Newspace parameters
Level: | \( N \) | \(=\) | \( 605 = 5 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 605.o (of order \(22\), degree \(10\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.83094932229\) |
Analytic rank: | \(0\) |
Dimension: | \(640\) |
Relative dimension: | \(64\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34.1 | −2.67094 | + | 0.384024i | − | 1.90400i | 5.06748 | − | 1.48795i | 2.16316 | − | 0.566331i | 0.731183 | + | 5.08549i | −0.410154 | + | 0.638213i | −8.05443 | + | 3.67833i | −0.625232 | −5.56020 | + | 2.34334i | |||
34.2 | −2.64166 | + | 0.379813i | 3.02441i | 4.91512 | − | 1.44321i | 2.12227 | + | 0.704262i | −1.14871 | − | 7.98946i | 2.30183 | − | 3.58171i | −7.58062 | + | 3.46195i | −6.14705 | −5.87379 | − | 1.05436i | ||||
34.3 | −2.62964 | + | 0.378084i | − | 1.51252i | 4.85305 | − | 1.42498i | −0.110182 | + | 2.23335i | 0.571859 | + | 3.97737i | 1.36099 | − | 2.11774i | −7.38979 | + | 3.37480i | 0.712295 | −0.554657 | − | 5.91456i | |||
34.4 | −2.48873 | + | 0.357826i | 1.71261i | 4.14677 | − | 1.21760i | −2.15526 | − | 0.595682i | −0.612817 | − | 4.26224i | 1.27993 | − | 1.99162i | −5.31030 | + | 2.42513i | 0.0669571 | 5.57703 | + | 0.711284i | ||||
34.5 | −2.33583 | + | 0.335842i | 0.0506944i | 3.42433 | − | 1.00547i | −0.467375 | + | 2.18668i | −0.0170253 | − | 0.118413i | −0.376776 | + | 0.586275i | −3.36779 | + | 1.53802i | 2.99743 | 0.357331 | − | 5.26467i | ||||
34.6 | −2.32027 | + | 0.333604i | 0.978501i | 3.35338 | − | 0.984640i | 2.21458 | + | 0.309217i | −0.326432 | − | 2.27039i | −1.21456 | + | 1.88989i | −3.18766 | + | 1.45576i | 2.04254 | −5.24159 | + | 0.0213278i | ||||
34.7 | −2.30133 | + | 0.330881i | − | 2.79202i | 3.26765 | − | 0.959469i | −0.596989 | − | 2.15490i | 0.923828 | + | 6.42537i | 1.52237 | − | 2.36885i | −2.97270 | + | 1.35758i | −4.79539 | 2.08688 | + | 4.76161i | |||
34.8 | −2.21266 | + | 0.318132i | 2.50454i | 2.87566 | − | 0.844370i | −1.55949 | + | 1.60249i | −0.796776 | − | 5.54170i | −1.48610 | + | 2.31242i | −2.02743 | + | 0.925896i | −3.27274 | 2.94082 | − | 4.04190i | ||||
34.9 | −2.19868 | + | 0.316122i | 2.73317i | 2.81527 | − | 0.826637i | −0.231277 | − | 2.22408i | −0.864015 | − | 6.00936i | −0.907380 | + | 1.41191i | −1.88744 | + | 0.861966i | −4.47020 | 1.21158 | + | 4.81691i | ||||
34.10 | −2.18609 | + | 0.314312i | − | 1.37149i | 2.76121 | − | 0.810764i | −2.22979 | + | 0.167423i | 0.431075 | + | 2.99819i | −2.66241 | + | 4.14280i | −1.76344 | + | 0.805337i | 1.11903 | 4.82190 | − | 1.06685i | |||
34.11 | −1.97057 | + | 0.283326i | − | 3.23212i | 1.88390 | − | 0.553163i | 1.40068 | + | 1.74302i | 0.915742 | + | 6.36913i | −0.498267 | + | 0.775319i | 0.0662218 | − | 0.0302425i | −7.44660 | −3.25398 | − | 3.03789i | |||
34.12 | −1.96271 | + | 0.282195i | 0.434811i | 1.85361 | − | 0.544269i | 1.01315 | − | 1.99337i | −0.122702 | − | 0.853408i | 0.433841 | − | 0.675070i | 0.122895 | − | 0.0561242i | 2.81094 | −1.42600 | + | 4.19831i | ||||
34.13 | −1.95165 | + | 0.280604i | − | 2.17977i | 1.81120 | − | 0.531817i | 0.330301 | − | 2.21154i | 0.611653 | + | 4.25414i | −1.97410 | + | 3.07175i | 0.201476 | − | 0.0920112i | −1.75139 | −0.0240629 | + | 4.40883i | |||
34.14 | −1.76416 | + | 0.253647i | − | 1.36174i | 1.12892 | − | 0.331482i | −2.12544 | − | 0.694632i | 0.345401 | + | 2.40232i | 1.80054 | − | 2.80170i | 1.33495 | − | 0.609652i | 1.14567 | 3.92580 | + | 0.686327i | |||
34.15 | −1.57721 | + | 0.226769i | − | 0.629528i | 0.517189 | − | 0.151860i | 2.23567 | + | 0.0420345i | 0.142757 | + | 0.992900i | 2.30924 | − | 3.59325i | 2.11759 | − | 0.967072i | 2.60369 | −3.53566 | + | 0.440684i | |||
34.16 | −1.51095 | + | 0.217241i | 3.08747i | 0.316777 | − | 0.0930142i | 0.837700 | + | 2.07322i | −0.670726 | − | 4.66500i | −1.71177 | + | 2.66356i | 2.31865 | − | 1.05889i | −6.53248 | −1.71611 | − | 2.95055i | ||||
34.17 | −1.47735 | + | 0.212411i | 1.29393i | 0.218454 | − | 0.0641439i | −1.31512 | + | 1.80844i | −0.274845 | − | 1.91159i | 1.96131 | − | 3.05186i | 2.40622 | − | 1.09888i | 1.32574 | 1.55876 | − | 2.95104i | ||||
34.18 | −1.46552 | + | 0.210710i | − | 2.35971i | 0.184359 | − | 0.0541326i | −1.20996 | + | 1.88042i | 0.497215 | + | 3.45820i | 0.230168 | − | 0.358148i | 2.43481 | − | 1.11194i | −2.56825 | 1.37700 | − | 3.01075i | |||
34.19 | −1.26524 | + | 0.181914i | 1.21233i | −0.351241 | + | 0.103134i | −1.93141 | − | 1.12680i | −0.220541 | − | 1.53389i | −0.377024 | + | 0.586661i | 2.75112 | − | 1.25640i | 1.53025 | 2.64868 | + | 1.07432i | ||||
34.20 | −1.19871 | + | 0.172349i | − | 1.61947i | −0.511781 | + | 0.150273i | 1.81795 | + | 1.30195i | 0.279113 | + | 1.94128i | 0.386764 | − | 0.601816i | 2.79078 | − | 1.27450i | 0.377319 | −2.40358 | − | 1.24734i | |||
See next 80 embeddings (of 640 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
121.e | even | 11 | 1 | inner |
605.o | even | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 605.2.o.a | ✓ | 640 |
5.b | even | 2 | 1 | inner | 605.2.o.a | ✓ | 640 |
121.e | even | 11 | 1 | inner | 605.2.o.a | ✓ | 640 |
605.o | even | 22 | 1 | inner | 605.2.o.a | ✓ | 640 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
605.2.o.a | ✓ | 640 | 1.a | even | 1 | 1 | trivial |
605.2.o.a | ✓ | 640 | 5.b | even | 2 | 1 | inner |
605.2.o.a | ✓ | 640 | 121.e | even | 11 | 1 | inner |
605.2.o.a | ✓ | 640 | 605.o | even | 22 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(605, [\chi])\).