Newspace parameters
Level: | \( N \) | \(=\) | \( 605 = 5 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 605.m (of order \(20\), degree \(8\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.83094932229\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
112.1 | −1.13547 | − | 2.22849i | −0.410525 | + | 2.59195i | −2.50129 | + | 3.44274i | −1.07122 | − | 1.96277i | 6.24227 | − | 2.02824i | 0.364179 | − | 0.0576804i | 5.57165 | + | 0.882463i | −3.69651 | − | 1.20107i | −3.15768 | + | 4.61588i |
112.2 | −0.868868 | − | 1.70525i | −0.0409975 | + | 0.258848i | −0.977373 | + | 1.34524i | −2.23450 | + | 0.0835971i | 0.477022 | − | 0.154994i | −4.53756 | + | 0.718679i | −0.637391 | − | 0.100953i | 2.78785 | + | 0.905827i | 2.08404 | + | 3.73775i |
112.3 | −0.842891 | − | 1.65427i | 0.241486 | − | 1.52468i | −0.850561 | + | 1.17070i | 0.954605 | + | 2.02206i | −2.72577 | + | 0.885657i | 2.03868 | − | 0.322896i | −1.01396 | − | 0.160596i | 0.586836 | + | 0.190675i | 2.54040 | − | 3.28355i |
112.4 | −0.574811 | − | 1.12813i | 0.355543 | − | 2.24481i | 0.233302 | − | 0.321113i | 1.94305 | − | 1.10660i | −2.73681 | + | 0.889243i | 2.53096 | − | 0.400865i | −2.99744 | − | 0.474748i | −2.05960 | − | 0.669206i | −2.36528 | − | 1.55592i |
112.5 | −0.0806934 | − | 0.158370i | −0.366739 | + | 2.31550i | 1.15700 | − | 1.59248i | −0.233963 | + | 2.22379i | 0.396298 | − | 0.128765i | 4.40946 | − | 0.698390i | −0.696670 | − | 0.110342i | −2.37386 | − | 0.771312i | 0.371061 | − | 0.142393i |
112.6 | 0.0806934 | + | 0.158370i | −0.366739 | + | 2.31550i | 1.15700 | − | 1.59248i | −0.233963 | + | 2.22379i | −0.396298 | + | 0.128765i | −4.40946 | + | 0.698390i | 0.696670 | + | 0.110342i | −2.37386 | − | 0.771312i | −0.371061 | + | 0.142393i |
112.7 | 0.574811 | + | 1.12813i | 0.355543 | − | 2.24481i | 0.233302 | − | 0.321113i | 1.94305 | − | 1.10660i | 2.73681 | − | 0.889243i | −2.53096 | + | 0.400865i | 2.99744 | + | 0.474748i | −2.05960 | − | 0.669206i | 2.36528 | + | 1.55592i |
112.8 | 0.842891 | + | 1.65427i | 0.241486 | − | 1.52468i | −0.850561 | + | 1.17070i | 0.954605 | + | 2.02206i | 2.72577 | − | 0.885657i | −2.03868 | + | 0.322896i | 1.01396 | + | 0.160596i | 0.586836 | + | 0.190675i | −2.54040 | + | 3.28355i |
112.9 | 0.868868 | + | 1.70525i | −0.0409975 | + | 0.258848i | −0.977373 | + | 1.34524i | −2.23450 | + | 0.0835971i | −0.477022 | + | 0.154994i | 4.53756 | − | 0.718679i | 0.637391 | + | 0.100953i | 2.78785 | + | 0.905827i | −2.08404 | − | 3.73775i |
112.10 | 1.13547 | + | 2.22849i | −0.410525 | + | 2.59195i | −2.50129 | + | 3.44274i | −1.07122 | − | 1.96277i | −6.24227 | + | 2.02824i | −0.364179 | + | 0.0576804i | −5.57165 | − | 0.882463i | −3.69651 | − | 1.20107i | 3.15768 | − | 4.61588i |
118.1 | −2.47030 | − | 0.391257i | −1.19139 | + | 2.33823i | 4.04718 | + | 1.31501i | 1.53568 | + | 1.62532i | 3.85794 | − | 5.30999i | −0.328531 | + | 0.167395i | −5.02626 | − | 2.56101i | −2.28457 | − | 3.14444i | −3.15768 | − | 4.61588i |
118.2 | −1.89028 | − | 0.299391i | −0.118979 | + | 0.233510i | 1.58142 | + | 0.513836i | −0.770005 | + | 2.09931i | 0.294816 | − | 0.405779i | 4.09339 | − | 2.08569i | 0.574999 | + | 0.292976i | 1.72298 | + | 2.37149i | 2.08404 | − | 3.73775i |
118.3 | −1.83377 | − | 0.290440i | 0.700818 | − | 1.37543i | 1.37624 | + | 0.447166i | −1.62810 | − | 1.53273i | −1.68462 | + | 2.31868i | −1.83912 | + | 0.937080i | 0.914708 | + | 0.466067i | 0.362685 | + | 0.499192i | 2.54040 | + | 3.28355i |
118.4 | −1.25054 | − | 0.198066i | 1.03183 | − | 2.02507i | −0.377491 | − | 0.122654i | 1.65288 | − | 1.50599i | −1.69144 | + | 2.32807i | −2.28322 | + | 1.16336i | 2.70403 | + | 1.37777i | −1.27290 | − | 1.75200i | −2.36528 | + | 1.55592i |
118.5 | −0.175554 | − | 0.0278050i | −1.06432 | + | 2.08884i | −1.87207 | − | 0.608271i | −2.18725 | − | 0.464678i | 0.244925 | − | 0.337111i | −3.97783 | + | 2.02681i | 0.628475 | + | 0.320224i | −1.46712 | − | 2.01932i | 0.371061 | + | 0.142393i |
118.6 | 0.175554 | + | 0.0278050i | −1.06432 | + | 2.08884i | −1.87207 | − | 0.608271i | −2.18725 | − | 0.464678i | −0.244925 | + | 0.337111i | 3.97783 | − | 2.02681i | −0.628475 | − | 0.320224i | −1.46712 | − | 2.01932i | −0.371061 | − | 0.142393i |
118.7 | 1.25054 | + | 0.198066i | 1.03183 | − | 2.02507i | −0.377491 | − | 0.122654i | 1.65288 | − | 1.50599i | 1.69144 | − | 2.32807i | 2.28322 | − | 1.16336i | −2.70403 | − | 1.37777i | −1.27290 | − | 1.75200i | 2.36528 | − | 1.55592i |
118.8 | 1.83377 | + | 0.290440i | 0.700818 | − | 1.37543i | 1.37624 | + | 0.447166i | −1.62810 | − | 1.53273i | 1.68462 | − | 2.31868i | 1.83912 | − | 0.937080i | −0.914708 | − | 0.466067i | 0.362685 | + | 0.499192i | −2.54040 | − | 3.28355i |
118.9 | 1.89028 | + | 0.299391i | −0.118979 | + | 0.233510i | 1.58142 | + | 0.513836i | −0.770005 | + | 2.09931i | −0.294816 | + | 0.405779i | −4.09339 | + | 2.08569i | −0.574999 | − | 0.292976i | 1.72298 | + | 2.37149i | −2.08404 | + | 3.73775i |
118.10 | 2.47030 | + | 0.391257i | −1.19139 | + | 2.33823i | 4.04718 | + | 1.31501i | 1.53568 | + | 1.62532i | −3.85794 | + | 5.30999i | 0.328531 | − | 0.167395i | 5.02626 | + | 2.56101i | −2.28457 | − | 3.14444i | 3.15768 | + | 4.61588i |
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
11.b | odd | 2 | 1 | inner |
11.c | even | 5 | 3 | inner |
11.d | odd | 10 | 3 | inner |
55.e | even | 4 | 1 | inner |
55.k | odd | 20 | 3 | inner |
55.l | even | 20 | 3 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 605.2.m.f | 80 | |
5.c | odd | 4 | 1 | inner | 605.2.m.f | 80 | |
11.b | odd | 2 | 1 | inner | 605.2.m.f | 80 | |
11.c | even | 5 | 1 | 605.2.e.a | ✓ | 20 | |
11.c | even | 5 | 3 | inner | 605.2.m.f | 80 | |
11.d | odd | 10 | 1 | 605.2.e.a | ✓ | 20 | |
11.d | odd | 10 | 3 | inner | 605.2.m.f | 80 | |
55.e | even | 4 | 1 | inner | 605.2.m.f | 80 | |
55.k | odd | 20 | 1 | 605.2.e.a | ✓ | 20 | |
55.k | odd | 20 | 3 | inner | 605.2.m.f | 80 | |
55.l | even | 20 | 1 | 605.2.e.a | ✓ | 20 | |
55.l | even | 20 | 3 | inner | 605.2.m.f | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
605.2.e.a | ✓ | 20 | 11.c | even | 5 | 1 | |
605.2.e.a | ✓ | 20 | 11.d | odd | 10 | 1 | |
605.2.e.a | ✓ | 20 | 55.k | odd | 20 | 1 | |
605.2.e.a | ✓ | 20 | 55.l | even | 20 | 1 | |
605.2.m.f | 80 | 1.a | even | 1 | 1 | trivial | |
605.2.m.f | 80 | 5.c | odd | 4 | 1 | inner | |
605.2.m.f | 80 | 11.b | odd | 2 | 1 | inner | |
605.2.m.f | 80 | 11.c | even | 5 | 3 | inner | |
605.2.m.f | 80 | 11.d | odd | 10 | 3 | inner | |
605.2.m.f | 80 | 55.e | even | 4 | 1 | inner | |
605.2.m.f | 80 | 55.k | odd | 20 | 3 | inner | |
605.2.m.f | 80 | 55.l | even | 20 | 3 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(52\!\cdots\!98\)\( T_{2}^{44} + \)\(49\!\cdots\!26\)\( T_{2}^{40} - \)\(40\!\cdots\!23\)\( T_{2}^{36} + \)\(25\!\cdots\!61\)\( T_{2}^{32} - \)\(65\!\cdots\!64\)\( T_{2}^{28} + \)\(16\!\cdots\!40\)\( T_{2}^{24} - \)\(37\!\cdots\!96\)\( T_{2}^{20} + \)\(66\!\cdots\!12\)\( T_{2}^{16} - \)\(65\!\cdots\!00\)\( T_{2}^{12} + 65826435072 T_{2}^{8} - 65699840 T_{2}^{4} + 65536 \)">\(T_{2}^{80} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(605, [\chi])\).