta - 19) q^{9} + ( - 5 \beta + 20) q^{10} + (19 \beta - 52) q^{12} + (10 \beta + 20) q^{13} + (19 \beta - 4) q^{14} + (5 \beta - 10) q^{15} + ( - 63 \beta + 180) q^{16} + ( - 17 \beta + 84) q^{17} + (10 \beta - 64) q^{18} + ( - 45 \beta + 24) q^{19} + ( - 35 \beta + 60) q^{20} + ( - \beta + 20) q^{21} + (4 \beta + 22) q^{23} + (69 \beta - 188) q^{24} + 25 q^{25} + (10 \beta + 40) q^{26} + ( - 43 \beta + 80) q^{27} + ( - 11 \beta - 156) q^{28} + ( - 71 \beta + 146) q^{29} + (25 \beta - 60) q^{30} + (117 \beta + 12) q^{31} + ( - 169 \beta + 620) q^{32} + ( - 135 \beta + 404) q^{34} + (45 \beta + 40) q^{35} + (118 \beta - 144) q^{36} + ( - 43 \beta - 258) q^{37} + ( - 159 \beta + 276) q^{38} + 10 \beta q^{39} + ( - 125 \beta + 220) q^{40} + (156 \beta - 6) q^{41} + ( - 23 \beta + 84) q^{42} + (156 \beta - 48) q^{43} + ( - 15 \beta - 95) q^{45} + ( - 10 \beta + 72) q^{46} + ( - 100 \beta + 26) q^{47} + (243 \beta - 612) q^{48} + (225 \beta + 45) q^{49} + ( - 25 \beta + 100) q^{50} + (101 \beta - 236) q^{51} + ( - 90 \beta - 40) q^{52} + (169 \beta - 26) q^{53} + ( - 209 \beta + 492) q^{54} + ( - 29 \beta - 548) q^{56} + (69 \beta - 228) q^{57} + ( - 359 \beta + 868) q^{58} + ( - 158 \beta + 36) q^{59} + (95 \beta - 260) q^{60} + (119 \beta + 18) q^{61} + (339 \beta - 420) q^{62} + ( - 222 \beta - 260) q^{63} + ( - 623 \beta + 1716) q^{64} + (50 \beta + 100) q^{65} + (150 \beta + 58) q^{67} + ( - 673 \beta + 1484) q^{68} + (18 \beta - 28) q^{69} + (95 \beta - 20) q^{70} + ( - 61 \beta + 824) q^{71} + (418 \beta - 536) q^{72} + (58 \beta - 64) q^{73} + (129 \beta - 860) q^{74} + (25 \beta - 50) q^{75} + ( - 393 \beta + 1548) q^{76} + (30 \beta - 40) q^{78} + ( - 114 \beta + 704) q^{79} + ( - 315 \beta + 900) q^{80} + (204 \beta + 181) q^{81} + (474 \beta - 648) q^{82} + (270 \beta + 144) q^{83} + ( - 145 \beta + 268) q^{84} + ( - 85 \beta + 420) q^{85} + (516 \beta - 816) q^{86} + (217 \beta - 576) q^{87} + (43 \beta - 910) q^{89} + (50 \beta - 320) q^{90} + (350 \beta + 520) q^{91} + ( - 134 \beta + 152) q^{92} + ( - 105 \beta + 444) q^{93} + ( - 326 \beta + 504) q^{94} + ( - 225 \beta + 120) q^{95} + (789 \beta - 1916) q^{96} + (454 \beta - 394) q^{97} + (630 \beta - 720) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 7 q^{2} - 3 q^{3} + 17 q^{4} + 10 q^{5} - 19 q^{6} + 25 q^{7} + 63 q^{8} - 41 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 7 q^{2} - 3 q^{3} + 17 q^{4} + 10 q^{5} - 19 q^{6} + 25 q^{7} + 63 q^{8} - 41 q^{9} + 35 q^{10} - 85 q^{12} + 50 q^{13} + 11 q^{14} - 15 q^{15} + 297 q^{16} + 151 q^{17} - 118 q^{18} + 3 q^{19} + 85 q^{20} + 39 q^{21} + 48 q^{23} - 307 q^{24} + 50 q^{25} + 90 q^{26} + 117 q^{27} - 323 q^{28} + 221 q^{29} - 95 q^{30} + 141 q^{31} + 1071 q^{32} + 673 q^{34} + 125 q^{35} - 170 q^{36} - 559 q^{37} + 393 q^{38} + 10 q^{39} + 315 q^{40} + 144 q^{41} + 145 q^{42} + 60 q^{43} - 205 q^{45} + 134 q^{46} - 48 q^{47} - 981 q^{48} + 315 q^{49} + 175 q^{50} - 371 q^{51} - 170 q^{52} + 117 q^{53} + 775 q^{54} - 1125 q^{56} - 387 q^{57} + 1377 q^{58} - 86 q^{59} - 425 q^{60} + 155 q^{61} - 501 q^{62} - 742 q^{63} + 2809 q^{64} + 250 q^{65} + 266 q^{67} + 2295 q^{68} - 38 q^{69} + 55 q^{70} + 1587 q^{71} - 654 q^{72} - 70 q^{73} - 1591 q^{74} - 75 q^{75} + 2703 q^{76} - 50 q^{78} + 1294 q^{79} + 1485 q^{80} + 566 q^{81} - 822 q^{82} + 558 q^{83} + 391 q^{84} + 755 q^{85} - 1116 q^{86} - 935 q^{87} - 1777 q^{89} - 590 q^{90} + 1390 q^{91} + 170 q^{92} + 783 q^{93} + 682 q^{94} + 15 q^{95} - 3043 q^{96} - 334 q^{97} - 810 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
1.43845 0.561553 −5.93087 5.00000 0.807764 31.0540 −20.0388 −26.6847 7.19224
1.2 5.56155 −3.56155 22.9309 5.00000 −19.8078 −6.05398 83.0388 −14.3153 27.8078
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 605.4.a.g 2
11.b odd 2 1 55.4.a.b 2
33.d even 2 1 495.4.a.e 2
44.c even 2 1 880.4.a.r 2
55.d odd 2 1 275.4.a.c 2
55.e even 4 2 275.4.b.b 4
165.d even 2 1 2475.4.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.4.a.b 2 11.b odd 2 1
275.4.a.c 2 55.d odd 2 1
275.4.b.b 4 55.e even 4 2
495.4.a.e 2 33.d even 2 1
605.4.a.g 2 1.a even 1 1 trivial
880.4.a.r 2 44.c even 2 1
2475.4.a.l 2 165.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(605))\):

\( T_{2}^{2} - 7T_{2} + 8 \) Copy content Toggle raw display
\( T_{3}^{2} + 3T_{3} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 7T + 8 \) Copy content Toggle raw display
$3$ \( T^{2} + 3T - 2 \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 25T - 188 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 50T + 200 \) Copy content Toggle raw display
$17$ \( T^{2} - 151T + 4472 \) Copy content Toggle raw display
$19$ \( T^{2} - 3T - 8604 \) Copy content Toggle raw display
$23$ \( T^{2} - 48T + 508 \) Copy content Toggle raw display
$29$ \( T^{2} - 221T - 9214 \) Copy content Toggle raw display
$31$ \( T^{2} - 141T - 53208 \) Copy content Toggle raw display
$37$ \( T^{2} + 559T + 70262 \) Copy content Toggle raw display
$41$ \( T^{2} - 144T - 98244 \) Copy content Toggle raw display
$43$ \( T^{2} - 60T - 102528 \) Copy content Toggle raw display
$47$ \( T^{2} + 48T - 41924 \) Copy content Toggle raw display
$53$ \( T^{2} - 117T - 117962 \) Copy content Toggle raw display
$59$ \( T^{2} + 86T - 104248 \) Copy content Toggle raw display
$61$ \( T^{2} - 155T - 54178 \) Copy content Toggle raw display
$67$ \( T^{2} - 266T - 77936 \) Copy content Toggle raw display
$71$ \( T^{2} - 1587 T + 613828 \) Copy content Toggle raw display
$73$ \( T^{2} + 70T - 13072 \) Copy content Toggle raw display
$79$ \( T^{2} - 1294 T + 363376 \) Copy content Toggle raw display
$83$ \( T^{2} - 558T - 231984 \) Copy content Toggle raw display
$89$ \( T^{2} + 1777 T + 781574 \) Copy content Toggle raw display
$97$ \( T^{2} + 334T - 848104 \) Copy content Toggle raw display
show more
show less