Properties

Label 605.2.m.a.602.1
Level $605$
Weight $2$
Character 605.602
Analytic conductor $4.831$
Analytic rank $0$
Dimension $16$
CM discriminant -11
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(112,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.112");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.m (of order \(20\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{20})\)
Coefficient field: 16.0.3429742096000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 5x^{14} + 16x^{12} + 35x^{10} + 31x^{8} + 315x^{6} + 1296x^{4} + 3645x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{U}(1)[D_{20}]$

Embedding invariants

Embedding label 602.1
Root \(-0.0369185 - 1.73166i\) of defining polynomial
Character \(\chi\) \(=\) 605.602
Dual form 605.2.m.a.403.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.71963 - 1.38572i) q^{3} +(1.90211 + 0.618034i) q^{4} +(-2.22328 + 0.238794i) q^{5} +(3.71282 + 5.11026i) q^{9} +(-4.31662 - 4.31662i) q^{12} +(6.37741 + 2.43142i) q^{15} +(3.23607 + 2.35114i) q^{16} +(-4.37651 - 0.919850i) q^{20} +(2.84169 - 2.84169i) q^{23} +(4.88595 - 1.06181i) q^{25} +(-1.58365 - 9.99875i) q^{27} +(8.04962 - 5.84839i) q^{31} +(3.90389 + 12.0149i) q^{36} +(1.85853 - 0.946968i) q^{37} +(-9.47494 - 10.4749i) q^{45} +(5.98164 - 11.7396i) q^{47} +(-5.54289 - 10.8785i) q^{48} +(4.11450 - 5.66312i) q^{49} +(-0.803790 + 5.07493i) q^{53} +(-3.15430 - 1.02489i) q^{59} +(10.6279 + 8.56629i) q^{60} +(4.70228 + 6.47214i) q^{64} +(11.4749 + 11.4749i) q^{67} +(-11.6661 + 3.79056i) q^{69} +(2.42705 + 1.76336i) q^{71} +(-14.7594 - 3.88284i) q^{75} +(-7.75613 - 4.45449i) q^{80} +(-3.69271 + 11.3650i) q^{81} +9.00000i q^{89} +(7.16147 - 3.64895i) q^{92} +(-29.9962 + 4.75094i) q^{93} +(4.92382 + 0.779856i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{3} - 16 q^{12} + 8 q^{15} + 16 q^{16} - 12 q^{20} + 72 q^{23} - 2 q^{25} - 22 q^{27} - 24 q^{36} + 14 q^{37} - 72 q^{45} + 24 q^{47} - 8 q^{48} + 12 q^{53} + 28 q^{60} + 104 q^{67} + 12 q^{71}+ \cdots + 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(3\) −2.71963 1.38572i −1.57018 0.800047i −0.570408 0.821362i \(-0.693215\pi\)
−0.999773 + 0.0213149i \(0.993215\pi\)
\(4\) 1.90211 + 0.618034i 0.951057 + 0.309017i
\(5\) −2.22328 + 0.238794i −0.994281 + 0.106792i
\(6\) 0 0
\(7\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(8\) 0 0
\(9\) 3.71282 + 5.11026i 1.23761 + 1.70342i
\(10\) 0 0
\(11\) 0 0
\(12\) −4.31662 4.31662i −1.24610 1.24610i
\(13\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(14\) 0 0
\(15\) 6.37741 + 2.43142i 1.64664 + 0.627789i
\(16\) 3.23607 + 2.35114i 0.809017 + 0.587785i
\(17\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(18\) 0 0
\(19\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(20\) −4.37651 0.919850i −0.978618 0.205685i
\(21\) 0 0
\(22\) 0 0
\(23\) 2.84169 2.84169i 0.592533 0.592533i −0.345782 0.938315i \(-0.612386\pi\)
0.938315 + 0.345782i \(0.112386\pi\)
\(24\) 0 0
\(25\) 4.88595 1.06181i 0.977191 0.212362i
\(26\) 0 0
\(27\) −1.58365 9.99875i −0.304773 1.92426i
\(28\) 0 0
\(29\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(30\) 0 0
\(31\) 8.04962 5.84839i 1.44575 1.05040i 0.458954 0.888460i \(-0.348224\pi\)
0.986800 0.161942i \(-0.0517756\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 3.90389 + 12.0149i 0.650648 + 2.00249i
\(37\) 1.85853 0.946968i 0.305540 0.155681i −0.294497 0.955652i \(-0.595152\pi\)
0.600038 + 0.799972i \(0.295152\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) −9.47494 10.4749i −1.41244 1.56151i
\(46\) 0 0
\(47\) 5.98164 11.7396i 0.872512 1.71240i 0.189653 0.981851i \(-0.439264\pi\)
0.682859 0.730550i \(-0.260736\pi\)
\(48\) −5.54289 10.8785i −0.800047 1.57018i
\(49\) 4.11450 5.66312i 0.587785 0.809017i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.803790 + 5.07493i −0.110409 + 0.697095i 0.868940 + 0.494918i \(0.164802\pi\)
−0.979349 + 0.202178i \(0.935198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.15430 1.02489i −0.410655 0.133430i 0.0964021 0.995342i \(-0.469267\pi\)
−0.507057 + 0.861913i \(0.669267\pi\)
\(60\) 10.6279 + 8.56629i 1.37205 + 1.10590i
\(61\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 4.70228 + 6.47214i 0.587785 + 0.809017i
\(65\) 0 0
\(66\) 0 0
\(67\) 11.4749 + 11.4749i 1.40189 + 1.40189i 0.794101 + 0.607785i \(0.207942\pi\)
0.607785 + 0.794101i \(0.292058\pi\)
\(68\) 0 0
\(69\) −11.6661 + 3.79056i −1.40444 + 0.456329i
\(70\) 0 0
\(71\) 2.42705 + 1.76336i 0.288038 + 0.209272i 0.722416 0.691459i \(-0.243032\pi\)
−0.434378 + 0.900731i \(0.643032\pi\)
\(72\) 0 0
\(73\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(74\) 0 0
\(75\) −14.7594 3.88284i −1.70427 0.448351i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(80\) −7.75613 4.45449i −0.867161 0.498027i
\(81\) −3.69271 + 11.3650i −0.410302 + 1.26278i
\(82\) 0 0
\(83\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.00000i 0.953998i 0.878904 + 0.476999i \(0.158275\pi\)
−0.878904 + 0.476999i \(0.841725\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 7.16147 3.64895i 0.746635 0.380429i
\(93\) −29.9962 + 4.75094i −3.11047 + 0.492649i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.92382 + 0.779856i 0.499938 + 0.0791824i 0.401310 0.915942i \(-0.368555\pi\)
0.0986273 + 0.995124i \(0.468555\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 9.94987 + 1.00000i 0.994987 + 0.100000i
\(101\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(102\) 0 0
\(103\) 5.10413 + 10.0174i 0.502925 + 0.987046i 0.993303 + 0.115536i \(0.0368587\pi\)
−0.490378 + 0.871510i \(0.663141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(108\) 3.16729 19.9975i 0.304773 1.92426i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −6.36675 −0.604305
\(112\) 0 0
\(113\) −15.3204 7.80612i −1.44122 0.734338i −0.453599 0.891206i \(-0.649860\pi\)
−0.987620 + 0.156868i \(0.949860\pi\)
\(114\) 0 0
\(115\) −5.63929 + 6.99645i −0.525867 + 0.652422i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 18.9258 6.14936i 1.69959 0.552229i
\(125\) −10.6093 + 3.52744i −0.948924 + 0.315504i
\(126\) 0 0
\(127\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 5.90853 + 21.8519i 0.508525 + 1.88071i
\(136\) 0 0
\(137\) 2.23625 + 14.1191i 0.191056 + 1.20628i 0.877673 + 0.479260i \(0.159095\pi\)
−0.686617 + 0.727019i \(0.740905\pi\)
\(138\) 0 0
\(139\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(140\) 0 0
\(141\) −32.5357 + 23.6386i −2.74000 + 1.99073i
\(142\) 0 0
\(143\) 0 0
\(144\) 25.2665i 2.10554i
\(145\) 0 0
\(146\) 0 0
\(147\) −19.0374 + 9.70005i −1.57018 + 0.800047i
\(148\) 4.12039 0.652606i 0.338694 0.0536439i
\(149\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(150\) 0 0
\(151\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16.5000 + 14.9248i −1.32531 + 1.19879i
\(156\) 0 0
\(157\) −10.5776 + 20.7596i −0.844181 + 1.65680i −0.0939948 + 0.995573i \(0.529964\pi\)
−0.750186 + 0.661226i \(0.770036\pi\)
\(158\) 0 0
\(159\) 9.21846 12.6881i 0.731071 1.00623i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.97108 25.0724i 0.311039 1.96382i 0.0488556 0.998806i \(-0.484443\pi\)
0.262184 0.965018i \(-0.415557\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(168\) 0 0
\(169\) −12.3637 4.01722i −0.951057 0.309017i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.15831 + 7.15831i 0.538052 + 0.538052i
\(178\) 0 0
\(179\) 19.9722 6.48936i 1.49279 0.485037i 0.554885 0.831927i \(-0.312762\pi\)
0.937906 + 0.346890i \(0.112762\pi\)
\(180\) −11.5485 25.7803i −0.860777 1.92155i
\(181\) 8.04962 + 5.84839i 0.598323 + 0.434707i 0.845283 0.534318i \(-0.179432\pi\)
−0.246960 + 0.969026i \(0.579432\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.90590 + 2.54918i −0.287168 + 0.187420i
\(186\) 0 0
\(187\) 0 0
\(188\) 18.6332 18.6332i 1.35897 1.35897i
\(189\) 0 0
\(190\) 0 0
\(191\) 7.17425 22.0801i 0.519111 1.59766i −0.256565 0.966527i \(-0.582591\pi\)
0.775676 0.631132i \(-0.217409\pi\)
\(192\) −3.81990 24.1179i −0.275677 1.74056i
\(193\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 11.3262 8.22899i 0.809017 0.587785i
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 0 0
\(199\) 19.8997i 1.41066i −0.708881 0.705328i \(-0.750800\pi\)
0.708881 0.705328i \(-0.249200\pi\)
\(200\) 0 0
\(201\) −15.3065 47.1087i −1.07964 3.32279i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 25.0724 + 3.97108i 1.74265 + 0.276009i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(212\) −4.66538 + 9.15632i −0.320420 + 0.628859i
\(213\) −4.15717 8.15890i −0.284844 0.559038i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 18.1763 + 9.26130i 1.21718 + 0.620182i 0.940177 0.340687i \(-0.110660\pi\)
0.277000 + 0.960870i \(0.410660\pi\)
\(224\) 0 0
\(225\) 23.5668 + 21.0262i 1.57112 + 1.40174i
\(226\) 0 0
\(227\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(228\) 0 0
\(229\) −17.5452 24.1489i −1.15942 1.59580i −0.713362 0.700796i \(-0.752828\pi\)
−0.446055 0.895005i \(-0.647172\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(234\) 0 0
\(235\) −10.4955 + 27.5289i −0.684652 + 1.79579i
\(236\) −5.36641 3.89893i −0.349324 0.253798i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(240\) 14.9211 + 22.8624i 0.963154 + 1.47576i
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 4.31662 4.31662i 0.276912 0.276912i
\(244\) 0 0
\(245\) −7.79536 + 13.5732i −0.498027 + 0.867161i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −21.8435 + 15.8702i −1.37875 + 1.00172i −0.381751 + 0.924265i \(0.624679\pi\)
−0.996996 + 0.0774530i \(0.975321\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 4.94427 + 15.2169i 0.309017 + 0.951057i
\(257\) 28.0574 14.2960i 1.75017 0.891758i 0.789652 0.613555i \(-0.210261\pi\)
0.960522 0.278203i \(-0.0897388\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0 0
\(265\) 0.575188 11.4749i 0.0353335 0.704900i
\(266\) 0 0
\(267\) 12.4715 24.4767i 0.763243 1.49795i
\(268\) 14.7347 + 28.9185i 0.900067 + 1.76648i
\(269\) 7.79785 10.7328i 0.475443 0.654392i −0.502178 0.864764i \(-0.667468\pi\)
0.977621 + 0.210373i \(0.0674677\pi\)
\(270\) 0 0
\(271\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −24.5330 −1.47671
\(277\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(278\) 0 0
\(279\) 59.7735 + 19.4216i 3.57855 + 1.16274i
\(280\) 0 0
\(281\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(282\) 0 0
\(283\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(284\) 3.52671 + 4.85410i 0.209272 + 0.288038i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.1680 + 5.25329i −0.951057 + 0.309017i
\(290\) 0 0
\(291\) −12.3103 8.94396i −0.721643 0.524304i
\(292\) 0 0
\(293\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(294\) 0 0
\(295\) 7.25763 + 1.52540i 0.422555 + 0.0888121i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −25.6743 16.5074i −1.48231 0.953055i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 34.3166i 1.95220i
\(310\) 0 0
\(311\) 3.70820 + 11.4127i 0.210273 + 0.647154i 0.999456 + 0.0329949i \(0.0105045\pi\)
−0.789183 + 0.614159i \(0.789495\pi\)
\(312\) 0 0
\(313\) −34.1166 + 5.40354i −1.92839 + 0.305426i −0.998111 0.0614365i \(-0.980432\pi\)
−0.930275 + 0.366863i \(0.880432\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 35.0712 + 5.55473i 1.96979 + 0.311985i 0.996650 + 0.0817838i \(0.0260617\pi\)
0.973143 + 0.230201i \(0.0739383\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −12.0000 13.2665i −0.670820 0.741620i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −14.0479 + 19.3353i −0.780440 + 1.07418i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −9.94987 −0.546895 −0.273447 0.961887i \(-0.588164\pi\)
−0.273447 + 0.961887i \(0.588164\pi\)
\(332\) 0 0
\(333\) 11.7396 + 5.98164i 0.643328 + 0.327792i
\(334\) 0 0
\(335\) −28.2522 22.7719i −1.54358 1.24416i
\(336\) 0 0
\(337\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(338\) 0 0
\(339\) 30.8487 + 42.4595i 1.67547 + 2.30609i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 25.0319 11.2133i 1.34767 0.603702i
\(346\) 0 0
\(347\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(348\) 0 0
\(349\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.7414 + 13.7414i −0.731383 + 0.731383i −0.970894 0.239511i \(-0.923013\pi\)
0.239511 + 0.970894i \(0.423013\pi\)
\(354\) 0 0
\(355\) −5.81709 3.34087i −0.308739 0.177315i
\(356\) −5.56231 + 17.1190i −0.294802 + 0.907306i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(360\) 0 0
\(361\) 15.3713 11.1679i 0.809017 0.587785i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −17.0426 + 8.68362i −0.889615 + 0.453282i −0.838179 0.545395i \(-0.816380\pi\)
−0.0514358 + 0.998676i \(0.516380\pi\)
\(368\) 15.8771 2.51469i 0.827651 0.131087i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −59.9925 9.50188i −3.11047 0.492649i
\(373\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) 33.7414 + 5.10819i 1.74240 + 0.263786i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 17.5452 24.1489i 0.901235 1.24044i −0.0688378 0.997628i \(-0.521929\pi\)
0.970073 0.242815i \(-0.0780709\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.94715 + 24.9213i −0.201690 + 1.27342i 0.654224 + 0.756301i \(0.272995\pi\)
−0.855914 + 0.517119i \(0.827005\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 8.88368 + 4.52646i 0.451000 + 0.229796i
\(389\) −34.6973 11.2738i −1.75922 0.571606i −0.762102 0.647456i \(-0.775833\pi\)
−0.997119 + 0.0758507i \(0.975833\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −20.8997 20.8997i −1.04893 1.04893i −0.998740 0.0501886i \(-0.984018\pi\)
−0.0501886 0.998740i \(-0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 18.3078 + 8.05147i 0.915388 + 0.402574i
\(401\) 21.4656 + 15.5957i 1.07194 + 0.778812i 0.976261 0.216600i \(-0.0694966\pi\)
0.0956827 + 0.995412i \(0.469497\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 5.49605 26.1494i 0.273101 1.29937i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(410\) 0 0
\(411\) 13.4834 41.4977i 0.665088 2.04693i
\(412\) 3.51753 + 22.2088i 0.173296 + 1.09415i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000i 1.17248i 0.810139 + 0.586238i \(0.199392\pi\)
−0.810139 + 0.586238i \(0.800608\pi\)
\(420\) 0 0
\(421\) 12.2987 + 37.8516i 0.599403 + 1.84477i 0.531460 + 0.847084i \(0.321644\pi\)
0.0679432 + 0.997689i \(0.478356\pi\)
\(422\) 0 0
\(423\) 82.2013 13.0194i 3.99676 0.633025i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(432\) 18.3837 36.0800i 0.884485 1.73590i
\(433\) −18.8919 37.0774i −0.907886 1.78183i −0.466805 0.884360i \(-0.654595\pi\)
−0.441081 0.897467i \(-0.645405\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 44.2164 2.10554
\(442\) 0 0
\(443\) −36.2163 18.4531i −1.72069 0.876735i −0.978418 0.206636i \(-0.933748\pi\)
−0.742271 0.670099i \(-0.766252\pi\)
\(444\) −12.1103 3.93487i −0.574728 0.186741i
\(445\) −2.14915 20.0095i −0.101879 0.948543i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −22.9236 31.5517i −1.08183 1.48902i −0.857487 0.514505i \(-0.827976\pi\)
−0.224346 0.974510i \(-0.572024\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −24.3166 24.3166i −1.14376 1.14376i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −15.0506 + 9.82276i −0.701738 + 0.457989i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −0.575188 + 0.575188i −0.0267313 + 0.0267313i −0.720346 0.693615i \(-0.756017\pi\)
0.693615 + 0.720346i \(0.256017\pi\)
\(464\) 0 0
\(465\) 65.5556 17.7256i 3.04007 0.822004i
\(466\) 0 0
\(467\) −5.10118 32.2076i −0.236054 1.49039i −0.766267 0.642523i \(-0.777888\pi\)
0.530212 0.847865i \(-0.322112\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 57.5342 41.8010i 2.65103 1.92609i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −28.9185 + 14.7347i −1.32409 + 0.674657i
\(478\) 0 0
\(479\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.1332 0.558061i −0.505535 0.0253403i
\(486\) 0 0
\(487\) −16.9980 + 33.3604i −0.770251 + 1.51170i 0.0866600 + 0.996238i \(0.472381\pi\)
−0.856911 + 0.515465i \(0.827619\pi\)
\(488\) 0 0
\(489\) −45.5433 + 62.6850i −2.05954 + 2.83471i
\(490\) 0 0
\(491\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 39.7995 1.78705
\(497\) 0 0
\(498\) 0 0
\(499\) −18.9258 6.14936i −0.847235 0.275283i −0.146947 0.989144i \(-0.546945\pi\)
−0.700287 + 0.713861i \(0.746945\pi\)
\(500\) −22.3602 + 0.152689i −0.999977 + 0.00682845i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 28.0581 + 28.0581i 1.24610 + 1.24610i
\(508\) 0 0
\(509\) 3.15430 1.02489i 0.139812 0.0454276i −0.238275 0.971198i \(-0.576582\pi\)
0.378087 + 0.925770i \(0.376582\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −13.7400 21.0527i −0.605458 0.927693i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.3236 + 41.0059i −0.583718 + 1.79650i 0.0206400 + 0.999787i \(0.493430\pi\)
−0.604358 + 0.796713i \(0.706570\pi\)
\(522\) 0 0
\(523\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 6.84962i 0.297810i
\(530\) 0 0
\(531\) −6.47387 19.9245i −0.280942 0.864650i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −63.3094 10.0272i −2.73200 0.432707i
\(538\) 0 0
\(539\) 0 0
\(540\) −2.26650 + 45.2164i −0.0975346 + 1.94580i
\(541\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(542\) 0 0
\(543\) −13.7878 27.0600i −0.591689 1.16126i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(548\) −4.47250 + 28.2383i −0.191056 + 1.20628i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 14.1551 1.52034i 0.600849 0.0645349i
\(556\) 0 0
\(557\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(564\) −76.4961 + 24.8551i −3.22107 + 1.04659i
\(565\) 35.9255 + 13.6968i 1.51140 + 0.576228i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −50.1082 + 50.1082i −2.09330 + 2.09330i
\(574\) 0 0
\(575\) 10.8670 16.9017i 0.453186 0.704849i
\(576\) −15.6156 + 48.0597i −0.650648 + 2.00249i
\(577\) 4.09833 + 25.8758i 0.170616 + 1.07723i 0.913212 + 0.407486i \(0.133594\pi\)
−0.742596 + 0.669740i \(0.766406\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 26.0626 13.2795i 1.07572 0.548105i 0.175916 0.984405i \(-0.443711\pi\)
0.899801 + 0.436300i \(0.143711\pi\)
\(588\) −42.2063 + 6.68482i −1.74056 + 0.275677i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 8.24078 + 1.30521i 0.338694 + 0.0536439i
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −27.5755 + 54.1200i −1.12859 + 2.21498i
\(598\) 0 0
\(599\) −21.1603 + 29.1246i −0.864585 + 1.19000i 0.115872 + 0.993264i \(0.463034\pi\)
−0.980457 + 0.196735i \(0.936966\pi\)
\(600\) 0 0
\(601\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(602\) 0 0
\(603\) −16.0355 + 101.244i −0.653017 + 4.12298i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7.73350 7.73350i −0.311339 0.311339i 0.534089 0.845428i \(-0.320655\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) 0 0
\(619\) 0.951057 0.309017i 0.0382262 0.0124204i −0.289841 0.957075i \(-0.593603\pi\)
0.328068 + 0.944654i \(0.393603\pi\)
\(620\) −40.6089 + 18.1911i −1.63089 + 0.730573i
\(621\) −32.9135 23.9131i −1.32077 0.959599i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 22.7451 10.3759i 0.909804 0.415037i
\(626\) 0 0
\(627\) 0 0
\(628\) −32.9499 + 32.9499i −1.31484 + 1.31484i
\(629\) 0 0
\(630\) 0 0
\(631\) 2.16312 6.65740i 0.0861124 0.265027i −0.898723 0.438516i \(-0.855504\pi\)
0.984836 + 0.173489i \(0.0555042\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 25.3762 18.4369i 1.00623 0.731071i
\(637\) 0 0
\(638\) 0 0
\(639\) 18.9499i 0.749645i
\(640\) 0 0
\(641\) 7.17425 + 22.0801i 0.283366 + 0.872111i 0.986884 + 0.161433i \(0.0516116\pi\)
−0.703518 + 0.710678i \(0.748388\pi\)
\(642\) 0 0
\(643\) 7.78744 1.23341i 0.307106 0.0486409i −0.000979141 1.00000i \(-0.500312\pi\)
0.308086 + 0.951359i \(0.400312\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.2555 1.78270i −0.442500 0.0700851i −0.0687910 0.997631i \(-0.521914\pi\)
−0.373709 + 0.927546i \(0.621914\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 23.0491 45.2363i 0.902671 1.77159i
\(653\) 17.4367 + 34.2215i 0.682351 + 1.33919i 0.928998 + 0.370084i \(0.120671\pi\)
−0.246647 + 0.969105i \(0.579329\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −13.0000 −0.505641 −0.252821 0.967513i \(-0.581358\pi\)
−0.252821 + 0.967513i \(0.581358\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −36.5993 50.3747i −1.41501 1.94760i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(674\) 0 0
\(675\) −18.3544 47.1719i −0.706462 1.81565i
\(676\) −21.0344 15.2824i −0.809017 0.587785i
\(677\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 35.2164 35.2164i 1.34752 1.34752i 0.459167 0.888350i \(-0.348148\pi\)
0.888350 0.459167i \(-0.151852\pi\)
\(684\) 0 0
\(685\) −8.34338 30.8568i −0.318784 1.17898i
\(686\) 0 0
\(687\) 14.2528 + 89.9887i 0.543779 + 3.43328i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −13.7533 + 9.99235i −0.523200 + 0.380127i −0.817808 0.575491i \(-0.804811\pi\)
0.294608 + 0.955618i \(0.404811\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 66.6913 60.3246i 2.51174 2.27195i
\(706\) 0 0
\(707\) 0 0
\(708\) 9.19184 + 18.0400i 0.345450 + 0.677985i
\(709\) 11.1679 15.3713i 0.419420 0.577282i −0.546064 0.837743i \(-0.683875\pi\)
0.965484 + 0.260461i \(0.0838746\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.25520 39.4938i 0.234259 1.47905i
\(714\) 0 0
\(715\) 0 0
\(716\) 42.0000 1.56961
\(717\) 0 0
\(718\) 0 0
\(719\) −48.5039 15.7599i −1.80889 0.587744i −0.808890 0.587961i \(-0.799931\pi\)
−1.00000 0.000216702i \(0.999931\pi\)
\(720\) −6.03349 56.1745i −0.224855 2.09350i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 11.6968 + 16.0992i 0.434707 + 0.598323i
\(725\) 0 0
\(726\) 0 0
\(727\) 31.4749 + 31.4749i 1.16734 + 1.16734i 0.982831 + 0.184510i \(0.0590699\pi\)
0.184510 + 0.982831i \(0.440930\pi\)
\(728\) 0 0
\(729\) 16.3737 5.32015i 0.606435 0.197043i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(734\) 0 0
\(735\) 40.0092 26.1120i 1.47576 0.963154i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(740\) −9.00495 + 2.43485i −0.331028 + 0.0895069i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −7.10739 21.8743i −0.259352 0.798205i −0.992941 0.118611i \(-0.962156\pi\)
0.733588 0.679594i \(-0.237844\pi\)
\(752\) 46.9585 23.9266i 1.71240 0.872512i
\(753\) 81.3979 12.8922i 2.96630 0.469816i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.25677 + 0.199053i 0.0456781 + 0.00723470i 0.179232 0.983807i \(-0.442639\pi\)
−0.133554 + 0.991042i \(0.542639\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 27.2925 37.5649i 0.987407 1.35905i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 7.63980 48.2358i 0.275677 1.74056i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −96.1161 −3.46154
\(772\) 0 0
\(773\) 42.3804 + 21.5939i 1.52432 + 0.776678i 0.997318 0.0731890i \(-0.0233176\pi\)
0.526998 + 0.849867i \(0.323318\pi\)
\(774\) 0 0
\(775\) 33.1202 37.1221i 1.18971 1.33347i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 26.6296 8.65248i 0.951057 0.309017i
\(785\) 18.5596 48.6803i 0.662421 1.73748i
\(786\) 0 0
\(787\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −17.4654 + 30.4106i −0.619433 + 1.07855i
\(796\) 12.2987 37.8516i 0.435917 1.34161i
\(797\) 5.90497 + 37.2825i 0.209165 + 1.32061i 0.839105 + 0.543970i \(0.183079\pi\)
−0.629940 + 0.776644i \(0.716921\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −45.9923 + 33.4154i −1.62506 + 1.18067i
\(802\) 0 0
\(803\) 0 0
\(804\) 99.0660i 3.49379i
\(805\) 0 0
\(806\) 0 0
\(807\) −36.0800 + 18.3837i −1.27008 + 0.647136i
\(808\) 0 0
\(809\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(810\) 0 0
\(811\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.84169 + 56.6913i −0.0995400 + 1.98581i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(822\) 0 0
\(823\) −8.72202 + 55.0687i −0.304030 + 1.91957i 0.0810902 + 0.996707i \(0.474160\pi\)
−0.385121 + 0.922866i \(0.625840\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(828\) 45.2363 + 23.0491i 1.57207 + 0.801010i
\(829\) 27.5806 + 8.96149i 0.957915 + 0.311246i 0.745928 0.666027i \(-0.232006\pi\)
0.211987 + 0.977272i \(0.432006\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −71.2243 71.2243i −2.46187 2.46187i
\(838\) 0 0
\(839\) 34.6973 11.2738i 1.19788 0.389216i 0.358901 0.933376i \(-0.383151\pi\)
0.838982 + 0.544160i \(0.183151\pi\)
\(840\) 0 0
\(841\) 23.4615 + 17.0458i 0.809017 + 0.587785i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 28.4473 + 5.97903i 0.978618 + 0.205685i
\(846\) 0 0
\(847\) 0 0
\(848\) −14.5330 + 14.5330i −0.499065 + 0.499065i
\(849\) 0 0
\(850\) 0 0
\(851\) 2.59037 7.97235i 0.0887968 0.273289i
\(852\) −2.86492 18.0884i −0.0981507 0.619699i
\(853\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(858\) 0 0
\(859\) 31.0000i 1.05771i −0.848713 0.528853i \(-0.822622\pi\)
0.848713 0.528853i \(-0.177378\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −7.28624 + 1.15403i −0.248027 + 0.0392835i −0.279210 0.960230i \(-0.590072\pi\)
0.0311832 + 0.999514i \(0.490072\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 51.2505 + 8.11728i 1.74056 + 0.275677i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 14.2960 + 28.0574i 0.483845 + 0.949600i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 57.0000 1.92038 0.960189 0.279350i \(-0.0901189\pi\)
0.960189 + 0.279350i \(0.0901189\pi\)
\(882\) 0 0
\(883\) −47.8196 24.3653i −1.60926 0.819958i −0.999628 0.0272727i \(-0.991318\pi\)
−0.609631 0.792686i \(-0.708682\pi\)
\(884\) 0 0
\(885\) −17.6243 14.2056i −0.592434 0.477515i
\(886\) 0 0
\(887\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 28.8496 + 28.8496i 0.965957 + 0.965957i
\(893\) 0 0
\(894\) 0 0
\(895\) −42.8542 + 19.1969i −1.43246 + 0.641682i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 31.8318 + 54.5592i 1.06106 + 1.81864i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −19.2931 11.0804i −0.641325 0.368325i
\(906\) 0 0
\(907\) −7.48861 47.2812i −0.248655 1.56995i −0.723781 0.690030i \(-0.757597\pi\)
0.475126 0.879918i \(-0.342403\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.36641 + 3.89893i −0.177797 + 0.129177i −0.673124 0.739529i \(-0.735048\pi\)
0.495327 + 0.868706i \(0.335048\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −18.4481 56.7774i −0.609542 1.87598i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 8.07519 6.60025i 0.265511 0.217015i
\(926\) 0 0
\(927\) −32.2409 + 63.2763i −1.05893 + 2.07827i
\(928\) 0 0
\(929\) −31.1914 + 42.9313i −1.02336 + 1.40853i −0.113534 + 0.993534i \(0.536217\pi\)
−0.909823 + 0.414996i \(0.863783\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 5.72985 36.1768i 0.187587 1.18438i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(938\) 0 0
\(939\) 100.273 + 32.5805i 3.27227 + 1.06322i
\(940\) −36.9774 + 45.8765i −1.20607 + 1.49632i
\(941\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −7.79785 10.7328i −0.253798 0.349324i
\(945\) 0 0
\(946\) 0 0
\(947\) −40.1082 40.1082i −1.30334 1.30334i −0.926126 0.377215i \(-0.876882\pi\)
−0.377215 0.926126i \(-0.623118\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −87.6834 63.7057i −2.84333 2.06580i
\(952\) 0 0
\(953\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(954\) 0 0
\(955\) −10.6778 + 50.8034i −0.345525 + 1.64396i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 14.2519 + 52.7087i 0.459978 + 1.70116i
\(961\) 21.0132 64.6718i 0.677844 2.08619i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −13.3236 41.0059i −0.427575 1.31594i −0.900507 0.434842i \(-0.856804\pi\)
0.472932 0.881099i \(-0.343196\pi\)
\(972\) 10.8785 5.54289i 0.348929 0.177788i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 58.2345 + 9.22344i 1.86309 + 0.295084i 0.983535 0.180718i \(-0.0578422\pi\)
0.879552 + 0.475802i \(0.157842\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −23.2164 + 21.0000i −0.741620 + 0.670820i
\(981\) 0 0
\(982\) 0 0
\(983\) 28.0837 + 55.1174i 0.895732 + 1.75797i 0.593727 + 0.804666i \(0.297656\pi\)
0.302005 + 0.953306i \(0.402344\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −59.6992 −1.89641 −0.948205 0.317660i \(-0.897103\pi\)
−0.948205 + 0.317660i \(0.897103\pi\)
\(992\) 0 0
\(993\) 27.0600 + 13.7878i 0.858723 + 0.437541i
\(994\) 0 0
\(995\) 4.75194 + 44.2427i 0.150647 + 1.40259i
\(996\) 0 0
\(997\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(998\) 0 0
\(999\) −12.4117 17.0833i −0.392690 0.540492i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.m.a.602.1 16
5.3 odd 4 inner 605.2.m.a.118.2 16
11.2 odd 10 55.2.e.b.32.1 4
11.3 even 5 inner 605.2.m.a.457.2 16
11.4 even 5 inner 605.2.m.a.282.2 16
11.5 even 5 inner 605.2.m.a.112.2 16
11.6 odd 10 inner 605.2.m.a.112.2 16
11.7 odd 10 inner 605.2.m.a.282.2 16
11.8 odd 10 inner 605.2.m.a.457.2 16
11.9 even 5 55.2.e.b.32.1 4
11.10 odd 2 CM 605.2.m.a.602.1 16
33.2 even 10 495.2.k.a.307.1 4
33.20 odd 10 495.2.k.a.307.1 4
44.31 odd 10 880.2.bd.d.417.2 4
44.35 even 10 880.2.bd.d.417.2 4
55.2 even 20 275.2.e.a.43.2 4
55.3 odd 20 inner 605.2.m.a.578.2 16
55.8 even 20 inner 605.2.m.a.578.2 16
55.9 even 10 275.2.e.a.32.2 4
55.13 even 20 55.2.e.b.43.1 yes 4
55.18 even 20 inner 605.2.m.a.403.1 16
55.24 odd 10 275.2.e.a.32.2 4
55.28 even 20 inner 605.2.m.a.233.2 16
55.38 odd 20 inner 605.2.m.a.233.2 16
55.42 odd 20 275.2.e.a.43.2 4
55.43 even 4 inner 605.2.m.a.118.2 16
55.48 odd 20 inner 605.2.m.a.403.1 16
55.53 odd 20 55.2.e.b.43.1 yes 4
165.53 even 20 495.2.k.a.208.1 4
165.68 odd 20 495.2.k.a.208.1 4
220.123 odd 20 880.2.bd.d.593.2 4
220.163 even 20 880.2.bd.d.593.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.e.b.32.1 4 11.2 odd 10
55.2.e.b.32.1 4 11.9 even 5
55.2.e.b.43.1 yes 4 55.13 even 20
55.2.e.b.43.1 yes 4 55.53 odd 20
275.2.e.a.32.2 4 55.9 even 10
275.2.e.a.32.2 4 55.24 odd 10
275.2.e.a.43.2 4 55.2 even 20
275.2.e.a.43.2 4 55.42 odd 20
495.2.k.a.208.1 4 165.53 even 20
495.2.k.a.208.1 4 165.68 odd 20
495.2.k.a.307.1 4 33.2 even 10
495.2.k.a.307.1 4 33.20 odd 10
605.2.m.a.112.2 16 11.5 even 5 inner
605.2.m.a.112.2 16 11.6 odd 10 inner
605.2.m.a.118.2 16 5.3 odd 4 inner
605.2.m.a.118.2 16 55.43 even 4 inner
605.2.m.a.233.2 16 55.28 even 20 inner
605.2.m.a.233.2 16 55.38 odd 20 inner
605.2.m.a.282.2 16 11.4 even 5 inner
605.2.m.a.282.2 16 11.7 odd 10 inner
605.2.m.a.403.1 16 55.18 even 20 inner
605.2.m.a.403.1 16 55.48 odd 20 inner
605.2.m.a.457.2 16 11.3 even 5 inner
605.2.m.a.457.2 16 11.8 odd 10 inner
605.2.m.a.578.2 16 55.3 odd 20 inner
605.2.m.a.578.2 16 55.8 even 20 inner
605.2.m.a.602.1 16 1.1 even 1 trivial
605.2.m.a.602.1 16 11.10 odd 2 CM
880.2.bd.d.417.2 4 44.31 odd 10
880.2.bd.d.417.2 4 44.35 even 10
880.2.bd.d.593.2 4 220.123 odd 20
880.2.bd.d.593.2 4 220.163 even 20