Properties

Label 605.2.m.a.403.2
Level $605$
Weight $2$
Character 605.403
Analytic conductor $4.831$
Analytic rank $0$
Dimension $16$
CM discriminant -11
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(112,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.112");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.m (of order \(20\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{20})\)
Coefficient field: 16.0.3429742096000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 5x^{14} + 16x^{12} + 35x^{10} + 31x^{8} + 315x^{6} + 1296x^{4} + 3645x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{U}(1)[D_{20}]$

Embedding invariants

Embedding label 403.2
Root \(0.987975 - 1.42264i\) of defining polynomial
Character \(\chi\) \(=\) 605.403
Dual form 605.2.m.a.602.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.45956 - 0.743682i) q^{3} +(1.90211 - 0.618034i) q^{4} +(0.459925 - 2.18826i) q^{5} +(-0.186107 + 0.256155i) q^{9} +(2.31662 - 2.31662i) q^{12} +(-0.956081 - 3.53593i) q^{15} +(3.23607 - 2.35114i) q^{16} +(-0.477588 - 4.44656i) q^{20} +(6.15831 + 6.15831i) q^{23} +(-4.57694 - 2.01287i) q^{25} +(-0.849903 + 5.36608i) q^{27} +(-8.04962 - 5.84839i) q^{31} +(-0.195685 + 0.602256i) q^{36} +(-10.6790 - 5.44124i) q^{37} +(0.474937 + 0.525063i) q^{45} +(1.72283 + 3.38125i) q^{47} +(2.97473 - 5.83824i) q^{48} +(4.11450 + 5.66312i) q^{49} +(2.13118 + 13.4557i) q^{53} +(3.15430 - 1.02489i) q^{59} +(-4.00390 - 6.13484i) q^{60} +(4.70228 - 6.47214i) q^{64} +(1.52506 - 1.52506i) q^{67} +(13.5682 + 4.40859i) q^{69} +(2.42705 - 1.76336i) q^{71} +(-8.17724 + 0.465888i) q^{75} +(-3.65655 - 8.16270i) q^{80} +(2.45665 + 7.56078i) q^{81} -9.00000i q^{89} +(15.5199 + 7.90776i) q^{92} +(-16.0982 - 2.54971i) q^{93} +(18.8218 - 2.98108i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{3} - 16 q^{12} + 8 q^{15} + 16 q^{16} - 12 q^{20} + 72 q^{23} - 2 q^{25} - 22 q^{27} - 24 q^{36} + 14 q^{37} - 72 q^{45} + 24 q^{47} - 8 q^{48} + 12 q^{53} + 28 q^{60} + 104 q^{67} + 12 q^{71}+ \cdots + 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(3\) 1.45956 0.743682i 0.842677 0.429365i 0.0213149 0.999773i \(-0.493215\pi\)
0.821362 + 0.570408i \(0.193215\pi\)
\(4\) 1.90211 0.618034i 0.951057 0.309017i
\(5\) 0.459925 2.18826i 0.205685 0.978618i
\(6\) 0 0
\(7\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(8\) 0 0
\(9\) −0.186107 + 0.256155i −0.0620358 + 0.0853849i
\(10\) 0 0
\(11\) 0 0
\(12\) 2.31662 2.31662i 0.668752 0.668752i
\(13\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(14\) 0 0
\(15\) −0.956081 3.53593i −0.246859 0.912973i
\(16\) 3.23607 2.35114i 0.809017 0.587785i
\(17\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(18\) 0 0
\(19\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(20\) −0.477588 4.44656i −0.106792 0.994281i
\(21\) 0 0
\(22\) 0 0
\(23\) 6.15831 + 6.15831i 1.28410 + 1.28410i 0.938315 + 0.345782i \(0.112386\pi\)
0.345782 + 0.938315i \(0.387614\pi\)
\(24\) 0 0
\(25\) −4.57694 2.01287i −0.915388 0.402574i
\(26\) 0 0
\(27\) −0.849903 + 5.36608i −0.163564 + 1.03270i
\(28\) 0 0
\(29\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(30\) 0 0
\(31\) −8.04962 5.84839i −1.44575 1.05040i −0.986800 0.161942i \(-0.948224\pi\)
−0.458954 0.888460i \(-0.651776\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −0.195685 + 0.602256i −0.0326141 + 0.100376i
\(37\) −10.6790 5.44124i −1.75562 0.894535i −0.955652 0.294497i \(-0.904848\pi\)
−0.799972 0.600038i \(-0.795152\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) 0.474937 + 0.525063i 0.0707995 + 0.0782717i
\(46\) 0 0
\(47\) 1.72283 + 3.38125i 0.251301 + 0.493206i 0.981851 0.189653i \(-0.0607363\pi\)
−0.730550 + 0.682859i \(0.760736\pi\)
\(48\) 2.97473 5.83824i 0.429365 0.842677i
\(49\) 4.11450 + 5.66312i 0.587785 + 0.809017i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.13118 + 13.4557i 0.292740 + 1.84829i 0.494918 + 0.868940i \(0.335198\pi\)
−0.202178 + 0.979349i \(0.564802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.15430 1.02489i 0.410655 0.133430i −0.0964021 0.995342i \(-0.530733\pi\)
0.507057 + 0.861913i \(0.330733\pi\)
\(60\) −4.00390 6.13484i −0.516901 0.792005i
\(61\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 4.70228 6.47214i 0.587785 0.809017i
\(65\) 0 0
\(66\) 0 0
\(67\) 1.52506 1.52506i 0.186316 0.186316i −0.607785 0.794101i \(-0.707942\pi\)
0.794101 + 0.607785i \(0.207942\pi\)
\(68\) 0 0
\(69\) 13.5682 + 4.40859i 1.63342 + 0.530732i
\(70\) 0 0
\(71\) 2.42705 1.76336i 0.288038 0.209272i −0.434378 0.900731i \(-0.643032\pi\)
0.722416 + 0.691459i \(0.243032\pi\)
\(72\) 0 0
\(73\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(74\) 0 0
\(75\) −8.17724 + 0.465888i −0.944227 + 0.0537961i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(80\) −3.65655 8.16270i −0.408815 0.912617i
\(81\) 2.45665 + 7.56078i 0.272961 + 0.840087i
\(82\) 0 0
\(83\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.00000i 0.953998i −0.878904 0.476999i \(-0.841725\pi\)
0.878904 0.476999i \(-0.158275\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 15.5199 + 7.90776i 1.61806 + 0.824441i
\(93\) −16.0982 2.54971i −1.66931 0.264393i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 18.8218 2.98108i 1.91107 0.302683i 0.915942 0.401310i \(-0.131445\pi\)
0.995124 + 0.0986273i \(0.0314452\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −9.94987 1.00000i −0.994987 0.100000i
\(101\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(102\) 0 0
\(103\) −7.67229 + 15.0577i −0.755973 + 1.48368i 0.115536 + 0.993303i \(0.463141\pi\)
−0.871510 + 0.490378i \(0.836859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(108\) 1.69981 + 10.7322i 0.163564 + 1.03270i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −19.6332 −1.86351
\(112\) 0 0
\(113\) −11.1412 + 5.67671i −1.04807 + 0.534020i −0.891206 0.453599i \(-0.850140\pi\)
−0.156868 + 0.987620i \(0.550140\pi\)
\(114\) 0 0
\(115\) 16.3083 10.6436i 1.52076 0.992522i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) −18.9258 6.14936i −1.69959 0.552229i
\(125\) −6.50972 + 9.08975i −0.582247 + 0.813012i
\(126\) 0 0
\(127\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 11.3515 + 4.32780i 0.976979 + 0.372478i
\(136\) 0 0
\(137\) −2.89995 + 18.3095i −0.247759 + 1.56429i 0.479260 + 0.877673i \(0.340905\pi\)
−0.727019 + 0.686617i \(0.759095\pi\)
\(138\) 0 0
\(139\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(140\) 0 0
\(141\) 5.02915 + 3.65389i 0.423531 + 0.307713i
\(142\) 0 0
\(143\) 0 0
\(144\) 1.26650i 0.105542i
\(145\) 0 0
\(146\) 0 0
\(147\) 10.2169 + 5.20578i 0.842677 + 0.429365i
\(148\) −23.6756 3.74985i −1.94612 0.308236i
\(149\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(150\) 0 0
\(151\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16.5000 + 14.9248i −1.32531 + 1.19879i
\(156\) 0 0
\(157\) −4.18935 8.22206i −0.334346 0.656192i 0.661226 0.750186i \(-0.270036\pi\)
−0.995573 + 0.0939948i \(0.970036\pi\)
\(158\) 0 0
\(159\) 13.1174 + 18.0545i 1.04028 + 1.43182i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −0.431374 2.72359i −0.0337878 0.213328i 0.965018 0.262184i \(-0.0844426\pi\)
−0.998806 + 0.0488556i \(0.984443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(168\) 0 0
\(169\) −12.3637 + 4.01722i −0.951057 + 0.309017i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3.84169 3.84169i 0.288759 0.288759i
\(178\) 0 0
\(179\) 19.9722 + 6.48936i 1.49279 + 0.485037i 0.937906 0.346890i \(-0.112762\pi\)
0.554885 + 0.831927i \(0.312762\pi\)
\(180\) 1.22789 + 0.705201i 0.0915216 + 0.0525626i
\(181\) −8.04962 + 5.84839i −0.598323 + 0.434707i −0.845283 0.534318i \(-0.820568\pi\)
0.246960 + 0.969026i \(0.420568\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −16.8184 + 20.8659i −1.23651 + 1.53409i
\(186\) 0 0
\(187\) 0 0
\(188\) 5.36675 + 5.36675i 0.391411 + 0.391411i
\(189\) 0 0
\(190\) 0 0
\(191\) −7.17425 22.0801i −0.519111 1.59766i −0.775676 0.631132i \(-0.782591\pi\)
0.256565 0.966527i \(-0.417409\pi\)
\(192\) 2.05004 12.9435i 0.147949 0.934114i
\(193\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 11.3262 + 8.22899i 0.809017 + 0.587785i
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 19.8997i 1.41066i −0.708881 0.705328i \(-0.750800\pi\)
0.708881 0.705328i \(-0.249200\pi\)
\(200\) 0 0
\(201\) 1.09176 3.36008i 0.0770066 0.237002i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −2.72359 + 0.431374i −0.189303 + 0.0299826i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(212\) 12.3699 + 24.2772i 0.849565 + 1.66737i
\(213\) 2.23105 4.37868i 0.152869 0.300022i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −19.4364 + 9.90334i −1.30156 + 0.663177i −0.960870 0.277000i \(-0.910660\pi\)
−0.340687 + 0.940177i \(0.610660\pi\)
\(224\) 0 0
\(225\) 1.36741 0.797795i 0.0911605 0.0531863i
\(226\) 0 0
\(227\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(228\) 0 0
\(229\) 17.5452 24.1489i 1.15942 1.59580i 0.446055 0.895005i \(-0.352828\pi\)
0.713362 0.700796i \(-0.247172\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(234\) 0 0
\(235\) 8.19142 2.21488i 0.534349 0.144483i
\(236\) 5.36641 3.89893i 0.349324 0.253798i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(240\) −11.4074 9.19462i −0.736345 0.593510i
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) −2.31662 2.31662i −0.148612 0.148612i
\(244\) 0 0
\(245\) 14.2847 6.39897i 0.912617 0.408815i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −21.8435 15.8702i −1.37875 1.00172i −0.996996 0.0774530i \(-0.975321\pi\)
−0.381751 0.924265i \(-0.624679\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 4.94427 15.2169i 0.309017 0.951057i
\(257\) −5.37610 2.73926i −0.335352 0.170870i 0.278203 0.960522i \(-0.410261\pi\)
−0.613555 + 0.789652i \(0.710261\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 30.4248 + 1.52506i 1.86898 + 0.0936839i
\(266\) 0 0
\(267\) −6.69314 13.1360i −0.409614 0.803912i
\(268\) 1.95830 3.84338i 0.119622 0.234772i
\(269\) −7.79785 10.7328i −0.475443 0.654392i 0.502178 0.864764i \(-0.332532\pi\)
−0.977621 + 0.210373i \(0.932532\pi\)
\(270\) 0 0
\(271\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 28.5330 1.71748
\(277\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(278\) 0 0
\(279\) 2.99619 0.973520i 0.179377 0.0582831i
\(280\) 0 0
\(281\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(282\) 0 0
\(283\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(284\) 3.52671 4.85410i 0.209272 0.288038i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.1680 5.25329i −0.951057 0.309017i
\(290\) 0 0
\(291\) 25.2546 18.3485i 1.48045 1.07561i
\(292\) 0 0
\(293\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(294\) 0 0
\(295\) −0.791990 7.37379i −0.0461114 0.429319i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −15.2661 + 5.93999i −0.881389 + 0.342945i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 27.6834i 1.57485i
\(310\) 0 0
\(311\) 3.70820 11.4127i 0.210273 0.647154i −0.789183 0.614159i \(-0.789495\pi\)
0.999456 0.0329949i \(-0.0105045\pi\)
\(312\) 0 0
\(313\) 7.57739 + 1.20014i 0.428299 + 0.0678360i 0.366863 0.930275i \(-0.380432\pi\)
0.0614365 + 0.998111i \(0.480432\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.64249 0.418529i 0.148417 0.0235069i −0.0817838 0.996650i \(-0.526062\pi\)
0.230201 + 0.973143i \(0.426062\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −12.0000 13.2665i −0.670820 0.741620i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 9.34564 + 12.8632i 0.519202 + 0.714620i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 9.94987 0.546895 0.273447 0.961887i \(-0.411836\pi\)
0.273447 + 0.961887i \(0.411836\pi\)
\(332\) 0 0
\(333\) 3.38125 1.72283i 0.185291 0.0944107i
\(334\) 0 0
\(335\) −2.63581 4.03864i −0.144010 0.220655i
\(336\) 0 0
\(337\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(338\) 0 0
\(339\) −12.0395 + 16.5710i −0.653898 + 0.900013i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 15.8875 27.6632i 0.855355 1.48934i
\(346\) 0 0
\(347\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 22.7414 + 22.7414i 1.21040 + 1.21040i 0.970894 + 0.239511i \(0.0769871\pi\)
0.239511 + 0.970894i \(0.423013\pi\)
\(354\) 0 0
\(355\) −2.74241 6.12202i −0.145552 0.324923i
\(356\) −5.56231 17.1190i −0.294802 0.907306i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(360\) 0 0
\(361\) 15.3713 + 11.1679i 0.809017 + 0.587785i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −29.5801 15.0718i −1.54407 0.786744i −0.545395 0.838179i \(-0.683620\pi\)
−0.998676 + 0.0514358i \(0.983620\pi\)
\(368\) 34.4078 + 5.44966i 1.79363 + 0.284083i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −32.1965 + 5.09942i −1.66931 + 0.264393i
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 0 0
\(375\) −2.74144 + 18.1082i −0.141567 + 0.935103i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −17.5452 24.1489i −0.901235 1.24044i −0.970073 0.242815i \(-0.921929\pi\)
0.0688378 0.997628i \(-0.478071\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.68089 29.5540i −0.239182 1.51014i −0.756301 0.654224i \(-0.772995\pi\)
0.517119 0.855914i \(-0.327005\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 33.9588 17.3029i 1.72400 0.878421i
\(389\) 34.6973 11.2738i 1.75922 0.571606i 0.762102 0.647456i \(-0.224167\pi\)
0.997119 + 0.0758507i \(0.0241672\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 18.8997 18.8997i 0.948551 0.948551i −0.0501886 0.998740i \(-0.515982\pi\)
0.998740 + 0.0501886i \(0.0159822\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −19.5438 + 4.24725i −0.977191 + 0.212362i
\(401\) −21.4656 + 15.5957i −1.07194 + 0.778812i −0.976261 0.216600i \(-0.930503\pi\)
−0.0956827 + 0.995412i \(0.530503\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 17.6748 1.89838i 0.878268 0.0943313i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(410\) 0 0
\(411\) 9.38384 + 28.8805i 0.462871 + 1.42457i
\(412\) −5.28738 + 33.3832i −0.260491 + 1.64467i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000i 1.17248i −0.810139 0.586238i \(-0.800608\pi\)
0.810139 0.586238i \(-0.199392\pi\)
\(420\) 0 0
\(421\) −12.2987 + 37.8516i −0.599403 + 1.84477i −0.0679432 + 0.997689i \(0.521644\pi\)
−0.531460 + 0.847084i \(0.678356\pi\)
\(422\) 0 0
\(423\) −1.18676 0.187964i −0.0577020 0.00913910i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(432\) 9.86606 + 19.3632i 0.474681 + 0.931614i
\(433\) 0.272746 0.535294i 0.0131073 0.0257246i −0.884360 0.466805i \(-0.845405\pi\)
0.897467 + 0.441081i \(0.145405\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −2.21637 −0.105542
\(442\) 0 0
\(443\) 9.75478 4.97031i 0.463464 0.236146i −0.206636 0.978418i \(-0.566252\pi\)
0.670099 + 0.742271i \(0.266252\pi\)
\(444\) −37.3447 + 12.1340i −1.77230 + 0.575855i
\(445\) −19.6943 4.13933i −0.933600 0.196223i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −22.9236 + 31.5517i −1.08183 + 1.48902i −0.224346 + 0.974510i \(0.572024\pi\)
−0.857487 + 0.514505i \(0.827976\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −17.6834 + 17.6834i −0.831756 + 0.831756i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 24.4422 30.3245i 1.13962 1.41388i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −30.4248 30.4248i −1.41396 1.41396i −0.720346 0.693615i \(-0.756017\pi\)
−0.693615 0.720346i \(-0.743983\pi\)
\(464\) 0 0
\(465\) −12.9834 + 34.0544i −0.602091 + 1.57923i
\(466\) 0 0
\(467\) 4.43748 28.0171i 0.205342 1.29648i −0.642523 0.766267i \(-0.722112\pi\)
0.847865 0.530212i \(-0.177888\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −12.2292 8.88503i −0.563492 0.409401i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −3.84338 1.95830i −0.175976 0.0896645i
\(478\) 0 0
\(479\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.13325 42.5581i 0.0968659 1.93246i
\(486\) 0 0
\(487\) −10.6097 20.8228i −0.480773 0.943571i −0.996238 0.0866600i \(-0.972381\pi\)
0.515465 0.856911i \(-0.327619\pi\)
\(488\) 0 0
\(489\) −2.65510 3.65443i −0.120068 0.165259i
\(490\) 0 0
\(491\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −39.7995 −1.78705
\(497\) 0 0
\(498\) 0 0
\(499\) 18.9258 6.14936i 0.847235 0.275283i 0.146947 0.989144i \(-0.453055\pi\)
0.700287 + 0.713861i \(0.253055\pi\)
\(500\) −6.76445 + 21.3130i −0.302516 + 0.953144i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −15.0581 + 15.0581i −0.668752 + 0.668752i
\(508\) 0 0
\(509\) −3.15430 1.02489i −0.139812 0.0454276i 0.238275 0.971198i \(-0.423418\pi\)
−0.378087 + 0.925770i \(0.623418\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 29.4215 + 23.7144i 1.29647 + 1.04498i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.3236 + 41.0059i 0.583718 + 1.79650i 0.604358 + 0.796713i \(0.293430\pi\)
−0.0206400 + 0.999787i \(0.506570\pi\)
\(522\) 0 0
\(523\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 52.8496i 2.29781i
\(530\) 0 0
\(531\) −0.324507 + 0.998729i −0.0140824 + 0.0433411i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 33.9766 5.38136i 1.46620 0.232223i
\(538\) 0 0
\(539\) 0 0
\(540\) 24.2665 + 1.21637i 1.04426 + 0.0523444i
\(541\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(542\) 0 0
\(543\) −7.39955 + 14.5224i −0.317545 + 0.623217i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(548\) 5.79989 + 36.6191i 0.247759 + 1.56429i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −9.02982 + 42.9626i −0.383295 + 1.82366i
\(556\) 0 0
\(557\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(564\) 11.8242 + 3.84193i 0.497891 + 0.161774i
\(565\) 7.29800 + 26.9906i 0.307029 + 1.13550i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −26.8918 26.8918i −1.12342 1.12342i
\(574\) 0 0
\(575\) −15.7903 40.5821i −0.658503 1.69239i
\(576\) 0.782740 + 2.40902i 0.0326141 + 0.100376i
\(577\) 6.29956 39.7739i 0.262254 1.65581i −0.407486 0.913212i \(-0.633594\pi\)
0.669740 0.742596i \(-0.266406\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 34.4210 + 17.5384i 1.42070 + 0.723885i 0.984405 0.175916i \(-0.0562887\pi\)
0.436300 + 0.899801i \(0.356289\pi\)
\(588\) 22.6511 + 3.58758i 0.934114 + 0.147949i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −47.3512 + 7.49970i −1.94612 + 0.308236i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −14.7991 29.0449i −0.605686 1.18873i
\(598\) 0 0
\(599\) −21.1603 29.1246i −0.864585 1.19000i −0.980457 0.196735i \(-0.936966\pi\)
0.115872 0.993264i \(-0.463034\pi\)
\(600\) 0 0
\(601\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(602\) 0 0
\(603\) 0.106827 + 0.674478i 0.00435032 + 0.0274669i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −34.2665 + 34.2665i −1.37952 + 1.37952i −0.534089 + 0.845428i \(0.679345\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) 0 0
\(619\) 0.951057 + 0.309017i 0.0382262 + 0.0124204i 0.328068 0.944654i \(-0.393603\pi\)
−0.289841 + 0.957075i \(0.593603\pi\)
\(620\) −22.1608 + 38.5862i −0.890000 + 1.54966i
\(621\) −38.2800 + 27.8120i −1.53612 + 1.11606i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 16.8967 + 18.4255i 0.675869 + 0.737022i
\(626\) 0 0
\(627\) 0 0
\(628\) −13.0501 13.0501i −0.520757 0.520757i
\(629\) 0 0
\(630\) 0 0
\(631\) 2.16312 + 6.65740i 0.0861124 + 0.265027i 0.984836 0.173489i \(-0.0555042\pi\)
−0.898723 + 0.438516i \(0.855504\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 36.1091 + 26.2348i 1.43182 + 1.04028i
\(637\) 0 0
\(638\) 0 0
\(639\) 0.949874i 0.0375764i
\(640\) 0 0
\(641\) −7.17425 + 22.0801i −0.283366 + 0.872111i 0.703518 + 0.710678i \(0.251612\pi\)
−0.986884 + 0.161433i \(0.948388\pi\)
\(642\) 0 0
\(643\) 49.4815 + 7.83709i 1.95136 + 0.309065i 1.00000 0.000979141i \(0.000311670\pi\)
0.951359 + 0.308086i \(0.0996883\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 48.9692 7.75596i 1.92518 0.304918i 0.927546 0.373709i \(-0.121914\pi\)
0.997631 + 0.0687910i \(0.0219142\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −2.50379 4.91397i −0.0980561 0.192446i
\(653\) 15.3073 30.0423i 0.599021 1.17565i −0.370084 0.928998i \(-0.620671\pi\)
0.969105 0.246647i \(-0.0793288\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −13.0000 −0.505641 −0.252821 0.967513i \(-0.581358\pi\)
−0.252821 + 0.967513i \(0.581358\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −21.0036 + 28.9090i −0.812047 + 1.11769i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(674\) 0 0
\(675\) 14.6912 22.8495i 0.565463 0.879476i
\(676\) −21.0344 + 15.2824i −0.809017 + 0.587785i
\(677\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.2164 11.2164i −0.429183 0.429183i 0.459167 0.888350i \(-0.348148\pi\)
−0.888350 + 0.459167i \(0.848148\pi\)
\(684\) 0 0
\(685\) 38.7322 + 14.7668i 1.47988 + 0.564212i
\(686\) 0 0
\(687\) 7.64913 48.2947i 0.291832 1.84256i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −13.7533 9.99235i −0.523200 0.380127i 0.294608 0.955618i \(-0.404811\pi\)
−0.817808 + 0.575491i \(0.804811\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 10.3087 9.32456i 0.388248 0.351183i
\(706\) 0 0
\(707\) 0 0
\(708\) 4.93303 9.68162i 0.185395 0.363857i
\(709\) 11.1679 + 15.3713i 0.419420 + 0.577282i 0.965484 0.260461i \(-0.0838746\pi\)
−0.546064 + 0.837743i \(0.683875\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −13.5558 85.5883i −0.507671 3.20531i
\(714\) 0 0
\(715\) 0 0
\(716\) 42.0000 1.56961
\(717\) 0 0
\(718\) 0 0
\(719\) −48.5039 + 15.7599i −1.80889 + 0.587744i −1.00000 0.000216702i \(-0.999931\pi\)
−0.808890 + 0.587961i \(0.799931\pi\)
\(720\) 2.77143 + 0.582495i 0.103285 + 0.0217083i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) −11.6968 + 16.0992i −0.434707 + 0.598323i
\(725\) 0 0
\(726\) 0 0
\(727\) 21.5251 21.5251i 0.798320 0.798320i −0.184510 0.982831i \(-0.559070\pi\)
0.982831 + 0.184510i \(0.0590699\pi\)
\(728\) 0 0
\(729\) −27.7864 9.02836i −1.02913 0.334384i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(734\) 0 0
\(735\) 16.0906 19.9630i 0.593510 0.736345i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(740\) −19.0946 + 50.0837i −0.701933 + 1.84111i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −7.10739 + 21.8743i −0.259352 + 0.798205i 0.733588 + 0.679594i \(0.237844\pi\)
−0.992941 + 0.118611i \(0.962156\pi\)
\(752\) 13.5250 + 6.89133i 0.493206 + 0.251301i
\(753\) −43.6842 6.91890i −1.59194 0.252139i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −54.3353 + 8.60586i −1.97485 + 0.312785i −0.983807 + 0.179232i \(0.942639\pi\)
−0.991042 + 0.133554i \(0.957361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −27.2925 37.5649i −0.987407 1.35905i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −4.10009 25.8869i −0.147949 0.934114i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −9.88388 −0.355959
\(772\) 0 0
\(773\) 25.6636 13.0763i 0.923056 0.470320i 0.0731890 0.997318i \(-0.476682\pi\)
0.849867 + 0.526998i \(0.176682\pi\)
\(774\) 0 0
\(775\) 25.0706 + 42.9705i 0.900561 + 1.54355i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 26.6296 + 8.65248i 0.951057 + 0.309017i
\(785\) −19.9188 + 5.38584i −0.710931 + 0.192229i
\(786\) 0 0
\(787\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 45.5410 20.4005i 1.61517 0.723530i
\(796\) −12.2987 37.8516i −0.435917 1.34161i
\(797\) −6.56866 + 41.4729i −0.232674 + 1.46905i 0.543970 + 0.839105i \(0.316921\pi\)
−0.776644 + 0.629940i \(0.783079\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 2.30539 + 1.67497i 0.0814571 + 0.0591820i
\(802\) 0 0
\(803\) 0 0
\(804\) 7.06600i 0.249198i
\(805\) 0 0
\(806\) 0 0
\(807\) −19.3632 9.86606i −0.681618 0.347302i
\(808\) 0 0
\(809\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(810\) 0 0
\(811\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.15831 0.308689i −0.215716 0.0108129i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(822\) 0 0
\(823\) −2.11834 13.3746i −0.0738405 0.466211i −0.996707 0.0810902i \(-0.974160\pi\)
0.922866 0.385121i \(-0.125840\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(828\) −4.91397 + 2.50379i −0.170772 + 0.0870128i
\(829\) 27.5806 8.96149i 0.957915 0.311246i 0.211987 0.977272i \(-0.432006\pi\)
0.745928 + 0.666027i \(0.232006\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 38.2243 38.2243i 1.32123 1.32123i
\(838\) 0 0
\(839\) −34.6973 11.2738i −1.19788 0.389216i −0.358901 0.933376i \(-0.616849\pi\)
−0.838982 + 0.544160i \(0.816849\pi\)
\(840\) 0 0
\(841\) 23.4615 17.0458i 0.809017 0.587785i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.10432 + 28.9027i 0.106792 + 0.994281i
\(846\) 0 0
\(847\) 0 0
\(848\) 38.5330 + 38.5330i 1.32323 + 1.32323i
\(849\) 0 0
\(850\) 0 0
\(851\) −32.2560 99.2738i −1.10572 3.40306i
\(852\) 1.53753 9.70760i 0.0526750 0.332577i
\(853\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 31.0000i 1.05771i 0.848713 + 0.528853i \(0.177378\pi\)
−0.848713 + 0.528853i \(0.822622\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 57.5711 + 9.11837i 1.95974 + 0.310393i 0.999514 + 0.0311832i \(0.00992752\pi\)
0.960230 + 0.279210i \(0.0900725\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −27.5049 + 4.35634i −0.934114 + 0.147949i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −2.73926 + 5.37610i −0.0927099 + 0.181954i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 57.0000 1.92038 0.960189 0.279350i \(-0.0901189\pi\)
0.960189 + 0.279350i \(0.0901189\pi\)
\(882\) 0 0
\(883\) −22.7445 + 11.5889i −0.765413 + 0.389997i −0.792686 0.609631i \(-0.791318\pi\)
0.0272727 + 0.999628i \(0.491318\pi\)
\(884\) 0 0
\(885\) −6.63971 10.1735i −0.223191 0.341978i
\(886\) 0 0
\(887\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −30.8496 + 30.8496i −1.03292 + 1.03292i
\(893\) 0 0
\(894\) 0 0
\(895\) 23.3861 40.7197i 0.781711 1.36111i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 2.10790 2.36260i 0.0702633 0.0787534i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 9.09556 + 20.3045i 0.302347 + 0.674943i
\(906\) 0 0
\(907\) 5.71876 36.1068i 0.189888 1.19891i −0.690030 0.723781i \(-0.742403\pi\)
0.879918 0.475126i \(-0.157597\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.36641 + 3.89893i 0.177797 + 0.129177i 0.673124 0.739529i \(-0.264952\pi\)
−0.495327 + 0.868706i \(0.664952\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 18.4481 56.7774i 0.609542 1.87598i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 37.9248 + 46.3997i 1.24696 + 1.52561i
\(926\) 0 0
\(927\) −2.42924 4.76765i −0.0797866 0.156590i
\(928\) 0 0
\(929\) 31.1914 + 42.9313i 1.02336 + 1.40853i 0.909823 + 0.414996i \(0.136217\pi\)
0.113534 + 0.993534i \(0.463783\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −3.07507 19.4152i −0.100673 0.635625i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(938\) 0 0
\(939\) 11.9522 3.88349i 0.390044 0.126733i
\(940\) 14.2121 9.27553i 0.463549 0.302534i
\(941\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 7.79785 10.7328i 0.253798 0.349324i
\(945\) 0 0
\(946\) 0 0
\(947\) −16.8918 + 16.8918i −0.548910 + 0.548910i −0.926126 0.377215i \(-0.876882\pi\)
0.377215 + 0.926126i \(0.376882\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 3.54562 2.57604i 0.114974 0.0835338i
\(952\) 0 0
\(953\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(954\) 0 0
\(955\) −51.6165 + 5.54393i −1.67027 + 0.179397i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −27.3808 10.4390i −0.883710 0.336919i
\(961\) 21.0132 + 64.6718i 0.677844 + 2.08619i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 13.3236 41.0059i 0.427575 1.31594i −0.472932 0.881099i \(-0.656804\pi\)
0.900507 0.434842i \(-0.143196\pi\)
\(972\) −5.83824 2.97473i −0.187261 0.0954145i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −20.5209 + 3.25018i −0.656520 + 0.103983i −0.475802 0.879552i \(-0.657842\pi\)
−0.180718 + 0.983535i \(0.557842\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 23.2164 21.0000i 0.741620 0.670820i
\(981\) 0 0
\(982\) 0 0
\(983\) 4.66028 9.14632i 0.148640 0.291722i −0.804666 0.593727i \(-0.797656\pi\)
0.953306 + 0.302005i \(0.0976558\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 59.6992 1.89641 0.948205 0.317660i \(-0.102897\pi\)
0.948205 + 0.317660i \(0.102897\pi\)
\(992\) 0 0
\(993\) 14.5224 7.39955i 0.460855 0.234817i
\(994\) 0 0
\(995\) −43.5458 9.15239i −1.38049 0.290150i
\(996\) 0 0
\(997\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(998\) 0 0
\(999\) 38.2743 52.6800i 1.21095 1.66672i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.m.a.403.2 16
5.2 odd 4 inner 605.2.m.a.282.1 16
11.2 odd 10 inner 605.2.m.a.578.1 16
11.3 even 5 inner 605.2.m.a.118.1 16
11.4 even 5 inner 605.2.m.a.233.1 16
11.5 even 5 55.2.e.b.43.2 yes 4
11.6 odd 10 55.2.e.b.43.2 yes 4
11.7 odd 10 inner 605.2.m.a.233.1 16
11.8 odd 10 inner 605.2.m.a.118.1 16
11.9 even 5 inner 605.2.m.a.578.1 16
11.10 odd 2 CM 605.2.m.a.403.2 16
33.5 odd 10 495.2.k.a.208.2 4
33.17 even 10 495.2.k.a.208.2 4
44.27 odd 10 880.2.bd.d.593.1 4
44.39 even 10 880.2.bd.d.593.1 4
55.2 even 20 inner 605.2.m.a.457.1 16
55.7 even 20 inner 605.2.m.a.112.1 16
55.17 even 20 55.2.e.b.32.2 4
55.27 odd 20 55.2.e.b.32.2 4
55.28 even 20 275.2.e.a.32.1 4
55.32 even 4 inner 605.2.m.a.282.1 16
55.37 odd 20 inner 605.2.m.a.112.1 16
55.38 odd 20 275.2.e.a.32.1 4
55.39 odd 10 275.2.e.a.43.1 4
55.42 odd 20 inner 605.2.m.a.457.1 16
55.47 odd 20 inner 605.2.m.a.602.2 16
55.49 even 10 275.2.e.a.43.1 4
55.52 even 20 inner 605.2.m.a.602.2 16
165.17 odd 20 495.2.k.a.307.2 4
165.137 even 20 495.2.k.a.307.2 4
220.27 even 20 880.2.bd.d.417.1 4
220.127 odd 20 880.2.bd.d.417.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.e.b.32.2 4 55.17 even 20
55.2.e.b.32.2 4 55.27 odd 20
55.2.e.b.43.2 yes 4 11.5 even 5
55.2.e.b.43.2 yes 4 11.6 odd 10
275.2.e.a.32.1 4 55.28 even 20
275.2.e.a.32.1 4 55.38 odd 20
275.2.e.a.43.1 4 55.39 odd 10
275.2.e.a.43.1 4 55.49 even 10
495.2.k.a.208.2 4 33.5 odd 10
495.2.k.a.208.2 4 33.17 even 10
495.2.k.a.307.2 4 165.17 odd 20
495.2.k.a.307.2 4 165.137 even 20
605.2.m.a.112.1 16 55.7 even 20 inner
605.2.m.a.112.1 16 55.37 odd 20 inner
605.2.m.a.118.1 16 11.3 even 5 inner
605.2.m.a.118.1 16 11.8 odd 10 inner
605.2.m.a.233.1 16 11.4 even 5 inner
605.2.m.a.233.1 16 11.7 odd 10 inner
605.2.m.a.282.1 16 5.2 odd 4 inner
605.2.m.a.282.1 16 55.32 even 4 inner
605.2.m.a.403.2 16 1.1 even 1 trivial
605.2.m.a.403.2 16 11.10 odd 2 CM
605.2.m.a.457.1 16 55.2 even 20 inner
605.2.m.a.457.1 16 55.42 odd 20 inner
605.2.m.a.578.1 16 11.2 odd 10 inner
605.2.m.a.578.1 16 11.9 even 5 inner
605.2.m.a.602.2 16 55.47 odd 20 inner
605.2.m.a.602.2 16 55.52 even 20 inner
880.2.bd.d.417.1 4 220.27 even 20
880.2.bd.d.417.1 4 220.127 odd 20
880.2.bd.d.593.1 4 44.27 odd 10
880.2.bd.d.593.1 4 44.39 even 10