Defining parameters
Level: | \( N \) | = | \( 605 = 5 \cdot 11^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(116160\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(605))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44200 | 39693 | 4507 |
Cusp forms | 42920 | 38851 | 4069 |
Eisenstein series | 1280 | 842 | 438 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(605))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
605.4.a | \(\chi_{605}(1, \cdot)\) | 605.4.a.a | 1 | 1 |
605.4.a.b | 1 | |||
605.4.a.c | 1 | |||
605.4.a.d | 1 | |||
605.4.a.e | 2 | |||
605.4.a.f | 2 | |||
605.4.a.g | 2 | |||
605.4.a.h | 3 | |||
605.4.a.i | 4 | |||
605.4.a.j | 4 | |||
605.4.a.k | 4 | |||
605.4.a.l | 4 | |||
605.4.a.m | 6 | |||
605.4.a.n | 6 | |||
605.4.a.o | 8 | |||
605.4.a.p | 12 | |||
605.4.a.q | 12 | |||
605.4.a.r | 12 | |||
605.4.a.s | 12 | |||
605.4.a.t | 12 | |||
605.4.b | \(\chi_{605}(364, \cdot)\) | n/a | 154 | 1 |
605.4.e | \(\chi_{605}(362, \cdot)\) | n/a | 308 | 2 |
605.4.g | \(\chi_{605}(81, \cdot)\) | n/a | 432 | 4 |
605.4.j | \(\chi_{605}(9, \cdot)\) | n/a | 616 | 4 |
605.4.k | \(\chi_{605}(56, \cdot)\) | n/a | 1320 | 10 |
605.4.m | \(\chi_{605}(112, \cdot)\) | n/a | 1232 | 8 |
605.4.o | \(\chi_{605}(34, \cdot)\) | n/a | 1960 | 10 |
605.4.r | \(\chi_{605}(32, \cdot)\) | n/a | 3920 | 20 |
605.4.s | \(\chi_{605}(16, \cdot)\) | n/a | 5280 | 40 |
605.4.u | \(\chi_{605}(4, \cdot)\) | n/a | 7840 | 40 |
605.4.w | \(\chi_{605}(2, \cdot)\) | n/a | 15680 | 80 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(605))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(605)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(605))\)\(^{\oplus 1}\)