Properties

Label 605.2.m.a.457.1
Level $605$
Weight $2$
Character 605.457
Analytic conductor $4.831$
Analytic rank $0$
Dimension $16$
CM discriminant -11
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(112,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.112");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.m (of order \(20\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{20})\)
Coefficient field: 16.0.3429742096000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 5x^{14} + 16x^{12} + 35x^{10} + 31x^{8} + 315x^{6} + 1296x^{4} + 3645x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{U}(1)[D_{20}]$

Embedding invariants

Embedding label 457.1
Root \(-1.63550 - 0.570223i\) of defining polynomial
Character \(\chi\) \(=\) 605.457
Dual form 605.2.m.a.233.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61793 + 0.256255i) q^{3} +(-1.17557 - 1.61803i) q^{4} +(-1.93903 + 1.11362i) q^{5} +(-0.301128 + 0.0978424i) q^{9} +(2.31662 + 2.31662i) q^{12} +(2.85185 - 2.29866i) q^{15} +(-1.23607 + 3.80423i) q^{16} +(4.08135 + 1.82828i) q^{20} +(6.15831 - 6.15831i) q^{23} +(2.51969 - 4.31870i) q^{25} +(4.84081 - 2.46652i) q^{27} +(3.07468 + 9.46289i) q^{31} +(0.512310 + 0.372215i) q^{36} +(11.8378 + 1.87493i) q^{37} +(0.474937 - 0.525063i) q^{45} +(0.593648 + 3.74814i) q^{47} +(1.02502 - 6.47173i) q^{48} +(6.65740 + 2.16312i) q^{49} +(-12.1386 - 6.18493i) q^{53} +(-1.94946 - 2.68321i) q^{59} +(-7.07186 - 1.91216i) q^{60} +(7.60845 - 2.47214i) q^{64} +(1.52506 + 1.52506i) q^{67} +(-8.38564 + 11.5418i) q^{69} +(-0.927051 + 2.85317i) q^{71} +(-2.96999 + 7.63305i) q^{75} +(-1.83970 - 8.75303i) q^{80} +(-6.43158 + 4.67282i) q^{81} +9.00000i q^{89} +(-17.2039 - 2.72483i) q^{92} +(-7.39955 - 14.5224i) q^{93} +(8.65144 - 16.9794i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{3} - 16 q^{12} + 8 q^{15} + 16 q^{16} - 12 q^{20} + 72 q^{23} - 2 q^{25} - 22 q^{27} - 24 q^{36} + 14 q^{37} - 72 q^{45} + 24 q^{47} - 8 q^{48} + 12 q^{53} + 28 q^{60} + 104 q^{67} + 12 q^{71}+ \cdots + 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(3\) −1.61793 + 0.256255i −0.934114 + 0.147949i −0.604896 0.796305i \(-0.706785\pi\)
−0.329218 + 0.944254i \(0.606785\pi\)
\(4\) −1.17557 1.61803i −0.587785 0.809017i
\(5\) −1.93903 + 1.11362i −0.867161 + 0.498027i
\(6\) 0 0
\(7\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(8\) 0 0
\(9\) −0.301128 + 0.0978424i −0.100376 + 0.0326141i
\(10\) 0 0
\(11\) 0 0
\(12\) 2.31662 + 2.31662i 0.668752 + 0.668752i
\(13\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(14\) 0 0
\(15\) 2.85185 2.29866i 0.736345 0.593510i
\(16\) −1.23607 + 3.80423i −0.309017 + 0.951057i
\(17\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(18\) 0 0
\(19\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(20\) 4.08135 + 1.82828i 0.912617 + 0.408815i
\(21\) 0 0
\(22\) 0 0
\(23\) 6.15831 6.15831i 1.28410 1.28410i 0.345782 0.938315i \(-0.387614\pi\)
0.938315 0.345782i \(-0.112386\pi\)
\(24\) 0 0
\(25\) 2.51969 4.31870i 0.503937 0.863740i
\(26\) 0 0
\(27\) 4.84081 2.46652i 0.931614 0.474681i
\(28\) 0 0
\(29\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(30\) 0 0
\(31\) 3.07468 + 9.46289i 0.552229 + 1.69959i 0.703151 + 0.711040i \(0.251776\pi\)
−0.150923 + 0.988546i \(0.548224\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.512310 + 0.372215i 0.0853849 + 0.0620358i
\(37\) 11.8378 + 1.87493i 1.94612 + 0.308236i 0.999884 0.0152291i \(-0.00484777\pi\)
0.946240 + 0.323465i \(0.104848\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) 0.474937 0.525063i 0.0707995 0.0782717i
\(46\) 0 0
\(47\) 0.593648 + 3.74814i 0.0865924 + 0.546723i 0.992402 + 0.123038i \(0.0392637\pi\)
−0.905810 + 0.423685i \(0.860736\pi\)
\(48\) 1.02502 6.47173i 0.147949 0.934114i
\(49\) 6.65740 + 2.16312i 0.951057 + 0.309017i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −12.1386 6.18493i −1.66737 0.849565i −0.993892 0.110353i \(-0.964802\pi\)
−0.673473 0.739212i \(-0.735198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.94946 2.68321i −0.253798 0.349324i 0.663039 0.748585i \(-0.269267\pi\)
−0.916837 + 0.399262i \(0.869267\pi\)
\(60\) −7.07186 1.91216i −0.912973 0.246859i
\(61\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 7.60845 2.47214i 0.951057 0.309017i
\(65\) 0 0
\(66\) 0 0
\(67\) 1.52506 + 1.52506i 0.186316 + 0.186316i 0.794101 0.607785i \(-0.207942\pi\)
−0.607785 + 0.794101i \(0.707942\pi\)
\(68\) 0 0
\(69\) −8.38564 + 11.5418i −1.00951 + 1.38947i
\(70\) 0 0
\(71\) −0.927051 + 2.85317i −0.110021 + 0.338609i −0.990876 0.134777i \(-0.956968\pi\)
0.880855 + 0.473386i \(0.156968\pi\)
\(72\) 0 0
\(73\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(74\) 0 0
\(75\) −2.96999 + 7.63305i −0.342945 + 0.881389i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(80\) −1.83970 8.75303i −0.205685 0.978618i
\(81\) −6.43158 + 4.67282i −0.714620 + 0.519202i
\(82\) 0 0
\(83\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.00000i 0.953998i 0.878904 + 0.476999i \(0.158275\pi\)
−0.878904 + 0.476999i \(0.841725\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −17.2039 2.72483i −1.79363 0.284083i
\(93\) −7.39955 14.5224i −0.767297 1.50591i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.65144 16.9794i 0.878421 1.72400i 0.213710 0.976897i \(-0.431445\pi\)
0.664711 0.747101i \(-0.268555\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −9.94987 + 1.00000i −0.994987 + 0.100000i
\(101\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(102\) 0 0
\(103\) −2.64369 + 16.6916i −0.260491 + 1.64467i 0.416829 + 0.908985i \(0.363141\pi\)
−0.677320 + 0.735689i \(0.736859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(108\) −9.68162 4.93303i −0.931614 0.474681i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −19.6332 −1.86351
\(112\) 0 0
\(113\) 12.3501 1.95606i 1.16180 0.184011i 0.454382 0.890807i \(-0.349860\pi\)
0.707417 + 0.706796i \(0.249860\pi\)
\(114\) 0 0
\(115\) −5.08312 + 18.7992i −0.474004 + 1.75303i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 11.6968 16.0992i 1.05040 1.44575i
\(125\) −0.0763444 + 11.1801i −0.00682845 + 0.999977i
\(126\) 0 0
\(127\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −6.63971 + 10.1735i −0.571455 + 0.875594i
\(136\) 0 0
\(137\) 16.5173 8.41597i 1.41117 0.719025i 0.428350 0.903613i \(-0.359095\pi\)
0.982816 + 0.184588i \(0.0590949\pi\)
\(138\) 0 0
\(139\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(140\) 0 0
\(141\) −1.92097 5.91212i −0.161774 0.497891i
\(142\) 0 0
\(143\) 0 0
\(144\) 1.26650i 0.105542i
\(145\) 0 0
\(146\) 0 0
\(147\) −11.3255 1.79379i −0.934114 0.147949i
\(148\) −10.8825 21.3581i −0.894535 1.75562i
\(149\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(150\) 0 0
\(151\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16.5000 14.9248i −1.32531 1.19879i
\(156\) 0 0
\(157\) −1.44355 9.11422i −0.115208 0.727394i −0.975892 0.218255i \(-0.929964\pi\)
0.860684 0.509140i \(-0.170036\pi\)
\(158\) 0 0
\(159\) 21.2244 + 6.89622i 1.68320 + 0.546906i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.45699 + 1.25190i 0.192446 + 0.0980561i 0.547558 0.836768i \(-0.315557\pi\)
−0.355112 + 0.934824i \(0.615557\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(168\) 0 0
\(169\) 7.64121 + 10.5172i 0.587785 + 0.809017i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3.84169 + 3.84169i 0.288759 + 0.288759i
\(178\) 0 0
\(179\) −12.3435 + 16.9894i −0.922596 + 1.26984i 0.0400827 + 0.999196i \(0.487238\pi\)
−0.962678 + 0.270648i \(0.912762\pi\)
\(180\) −1.40789 0.151216i −0.104938 0.0112710i
\(181\) 3.07468 9.46289i 0.228539 0.703371i −0.769374 0.638799i \(-0.779432\pi\)
0.997913 0.0645725i \(-0.0205684\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −25.0418 + 9.54732i −1.84111 + 0.701933i
\(186\) 0 0
\(187\) 0 0
\(188\) 5.36675 5.36675i 0.391411 0.391411i
\(189\) 0 0
\(190\) 0 0
\(191\) 18.7824 13.6462i 1.35905 0.987407i 0.360545 0.932742i \(-0.382591\pi\)
0.998505 0.0546656i \(-0.0174093\pi\)
\(192\) −11.6765 + 5.94946i −0.842677 + 0.429365i
\(193\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −4.32624 13.3148i −0.309017 0.951057i
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 0 0
\(199\) 19.8997i 1.41066i 0.708881 + 0.705328i \(0.249200\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) −2.85826 2.07664i −0.201606 0.146475i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.25190 + 2.45699i −0.0870128 + 0.170772i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(212\) 4.26236 + 26.9115i 0.292740 + 1.84829i
\(213\) 0.768766 4.85380i 0.0526750 0.332577i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 21.5454 3.41246i 1.44279 0.228515i 0.614544 0.788883i \(-0.289340\pi\)
0.828244 + 0.560368i \(0.189340\pi\)
\(224\) 0 0
\(225\) −0.336196 + 1.54701i −0.0224131 + 0.103134i
\(226\) 0 0
\(227\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(228\) 0 0
\(229\) 28.3887 9.22404i 1.87598 0.609542i 0.886937 0.461890i \(-0.152828\pi\)
0.989039 0.147652i \(-0.0471715\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(234\) 0 0
\(235\) −5.32512 6.60667i −0.347373 0.430972i
\(236\) −2.04979 + 6.30860i −0.133430 + 0.410655i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(240\) 5.21952 + 13.6904i 0.336919 + 0.883710i
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) −2.31662 + 2.31662i −0.148612 + 0.148612i
\(244\) 0 0
\(245\) −15.3178 + 3.21948i −0.978618 + 0.205685i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.34346 + 25.6785i 0.526634 + 1.62081i 0.761061 + 0.648680i \(0.224679\pi\)
−0.234427 + 0.972134i \(0.575321\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −12.9443 9.40456i −0.809017 0.587785i
\(257\) 5.95946 + 0.943885i 0.371741 + 0.0588779i 0.339510 0.940603i \(-0.389739\pi\)
0.0322308 + 0.999480i \(0.489739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0 0
\(265\) 30.4248 1.52506i 1.86898 0.0936839i
\(266\) 0 0
\(267\) −2.30630 14.5614i −0.141143 0.891143i
\(268\) 0.674785 4.26042i 0.0412190 0.260247i
\(269\) −12.6172 4.09957i −0.769284 0.249955i −0.102025 0.994782i \(-0.532532\pi\)
−0.667258 + 0.744826i \(0.732532\pi\)
\(270\) 0 0
\(271\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 28.5330 1.71748
\(277\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(278\) 0 0
\(279\) −1.85175 2.54871i −0.110861 0.152587i
\(280\) 0 0
\(281\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(282\) 0 0
\(283\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(284\) 5.70634 1.85410i 0.338609 0.110021i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 9.99235 13.7533i 0.587785 0.809017i
\(290\) 0 0
\(291\) −9.64639 + 29.6885i −0.565481 + 1.74037i
\(292\) 0 0
\(293\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(294\) 0 0
\(295\) 6.76815 + 3.03185i 0.394057 + 0.176521i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 15.8420 4.16764i 0.914637 0.240619i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 27.6834i 1.57485i
\(310\) 0 0
\(311\) −9.70820 7.05342i −0.550502 0.399963i 0.277469 0.960735i \(-0.410505\pi\)
−0.827970 + 0.560772i \(0.810505\pi\)
\(312\) 0 0
\(313\) 3.48294 + 6.83566i 0.196868 + 0.386374i 0.968245 0.250004i \(-0.0804318\pi\)
−0.771377 + 0.636378i \(0.780432\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.21462 2.38382i 0.0682198 0.133889i −0.854378 0.519652i \(-0.826062\pi\)
0.922598 + 0.385763i \(0.126062\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −12.0000 + 13.2665i −0.670820 + 0.741620i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 15.1216 + 4.91329i 0.840087 + 0.272961i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 9.94987 0.546895 0.273447 0.961887i \(-0.411836\pi\)
0.273447 + 0.961887i \(0.411836\pi\)
\(332\) 0 0
\(333\) −3.74814 + 0.593648i −0.205397 + 0.0325317i
\(334\) 0 0
\(335\) −4.65549 1.25880i −0.254357 0.0687756i
\(336\) 0 0
\(337\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(338\) 0 0
\(339\) −19.4804 + 6.32956i −1.05803 + 0.343774i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 3.40675 31.7184i 0.183413 1.70766i
\(346\) 0 0
\(347\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(348\) 0 0
\(349\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 22.7414 22.7414i 1.21040 1.21040i 0.239511 0.970894i \(-0.423013\pi\)
0.970894 0.239511i \(-0.0769871\pi\)
\(354\) 0 0
\(355\) −1.37978 6.56477i −0.0732309 0.348422i
\(356\) 14.5623 10.5801i 0.771801 0.560746i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(360\) 0 0
\(361\) −5.87132 18.0701i −0.309017 0.951057i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 32.7898 + 5.19340i 1.71162 + 0.271093i 0.933903 0.357526i \(-0.116380\pi\)
0.777713 + 0.628620i \(0.216380\pi\)
\(368\) 15.8155 + 31.0397i 0.824441 + 1.61806i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −14.7991 + 29.0449i −0.767297 + 1.50591i
\(373\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) −2.74144 18.1082i −0.141567 0.935103i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −28.3887 9.22404i −1.45823 0.473807i −0.530700 0.847560i \(-0.678071\pi\)
−0.927528 + 0.373753i \(0.878071\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 26.6610 + 13.5845i 1.36231 + 0.694134i 0.973821 0.227317i \(-0.0729954\pi\)
0.388494 + 0.921451i \(0.372995\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −37.6436 + 5.96217i −1.91107 + 0.302683i
\(389\) −21.4441 29.5153i −1.08726 1.49648i −0.851270 0.524727i \(-0.824167\pi\)
−0.235988 0.971756i \(-0.575833\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 18.8997 + 18.8997i 0.948551 + 0.948551i 0.998740 0.0501886i \(-0.0159822\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 13.3148 + 14.9237i 0.665741 + 0.746183i
\(401\) 8.19915 25.2344i 0.409446 1.26014i −0.507679 0.861546i \(-0.669497\pi\)
0.917125 0.398599i \(-0.130503\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 7.26728 16.2231i 0.361114 0.806133i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(410\) 0 0
\(411\) −24.5672 + 17.8491i −1.21181 + 0.880433i
\(412\) 30.1154 15.3446i 1.48368 0.755973i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000i 1.17248i 0.810139 + 0.586238i \(0.199392\pi\)
−0.810139 + 0.586238i \(0.800608\pi\)
\(420\) 0 0
\(421\) 32.1985 + 23.3936i 1.56926 + 1.14013i 0.927863 + 0.372921i \(0.121644\pi\)
0.641394 + 0.767211i \(0.278356\pi\)
\(422\) 0 0
\(423\) −0.545492 1.07059i −0.0265227 0.0520537i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(432\) 3.39961 + 21.4643i 0.163564 + 1.03270i
\(433\) 0.0939818 0.593378i 0.00451648 0.0285159i −0.985327 0.170676i \(-0.945405\pi\)
0.989844 + 0.142160i \(0.0454048\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −2.21637 −0.105542
\(442\) 0 0
\(443\) −10.8133 + 1.71265i −0.513753 + 0.0813705i −0.407928 0.913014i \(-0.633748\pi\)
−0.105825 + 0.994385i \(0.533748\pi\)
\(444\) 23.0803 + 31.7673i 1.09534 + 1.50761i
\(445\) −10.0226 17.4513i −0.475117 0.827270i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −37.0912 + 12.0517i −1.75044 + 0.568753i −0.996140 0.0877747i \(-0.972024\pi\)
−0.754302 + 0.656528i \(0.772024\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −17.6834 17.6834i −0.831756 0.831756i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 36.3933 13.8751i 1.69685 0.646931i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −30.4248 + 30.4248i −1.41396 + 1.41396i −0.693615 + 0.720346i \(0.743983\pi\)
−0.720346 + 0.693615i \(0.756017\pi\)
\(464\) 0 0
\(465\) 30.5205 + 19.9191i 1.41535 + 0.923728i
\(466\) 0 0
\(467\) −25.2746 + 12.8781i −1.16957 + 0.595926i −0.927313 0.374286i \(-0.877888\pi\)
−0.242257 + 0.970212i \(0.577888\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 4.67114 + 14.3763i 0.215235 + 0.662424i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.26042 + 0.674785i 0.195071 + 0.0308963i
\(478\) 0 0
\(479\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.13325 + 42.5581i 0.0968659 + 1.93246i
\(486\) 0 0
\(487\) −3.65587 23.0822i −0.165663 1.04596i −0.920699 0.390273i \(-0.872381\pi\)
0.755036 0.655683i \(-0.227619\pi\)
\(488\) 0 0
\(489\) −4.29604 1.39587i −0.194274 0.0631234i
\(490\) 0 0
\(491\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −39.7995 −1.78705
\(497\) 0 0
\(498\) 0 0
\(499\) −11.6968 16.0992i −0.523620 0.720701i 0.462522 0.886608i \(-0.346945\pi\)
−0.986141 + 0.165907i \(0.946945\pi\)
\(500\) 18.1795 13.0194i 0.813012 0.582247i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −15.0581 15.0581i −0.668752 0.668752i
\(508\) 0 0
\(509\) 1.94946 2.68321i 0.0864084 0.118931i −0.763624 0.645661i \(-0.776582\pi\)
0.850033 + 0.526730i \(0.176582\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −13.4620 35.3096i −0.593205 1.55593i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −34.8817 + 25.3430i −1.52819 + 1.11030i −0.570962 + 0.820977i \(0.693430\pi\)
−0.957232 + 0.289321i \(0.906570\pi\)
\(522\) 0 0
\(523\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 52.8496i 2.29781i
\(530\) 0 0
\(531\) 0.849569 + 0.617248i 0.0368682 + 0.0267863i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 15.6173 30.6507i 0.673937 1.32268i
\(538\) 0 0
\(539\) 0 0
\(540\) 24.2665 1.21637i 1.04426 0.0523444i
\(541\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(542\) 0 0
\(543\) −2.54971 + 16.0982i −0.109419 + 0.690841i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(548\) −33.0346 16.8319i −1.41117 0.719025i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 38.0695 21.8640i 1.61596 0.928077i
\(556\) 0 0
\(557\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(564\) −7.30779 + 10.0583i −0.307713 + 0.423531i
\(565\) −21.7689 + 17.5462i −0.915824 + 0.738175i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −26.8918 + 26.8918i −1.12342 + 1.12342i
\(574\) 0 0
\(575\) −11.0789 42.1129i −0.462022 1.75623i
\(576\) −2.04924 + 1.48886i −0.0853849 + 0.0620358i
\(577\) −35.8805 + 18.2820i −1.49373 + 0.761091i −0.994436 0.105344i \(-0.966406\pi\)
−0.499290 + 0.866435i \(0.666406\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −38.1559 6.04330i −1.57486 0.249434i −0.693000 0.720938i \(-0.743711\pi\)
−0.881864 + 0.471504i \(0.843711\pi\)
\(588\) 10.4116 + 20.4338i 0.429365 + 0.842677i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −21.7650 + 42.7162i −0.894535 + 1.75562i
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5.09942 32.1965i −0.208705 1.31771i
\(598\) 0 0
\(599\) −34.2380 11.1246i −1.39893 0.454539i −0.490084 0.871675i \(-0.663034\pi\)
−0.908844 + 0.417136i \(0.863034\pi\)
\(600\) 0 0
\(601\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(602\) 0 0
\(603\) −0.608455 0.310023i −0.0247782 0.0126251i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −34.2665 34.2665i −1.37952 1.37952i −0.845428 0.534089i \(-0.820655\pi\)
−0.534089 0.845428i \(-0.679345\pi\)
\(618\) 0 0
\(619\) −0.587785 + 0.809017i −0.0236251 + 0.0325171i −0.820666 0.571408i \(-0.806397\pi\)
0.797041 + 0.603925i \(0.206397\pi\)
\(620\) −4.75194 + 44.2427i −0.190842 + 1.77683i
\(621\) 14.6216 45.0008i 0.586746 1.80582i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.3024 21.7635i −0.492095 0.870542i
\(626\) 0 0
\(627\) 0 0
\(628\) −13.0501 + 13.0501i −0.520757 + 0.520757i
\(629\) 0 0
\(630\) 0 0
\(631\) −5.66312 + 4.11450i −0.225445 + 0.163796i −0.694774 0.719228i \(-0.744496\pi\)
0.469329 + 0.883023i \(0.344496\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −13.7924 42.4487i −0.546906 1.68320i
\(637\) 0 0
\(638\) 0 0
\(639\) 0.949874i 0.0375764i
\(640\) 0 0
\(641\) 18.7824 + 13.6462i 0.741862 + 0.538994i 0.893294 0.449474i \(-0.148388\pi\)
−0.151432 + 0.988468i \(0.548388\pi\)
\(642\) 0 0
\(643\) 22.7441 + 44.6379i 0.896941 + 1.76035i 0.586993 + 0.809592i \(0.300312\pi\)
0.309948 + 0.950753i \(0.399688\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.5087 44.1757i 0.884907 1.73673i 0.242861 0.970061i \(-0.421914\pi\)
0.642046 0.766666i \(-0.278086\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −0.862748 5.44718i −0.0337878 0.213328i
\(653\) 5.27454 33.3021i 0.206409 1.30321i −0.639047 0.769167i \(-0.720671\pi\)
0.845456 0.534045i \(-0.179329\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −13.0000 −0.505641 −0.252821 0.967513i \(-0.581358\pi\)
−0.252821 + 0.967513i \(0.581358\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −33.9846 + 11.0423i −1.31392 + 0.426918i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(674\) 0 0
\(675\) 1.54518 27.1209i 0.0594739 1.04388i
\(676\) 8.03444 24.7275i 0.309017 0.951057i
\(677\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.2164 + 11.2164i −0.429183 + 0.429183i −0.888350 0.459167i \(-0.848148\pi\)
0.459167 + 0.888350i \(0.348148\pi\)
\(684\) 0 0
\(685\) −22.6553 + 34.7129i −0.865614 + 1.32631i
\(686\) 0 0
\(687\) −43.5673 + 22.1986i −1.66220 + 0.846931i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 5.25329 + 16.1680i 0.199845 + 0.615058i 0.999886 + 0.0151132i \(0.00481087\pi\)
−0.800041 + 0.599945i \(0.795189\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 10.3087 + 9.32456i 0.388248 + 0.351183i
\(706\) 0 0
\(707\) 0 0
\(708\) 1.69981 10.7322i 0.0638826 0.403339i
\(709\) 18.0701 + 5.87132i 0.678636 + 0.220502i 0.627998 0.778215i \(-0.283875\pi\)
0.0506378 + 0.998717i \(0.483875\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 77.2103 + 39.3406i 2.89155 + 1.47332i
\(714\) 0 0
\(715\) 0 0
\(716\) 42.0000 1.56961
\(717\) 0 0
\(718\) 0 0
\(719\) 29.9770 + 41.2599i 1.11796 + 1.53873i 0.809144 + 0.587610i \(0.199931\pi\)
0.308811 + 0.951123i \(0.400069\pi\)
\(720\) 1.41040 + 2.45578i 0.0525626 + 0.0915216i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) −18.9258 + 6.14936i −0.703371 + 0.228539i
\(725\) 0 0
\(726\) 0 0
\(727\) 21.5251 + 21.5251i 0.798320 + 0.798320i 0.982831 0.184510i \(-0.0590699\pi\)
−0.184510 + 0.982831i \(0.559070\pi\)
\(728\) 0 0
\(729\) 17.1730 23.6365i 0.636035 0.875428i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(734\) 0 0
\(735\) 23.9582 9.13417i 0.883710 0.336919i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(740\) 44.8864 + 29.2950i 1.65006 + 1.07691i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 18.6074 + 13.5191i 0.678993 + 0.493318i 0.873024 0.487678i \(-0.162156\pi\)
−0.194030 + 0.980996i \(0.562156\pi\)
\(752\) −14.9926 2.37459i −0.546723 0.0865924i
\(753\) −20.0794 39.4081i −0.731735 1.43611i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −24.9752 + 49.0165i −0.907738 + 1.78154i −0.433266 + 0.901266i \(0.642639\pi\)
−0.474473 + 0.880270i \(0.657361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −44.1602 14.3485i −1.59766 0.519111i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 23.3529 + 11.8989i 0.842677 + 0.429365i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −9.88388 −0.355959
\(772\) 0 0
\(773\) −28.4483 + 4.50577i −1.02322 + 0.162061i −0.645420 0.763828i \(-0.723318\pi\)
−0.377795 + 0.925889i \(0.623318\pi\)
\(774\) 0 0
\(775\) 48.6146 + 10.5649i 1.74629 + 0.379502i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −16.4580 + 22.6525i −0.587785 + 0.809017i
\(785\) 12.9489 + 16.0652i 0.462166 + 0.573391i
\(786\) 0 0
\(787\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −48.8345 + 10.2640i −1.73198 + 0.364026i
\(796\) 32.1985 23.3936i 1.14124 0.829163i
\(797\) 37.4132 19.0630i 1.32524 0.675246i 0.359113 0.933294i \(-0.383079\pi\)
0.966132 + 0.258048i \(0.0830794\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −0.880582 2.71015i −0.0311138 0.0957585i
\(802\) 0 0
\(803\) 0 0
\(804\) 7.06600i 0.249198i
\(805\) 0 0
\(806\) 0 0
\(807\) 21.4643 + 3.39961i 0.755580 + 0.119672i
\(808\) 0 0
\(809\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(810\) 0 0
\(811\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.15831 + 0.308689i −0.215716 + 0.0108129i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(822\) 0 0
\(823\) 12.0654 + 6.14765i 0.420575 + 0.214294i 0.651453 0.758689i \(-0.274160\pi\)
−0.230878 + 0.972983i \(0.574160\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(828\) 5.44718 0.862748i 0.189303 0.0299826i
\(829\) −17.0458 23.4615i −0.592024 0.814851i 0.402925 0.915233i \(-0.367994\pi\)
−0.994949 + 0.100382i \(0.967994\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 38.2243 + 38.2243i 1.32123 + 1.32123i
\(838\) 0 0
\(839\) 21.4441 29.5153i 0.740332 1.01898i −0.258267 0.966074i \(-0.583151\pi\)
0.998599 0.0529065i \(-0.0168485\pi\)
\(840\) 0 0
\(841\) −8.96149 + 27.5806i −0.309017 + 0.951057i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −26.5288 11.8838i −0.912617 0.408815i
\(846\) 0 0
\(847\) 0 0
\(848\) 38.5330 38.5330i 1.32323 1.32323i
\(849\) 0 0
\(850\) 0 0
\(851\) 84.4473 61.3546i 2.89482 2.10321i
\(852\) −8.75735 + 4.46209i −0.300022 + 0.152869i
\(853\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(858\) 0 0
\(859\) 31.0000i 1.05771i −0.848713 0.528853i \(-0.822622\pi\)
0.848713 0.528853i \(-0.177378\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.4625 + 51.9357i 0.900795 + 1.76791i 0.562272 + 0.826953i \(0.309928\pi\)
0.338524 + 0.940958i \(0.390072\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −12.6426 + 24.8125i −0.429365 + 0.842677i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −0.943885 + 5.95946i −0.0319457 + 0.201697i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 57.0000 1.92038 0.960189 0.279350i \(-0.0901189\pi\)
0.960189 + 0.279350i \(0.0901189\pi\)
\(882\) 0 0
\(883\) 25.2125 3.99326i 0.848467 0.134384i 0.282964 0.959130i \(-0.408682\pi\)
0.565503 + 0.824747i \(0.308682\pi\)
\(884\) 0 0
\(885\) −11.7273 3.17096i −0.394210 0.106591i
\(886\) 0 0
\(887\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −30.8496 30.8496i −1.03292 1.03292i
\(893\) 0 0
\(894\) 0 0
\(895\) 5.01467 46.6889i 0.167622 1.56064i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 2.89834 1.27465i 0.0966115 0.0424883i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.57620 + 21.7729i 0.152118 + 0.723755i
\(906\) 0 0
\(907\) −32.5724 + 16.5965i −1.08155 + 0.551077i −0.901588 0.432597i \(-0.857597\pi\)
−0.179962 + 0.983674i \(0.557597\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2.04979 6.30860i −0.0679125 0.209013i 0.911341 0.411652i \(-0.135048\pi\)
−0.979253 + 0.202639i \(0.935048\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −48.2977 35.0903i −1.59580 1.15942i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 37.9248 46.3997i 1.24696 1.52561i
\(926\) 0 0
\(927\) −0.837058 5.28498i −0.0274926 0.173581i
\(928\) 0 0
\(929\) 50.4688 + 16.3983i 1.65583 + 0.538011i 0.979991 0.199042i \(-0.0637830\pi\)
0.675835 + 0.737053i \(0.263783\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 17.5147 + 8.92419i 0.573406 + 0.292165i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(938\) 0 0
\(939\) −7.38685 10.1671i −0.241061 0.331791i
\(940\) −4.42976 + 16.3828i −0.144483 + 0.534349i
\(941\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 12.6172 4.09957i 0.410655 0.133430i
\(945\) 0 0
\(946\) 0 0
\(947\) −16.8918 16.8918i −0.548910 0.548910i 0.377215 0.926126i \(-0.376882\pi\)
−0.926126 + 0.377215i \(0.876882\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.35430 + 4.16812i −0.0439163 + 0.135161i
\(952\) 0 0
\(953\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(954\) 0 0
\(955\) −21.2230 + 47.3771i −0.686759 + 1.53309i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 16.0156 24.5394i 0.516901 0.792005i
\(961\) −55.0132 + 39.9694i −1.77462 + 1.28934i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −34.8817 25.3430i −1.11941 0.813296i −0.135287 0.990806i \(-0.543196\pi\)
−0.984119 + 0.177510i \(0.943196\pi\)
\(972\) 6.47173 + 1.02502i 0.207581 + 0.0328776i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9.43240 + 18.5121i −0.301769 + 0.592256i −0.991242 0.132056i \(-0.957842\pi\)
0.689473 + 0.724311i \(0.257842\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 23.2164 + 21.0000i 0.741620 + 0.670820i
\(981\) 0 0
\(982\) 0 0
\(983\) 1.60582 10.1388i 0.0512179 0.323377i −0.948755 0.316012i \(-0.897656\pi\)
0.999973 0.00736431i \(-0.00234415\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 59.6992 1.89641 0.948205 0.317660i \(-0.102897\pi\)
0.948205 + 0.317660i \(0.102897\pi\)
\(992\) 0 0
\(993\) −16.0982 + 2.54971i −0.510862 + 0.0809126i
\(994\) 0 0
\(995\) −22.1608 38.5862i −0.702545 1.22327i
\(996\) 0 0
\(997\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(998\) 0 0
\(999\) 61.9291 20.1220i 1.95935 0.636632i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.m.a.457.1 16
5.3 odd 4 inner 605.2.m.a.578.1 16
11.2 odd 10 inner 605.2.m.a.112.1 16
11.3 even 5 55.2.e.b.32.2 4
11.4 even 5 inner 605.2.m.a.602.2 16
11.5 even 5 inner 605.2.m.a.282.1 16
11.6 odd 10 inner 605.2.m.a.282.1 16
11.7 odd 10 inner 605.2.m.a.602.2 16
11.8 odd 10 55.2.e.b.32.2 4
11.9 even 5 inner 605.2.m.a.112.1 16
11.10 odd 2 CM 605.2.m.a.457.1 16
33.8 even 10 495.2.k.a.307.2 4
33.14 odd 10 495.2.k.a.307.2 4
44.3 odd 10 880.2.bd.d.417.1 4
44.19 even 10 880.2.bd.d.417.1 4
55.3 odd 20 55.2.e.b.43.2 yes 4
55.8 even 20 55.2.e.b.43.2 yes 4
55.13 even 20 inner 605.2.m.a.233.1 16
55.14 even 10 275.2.e.a.32.1 4
55.18 even 20 inner 605.2.m.a.118.1 16
55.19 odd 10 275.2.e.a.32.1 4
55.28 even 20 inner 605.2.m.a.403.2 16
55.38 odd 20 inner 605.2.m.a.403.2 16
55.43 even 4 inner 605.2.m.a.578.1 16
55.47 odd 20 275.2.e.a.43.1 4
55.48 odd 20 inner 605.2.m.a.118.1 16
55.52 even 20 275.2.e.a.43.1 4
55.53 odd 20 inner 605.2.m.a.233.1 16
165.8 odd 20 495.2.k.a.208.2 4
165.113 even 20 495.2.k.a.208.2 4
220.3 even 20 880.2.bd.d.593.1 4
220.63 odd 20 880.2.bd.d.593.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.e.b.32.2 4 11.3 even 5
55.2.e.b.32.2 4 11.8 odd 10
55.2.e.b.43.2 yes 4 55.3 odd 20
55.2.e.b.43.2 yes 4 55.8 even 20
275.2.e.a.32.1 4 55.14 even 10
275.2.e.a.32.1 4 55.19 odd 10
275.2.e.a.43.1 4 55.47 odd 20
275.2.e.a.43.1 4 55.52 even 20
495.2.k.a.208.2 4 165.8 odd 20
495.2.k.a.208.2 4 165.113 even 20
495.2.k.a.307.2 4 33.8 even 10
495.2.k.a.307.2 4 33.14 odd 10
605.2.m.a.112.1 16 11.2 odd 10 inner
605.2.m.a.112.1 16 11.9 even 5 inner
605.2.m.a.118.1 16 55.18 even 20 inner
605.2.m.a.118.1 16 55.48 odd 20 inner
605.2.m.a.233.1 16 55.13 even 20 inner
605.2.m.a.233.1 16 55.53 odd 20 inner
605.2.m.a.282.1 16 11.5 even 5 inner
605.2.m.a.282.1 16 11.6 odd 10 inner
605.2.m.a.403.2 16 55.28 even 20 inner
605.2.m.a.403.2 16 55.38 odd 20 inner
605.2.m.a.457.1 16 1.1 even 1 trivial
605.2.m.a.457.1 16 11.10 odd 2 CM
605.2.m.a.578.1 16 5.3 odd 4 inner
605.2.m.a.578.1 16 55.43 even 4 inner
605.2.m.a.602.2 16 11.4 even 5 inner
605.2.m.a.602.2 16 11.7 odd 10 inner
880.2.bd.d.417.1 4 44.3 odd 10
880.2.bd.d.417.1 4 44.19 even 10
880.2.bd.d.593.1 4 220.3 even 20
880.2.bd.d.593.1 4 220.63 odd 20