Properties

Label 605.2.m.a.233.2
Level $605$
Weight $2$
Character 605.233
Analytic conductor $4.831$
Analytic rank $0$
Dimension $16$
CM discriminant -11
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(112,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.112");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.m (of order \(20\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{20})\)
Coefficient field: 16.0.3429742096000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 5x^{14} + 16x^{12} + 35x^{10} + 31x^{8} + 315x^{6} + 1296x^{4} + 3645x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{U}(1)[D_{20}]$

Embedding invariants

Embedding label 233.2
Root \(1.04771 - 1.37924i\) of defining polynomial
Character \(\chi\) \(=\) 605.233
Dual form 605.2.m.a.457.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.01474 + 0.477487i) q^{3} +(-1.17557 + 1.61803i) q^{4} +(-0.914138 + 2.04067i) q^{5} +(6.00747 + 1.95194i) q^{9} +(-4.31662 + 4.31662i) q^{12} +(-3.73028 + 5.71560i) q^{15} +(-1.23607 - 3.80423i) q^{16} +(-2.22725 - 3.87806i) q^{20} +(2.84169 + 2.84169i) q^{23} +(-3.32870 - 3.73092i) q^{25} +(9.02000 + 4.59592i) q^{27} +(-3.07468 + 9.46289i) q^{31} +(-10.2205 + 7.42564i) q^{36} +(-2.06020 + 0.326303i) q^{37} +(-9.47494 + 10.4749i) q^{45} +(2.06113 - 13.0135i) q^{47} +(-1.90995 - 12.0589i) q^{48} +(6.65740 - 2.16312i) q^{49} +(4.57816 - 2.33269i) q^{53} +(1.94946 - 2.68321i) q^{59} +(-4.86283 - 12.7548i) q^{60} +(7.60845 + 2.47214i) q^{64} +(11.4749 - 11.4749i) q^{67} +(7.21007 + 9.92381i) q^{69} +(-0.927051 - 2.85317i) q^{71} +(-8.25370 - 12.8371i) q^{75} +(8.89312 + 0.955176i) q^{80} +(9.66765 + 7.02396i) q^{81} -9.00000i q^{89} +(-7.93855 + 1.25734i) q^{92} +(-13.7878 + 27.0600i) q^{93} +(2.26323 + 4.44184i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{3} - 16 q^{12} + 8 q^{15} + 16 q^{16} - 12 q^{20} + 72 q^{23} - 2 q^{25} - 22 q^{27} - 24 q^{36} + 14 q^{37} - 72 q^{45} + 24 q^{47} - 8 q^{48} + 12 q^{53} + 28 q^{60} + 104 q^{67} + 12 q^{71}+ \cdots + 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(3\) 3.01474 + 0.477487i 1.74056 + 0.275677i 0.944254 0.329218i \(-0.106785\pi\)
0.796305 + 0.604896i \(0.206785\pi\)
\(4\) −1.17557 + 1.61803i −0.587785 + 0.809017i
\(5\) −0.914138 + 2.04067i −0.408815 + 0.912617i
\(6\) 0 0
\(7\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(8\) 0 0
\(9\) 6.00747 + 1.95194i 2.00249 + 0.650648i
\(10\) 0 0
\(11\) 0 0
\(12\) −4.31662 + 4.31662i −1.24610 + 1.24610i
\(13\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(14\) 0 0
\(15\) −3.73028 + 5.71560i −0.963154 + 1.47576i
\(16\) −1.23607 3.80423i −0.309017 0.951057i
\(17\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(18\) 0 0
\(19\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(20\) −2.22725 3.87806i −0.498027 0.867161i
\(21\) 0 0
\(22\) 0 0
\(23\) 2.84169 + 2.84169i 0.592533 + 0.592533i 0.938315 0.345782i \(-0.112386\pi\)
−0.345782 + 0.938315i \(0.612386\pi\)
\(24\) 0 0
\(25\) −3.32870 3.73092i −0.665741 0.746183i
\(26\) 0 0
\(27\) 9.02000 + 4.59592i 1.73590 + 0.884485i
\(28\) 0 0
\(29\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(30\) 0 0
\(31\) −3.07468 + 9.46289i −0.552229 + 1.69959i 0.150923 + 0.988546i \(0.451776\pi\)
−0.703151 + 0.711040i \(0.748224\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −10.2205 + 7.42564i −1.70342 + 1.23761i
\(37\) −2.06020 + 0.326303i −0.338694 + 0.0536439i −0.323465 0.946240i \(-0.604848\pi\)
−0.0152291 + 0.999884i \(0.504848\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) −9.47494 + 10.4749i −1.41244 + 1.56151i
\(46\) 0 0
\(47\) 2.06113 13.0135i 0.300647 1.89821i −0.123038 0.992402i \(-0.539264\pi\)
0.423685 0.905810i \(-0.360736\pi\)
\(48\) −1.90995 12.0589i −0.275677 1.74056i
\(49\) 6.65740 2.16312i 0.951057 0.309017i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.57816 2.33269i 0.628859 0.320420i −0.110353 0.993892i \(-0.535198\pi\)
0.739212 + 0.673473i \(0.235198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.94946 2.68321i 0.253798 0.349324i −0.663039 0.748585i \(-0.730733\pi\)
0.916837 + 0.399262i \(0.130733\pi\)
\(60\) −4.86283 12.7548i −0.627789 1.64664i
\(61\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 7.60845 + 2.47214i 0.951057 + 0.309017i
\(65\) 0 0
\(66\) 0 0
\(67\) 11.4749 11.4749i 1.40189 1.40189i 0.607785 0.794101i \(-0.292058\pi\)
0.794101 0.607785i \(-0.207942\pi\)
\(68\) 0 0
\(69\) 7.21007 + 9.92381i 0.867990 + 1.19469i
\(70\) 0 0
\(71\) −0.927051 2.85317i −0.110021 0.338609i 0.880855 0.473386i \(-0.156968\pi\)
−0.990876 + 0.134777i \(0.956968\pi\)
\(72\) 0 0
\(73\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(74\) 0 0
\(75\) −8.25370 12.8371i −0.953055 1.48231i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(80\) 8.89312 + 0.955176i 0.994281 + 0.106792i
\(81\) 9.66765 + 7.02396i 1.07418 + 0.780440i
\(82\) 0 0
\(83\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.00000i 0.953998i −0.878904 0.476999i \(-0.841725\pi\)
0.878904 0.476999i \(-0.158275\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7.93855 + 1.25734i −0.827651 + 0.131087i
\(93\) −13.7878 + 27.0600i −1.42972 + 2.80599i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.26323 + 4.44184i 0.229796 + 0.451000i 0.976897 0.213710i \(-0.0685548\pi\)
−0.747101 + 0.664711i \(0.768555\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 9.94987 1.00000i 0.994987 0.100000i
\(101\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(102\) 0 0
\(103\) 1.75876 + 11.1044i 0.173296 + 1.09415i 0.908985 + 0.416829i \(0.136859\pi\)
−0.735689 + 0.677320i \(0.763141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(108\) −18.0400 + 9.19184i −1.73590 + 0.884485i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −6.36675 −0.604305
\(112\) 0 0
\(113\) 16.9828 + 2.68980i 1.59760 + 0.253036i 0.890807 0.454382i \(-0.150140\pi\)
0.706796 + 0.707417i \(0.250140\pi\)
\(114\) 0 0
\(115\) −8.39665 + 3.20126i −0.782992 + 0.298519i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) −11.6968 16.0992i −1.05040 1.44575i
\(125\) 10.6565 3.38223i 0.953144 0.302516i
\(126\) 0 0
\(127\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −17.6243 + 14.2056i −1.51686 + 1.22262i
\(136\) 0 0
\(137\) −12.7371 6.48986i −1.08820 0.554466i −0.184588 0.982816i \(-0.559095\pi\)
−0.903613 + 0.428350i \(0.859095\pi\)
\(138\) 0 0
\(139\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(140\) 0 0
\(141\) 12.4275 38.2480i 1.04659 3.22107i
\(142\) 0 0
\(143\) 0 0
\(144\) 25.2665i 2.10554i
\(145\) 0 0
\(146\) 0 0
\(147\) 21.1031 3.34241i 1.74056 0.275677i
\(148\) 1.89394 3.71706i 0.155681 0.305540i
\(149\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(150\) 0 0
\(151\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16.5000 14.9248i −1.32531 1.19879i
\(156\) 0 0
\(157\) −3.64478 + 23.0122i −0.290885 + 1.83658i 0.218255 + 0.975892i \(0.429964\pi\)
−0.509140 + 0.860684i \(0.670036\pi\)
\(158\) 0 0
\(159\) 14.9158 4.84643i 1.18290 0.384347i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −22.6182 + 11.5245i −1.77159 + 0.902671i −0.836768 + 0.547558i \(0.815557\pi\)
−0.934824 + 0.355112i \(0.884443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(168\) 0 0
\(169\) 7.64121 10.5172i 0.587785 0.809017i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.15831 7.15831i 0.538052 0.538052i
\(178\) 0 0
\(179\) −12.3435 16.9894i −0.922596 1.26984i −0.962678 0.270648i \(-0.912762\pi\)
0.0400827 0.999196i \(-0.487238\pi\)
\(180\) −5.81035 27.6448i −0.433078 2.06052i
\(181\) −3.07468 9.46289i −0.228539 0.703371i −0.997913 0.0645725i \(-0.979432\pi\)
0.769374 0.638799i \(-0.220568\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.21743 4.50247i 0.0895069 0.331028i
\(186\) 0 0
\(187\) 0 0
\(188\) 18.6332 + 18.6332i 1.35897 + 1.35897i
\(189\) 0 0
\(190\) 0 0
\(191\) −18.7824 13.6462i −1.35905 0.987407i −0.998505 0.0546656i \(-0.982591\pi\)
−0.360545 0.932742i \(-0.617409\pi\)
\(192\) 21.7571 + 11.0858i 1.57018 + 0.800047i
\(193\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −4.32624 + 13.3148i −0.309017 + 0.951057i
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 19.8997i 1.41066i 0.708881 + 0.705328i \(0.249200\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) 40.0730 29.1148i 2.82653 2.05360i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 11.5245 + 22.6182i 0.801010 + 1.57207i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(212\) −1.60758 + 10.1499i −0.110409 + 0.697095i
\(213\) −1.43246 9.04421i −0.0981507 0.619699i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −20.1486 3.19123i −1.34925 0.213700i −0.560368 0.828244i \(-0.689340\pi\)
−0.788883 + 0.614544i \(0.789340\pi\)
\(224\) 0 0
\(225\) −12.7145 28.9108i −0.847636 1.92739i
\(226\) 0 0
\(227\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(228\) 0 0
\(229\) −28.3887 9.22404i −1.87598 0.609542i −0.989039 0.147652i \(-0.952828\pi\)
−0.886937 0.461890i \(-0.847172\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(234\) 0 0
\(235\) 24.6721 + 16.1022i 1.60943 + 1.05039i
\(236\) 2.04979 + 6.30860i 0.133430 + 0.410655i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(240\) 26.3543 + 7.12595i 1.70116 + 0.459978i
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 4.31662 + 4.31662i 0.276912 + 0.276912i
\(244\) 0 0
\(245\) −1.67156 + 15.5630i −0.106792 + 0.994281i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.34346 25.6785i 0.526634 1.62081i −0.234427 0.972134i \(-0.575321\pi\)
0.761061 0.648680i \(-0.224679\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −12.9443 + 9.40456i −0.809017 + 0.587785i
\(257\) −31.1019 + 4.92606i −1.94008 + 0.307279i −0.999480 0.0322308i \(-0.989739\pi\)
−0.940603 + 0.339510i \(0.889739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 0.575188 + 11.4749i 0.0353335 + 0.704900i
\(266\) 0 0
\(267\) 4.29738 27.1326i 0.262996 1.66049i
\(268\) 5.07724 + 32.0564i 0.310142 + 1.95816i
\(269\) 12.6172 4.09957i 0.769284 0.249955i 0.102025 0.994782i \(-0.467468\pi\)
0.667258 + 0.744826i \(0.267468\pi\)
\(270\) 0 0
\(271\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −24.5330 −1.47671
\(277\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(278\) 0 0
\(279\) −36.9421 + 50.8464i −2.21166 + 3.04410i
\(280\) 0 0
\(281\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(282\) 0 0
\(283\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(284\) 5.70634 + 1.85410i 0.338609 + 0.110021i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 9.99235 + 13.7533i 0.587785 + 0.809017i
\(290\) 0 0
\(291\) 4.70212 + 14.4716i 0.275643 + 0.848342i
\(292\) 0 0
\(293\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(294\) 0 0
\(295\) 3.69347 + 6.43104i 0.215042 + 0.374430i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 30.4737 + 1.73620i 1.75940 + 0.100240i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 34.3166i 1.95220i
\(310\) 0 0
\(311\) −9.70820 + 7.05342i −0.550502 + 0.399963i −0.827970 0.560772i \(-0.810505\pi\)
0.277469 + 0.960735i \(0.410505\pi\)
\(312\) 0 0
\(313\) −15.6817 + 30.7771i −0.886382 + 1.73962i −0.250004 + 0.968245i \(0.580432\pi\)
−0.636378 + 0.771377i \(0.719568\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.1204 + 31.6382i 0.905415 + 1.77698i 0.519652 + 0.854378i \(0.326062\pi\)
0.385763 + 0.922598i \(0.373938\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −12.0000 + 13.2665i −0.670820 + 0.741620i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −22.7300 + 7.38543i −1.26278 + 0.410302i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −9.94987 −0.546895 −0.273447 0.961887i \(-0.588164\pi\)
−0.273447 + 0.961887i \(0.588164\pi\)
\(332\) 0 0
\(333\) −13.0135 2.06113i −0.713134 0.112949i
\(334\) 0 0
\(335\) 12.9269 + 33.9063i 0.706274 + 1.85250i
\(336\) 0 0
\(337\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(338\) 0 0
\(339\) 49.9142 + 16.2181i 2.71097 + 0.880846i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −26.8423 + 5.64167i −1.44514 + 0.303737i
\(346\) 0 0
\(347\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.7414 13.7414i −0.731383 0.731383i 0.239511 0.970894i \(-0.423013\pi\)
−0.970894 + 0.239511i \(0.923013\pi\)
\(354\) 0 0
\(355\) 6.66984 + 0.716382i 0.353998 + 0.0380216i
\(356\) 14.5623 + 10.5801i 0.771801 + 0.560746i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(360\) 0 0
\(361\) −5.87132 + 18.0701i −0.309017 + 0.951057i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 18.8918 2.99217i 0.986146 0.156190i 0.357526 0.933903i \(-0.383620\pi\)
0.628620 + 0.777713i \(0.283620\pi\)
\(368\) 7.29790 14.3229i 0.380429 0.746635i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −27.5755 54.1200i −1.42972 2.80599i
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 0 0
\(375\) 33.7414 5.10819i 1.74240 0.263786i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 28.3887 9.22404i 1.45823 0.473807i 0.530700 0.847560i \(-0.321929\pi\)
0.927528 + 0.373753i \(0.121929\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 22.4818 11.4551i 1.14877 0.585327i 0.227317 0.973821i \(-0.427005\pi\)
0.921451 + 0.388494i \(0.127005\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −9.84763 1.55971i −0.499938 0.0791824i
\(389\) 21.4441 29.5153i 1.08726 1.49648i 0.235988 0.971756i \(-0.424167\pi\)
0.851270 0.524727i \(-0.175833\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −20.8997 + 20.8997i −1.04893 + 1.04893i −0.0501886 + 0.998740i \(0.515982\pi\)
−0.998740 + 0.0501886i \(0.984018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −10.0787 + 17.2748i −0.503937 + 0.863740i
\(401\) −8.19915 25.2344i −0.409446 1.26014i −0.917125 0.398599i \(-0.869497\pi\)
0.507679 0.861546i \(-0.330503\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −23.1712 + 13.3077i −1.15139 + 0.661263i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(410\) 0 0
\(411\) −35.3000 25.6470i −1.74122 1.26507i
\(412\) −20.0349 10.2083i −0.987046 0.502925i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000i 1.17248i −0.810139 0.586238i \(-0.800608\pi\)
0.810139 0.586238i \(-0.199392\pi\)
\(420\) 0 0
\(421\) −32.1985 + 23.3936i −1.56926 + 1.14013i −0.641394 + 0.767211i \(0.721644\pi\)
−0.927863 + 0.372921i \(0.878356\pi\)
\(422\) 0 0
\(423\) 37.7838 74.1549i 1.83711 3.60553i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(432\) 6.33458 39.9950i 0.304773 1.92426i
\(433\) −6.50970 41.1006i −0.312836 1.97517i −0.170676 0.985327i \(-0.554595\pi\)
−0.142160 0.989844i \(-0.545405\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 44.2164 2.10554
\(442\) 0 0
\(443\) 40.1461 + 6.35852i 1.90740 + 0.302102i 0.994385 0.105825i \(-0.0337485\pi\)
0.913014 + 0.407928i \(0.133748\pi\)
\(444\) 7.48456 10.3016i 0.355202 0.488893i
\(445\) 18.3661 + 8.22724i 0.870635 + 0.390009i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −37.0912 12.0517i −1.75044 0.568753i −0.754302 0.656528i \(-0.772024\pi\)
−0.996140 + 0.0877747i \(0.972024\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −24.3166 + 24.3166i −1.14376 + 1.14376i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 4.69110 17.3494i 0.218724 0.808919i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −0.575188 0.575188i −0.0267313 0.0267313i 0.693615 0.720346i \(-0.256017\pi\)
−0.720346 + 0.693615i \(0.756017\pi\)
\(464\) 0 0
\(465\) −42.6167 52.8729i −1.97630 2.45192i
\(466\) 0 0
\(467\) 29.0549 + 14.8042i 1.34450 + 0.685056i 0.970212 0.242257i \(-0.0778878\pi\)
0.374286 + 0.927313i \(0.377888\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −21.9761 + 67.6355i −1.01260 + 3.11648i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 32.0564 5.07724i 1.46776 0.232471i
\(478\) 0 0
\(479\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.1332 + 0.558061i −0.505535 + 0.0253403i
\(486\) 0 0
\(487\) −5.85710 + 36.9803i −0.265410 + 1.67574i 0.390273 + 0.920699i \(0.372381\pi\)
−0.655683 + 0.755036i \(0.727619\pi\)
\(488\) 0 0
\(489\) −73.6906 + 23.9435i −3.33240 + 1.08276i
\(490\) 0 0
\(491\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 39.7995 1.78705
\(497\) 0 0
\(498\) 0 0
\(499\) 11.6968 16.0992i 0.523620 0.720701i −0.462522 0.886608i \(-0.653055\pi\)
0.986141 + 0.165907i \(0.0530552\pi\)
\(500\) −7.05488 + 21.2186i −0.315504 + 0.948924i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 28.0581 28.0581i 1.24610 1.24610i
\(508\) 0 0
\(509\) −1.94946 2.68321i −0.0864084 0.118931i 0.763624 0.645661i \(-0.223418\pi\)
−0.850033 + 0.526730i \(0.823418\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −24.2682 6.56189i −1.06939 0.289151i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 34.8817 + 25.3430i 1.52819 + 1.11030i 0.957232 + 0.289321i \(0.0934296\pi\)
0.570962 + 0.820977i \(0.306570\pi\)
\(522\) 0 0
\(523\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 6.84962i 0.297810i
\(530\) 0 0
\(531\) 16.9488 12.3140i 0.735515 0.534383i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −29.1002 57.1123i −1.25576 2.46458i
\(538\) 0 0
\(539\) 0 0
\(540\) −2.26650 45.2164i −0.0975346 1.94580i
\(541\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(542\) 0 0
\(543\) −4.75094 29.9962i −0.203882 1.28726i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(548\) 25.4741 12.9797i 1.08820 0.554466i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 5.82009 12.9925i 0.247049 0.551499i
\(556\) 0 0
\(557\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(564\) 47.2772 + 65.0715i 1.99073 + 2.74000i
\(565\) −21.0136 + 32.1974i −0.884049 + 1.35456i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −50.1082 50.1082i −2.09330 2.09330i
\(574\) 0 0
\(575\) 1.14296 20.0612i 0.0476649 0.836611i
\(576\) 40.8821 + 29.7026i 1.70342 + 1.23761i
\(577\) −23.3429 11.8938i −0.971779 0.495146i −0.105344 0.994436i \(-0.533594\pi\)
−0.866435 + 0.499290i \(0.833594\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −28.8906 + 4.57582i −1.19244 + 0.188864i −0.720938 0.693000i \(-0.756289\pi\)
−0.471504 + 0.881864i \(0.656289\pi\)
\(588\) −19.4001 + 38.0749i −0.800047 + 1.57018i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 3.78787 + 7.43412i 0.155681 + 0.305540i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −9.50188 + 59.9925i −0.388886 + 2.45533i
\(598\) 0 0
\(599\) −34.2380 + 11.1246i −1.39893 + 0.454539i −0.908844 0.417136i \(-0.863034\pi\)
−0.490084 + 0.871675i \(0.663034\pi\)
\(600\) 0 0
\(601\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(602\) 0 0
\(603\) 91.3337 46.5369i 3.71940 1.89513i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7.73350 + 7.73350i −0.311339 + 0.311339i −0.845428 0.534089i \(-0.820655\pi\)
0.534089 + 0.845428i \(0.320655\pi\)
\(618\) 0 0
\(619\) −0.587785 0.809017i −0.0236251 0.0325171i 0.797041 0.603925i \(-0.206397\pi\)
−0.820666 + 0.571408i \(0.806397\pi\)
\(620\) 43.5458 9.15239i 1.74884 0.367569i
\(621\) 12.5719 + 38.6922i 0.504491 + 1.55266i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −2.83947 + 24.8382i −0.113579 + 0.993529i
\(626\) 0 0
\(627\) 0 0
\(628\) −32.9499 32.9499i −1.31484 1.31484i
\(629\) 0 0
\(630\) 0 0
\(631\) −5.66312 4.11450i −0.225445 0.163796i 0.469329 0.883023i \(-0.344496\pi\)
−0.694774 + 0.719228i \(0.744496\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −9.69286 + 29.8316i −0.384347 + 1.18290i
\(637\) 0 0
\(638\) 0 0
\(639\) 18.9499i 0.749645i
\(640\) 0 0
\(641\) −18.7824 + 13.6462i −0.741862 + 0.538994i −0.893294 0.449474i \(-0.851612\pi\)
0.151432 + 0.988468i \(0.451612\pi\)
\(642\) 0 0
\(643\) 3.57949 7.02515i 0.141161 0.277045i −0.809592 0.586993i \(-0.800312\pi\)
0.950753 + 0.309948i \(0.100312\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.17359 10.1537i −0.203395 0.399185i 0.766666 0.642046i \(-0.221914\pi\)
−0.970061 + 0.242861i \(0.921914\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 7.94216 50.1448i 0.311039 1.96382i
\(653\) 6.00828 + 37.9348i 0.235122 + 1.48450i 0.769167 + 0.639047i \(0.220671\pi\)
−0.534045 + 0.845456i \(0.679329\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −13.0000 −0.505641 −0.252821 0.967513i \(-0.581358\pi\)
−0.252821 + 0.967513i \(0.581358\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −59.2190 19.2414i −2.28954 0.743916i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(674\) 0 0
\(675\) −12.8779 48.9513i −0.495671 1.88414i
\(676\) 8.03444 + 24.7275i 0.309017 + 0.951057i
\(677\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 35.2164 + 35.2164i 1.34752 + 1.34752i 0.888350 + 0.459167i \(0.151852\pi\)
0.459167 + 0.888350i \(0.348148\pi\)
\(684\) 0 0
\(685\) 24.8871 20.0596i 0.950888 0.766437i
\(686\) 0 0
\(687\) −81.1800 41.3633i −3.09721 1.57811i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 5.25329 16.1680i 0.199845 0.615058i −0.800041 0.599945i \(-0.795189\pi\)
0.999886 0.0151132i \(-0.00481087\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 66.6913 + 60.3246i 2.51174 + 2.27195i
\(706\) 0 0
\(707\) 0 0
\(708\) 3.16729 + 19.9975i 0.119034 + 0.751552i
\(709\) 18.0701 5.87132i 0.678636 0.220502i 0.0506378 0.998717i \(-0.483875\pi\)
0.627998 + 0.778215i \(0.283875\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −35.6279 + 18.1533i −1.33427 + 0.679847i
\(714\) 0 0
\(715\) 0 0
\(716\) 42.0000 1.56961
\(717\) 0 0
\(718\) 0 0
\(719\) 29.9770 41.2599i 1.11796 1.53873i 0.308811 0.951123i \(-0.400069\pi\)
0.809144 0.587610i \(-0.199931\pi\)
\(720\) 51.5607 + 23.0971i 1.92155 + 0.860777i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 18.9258 + 6.14936i 0.703371 + 0.228539i
\(725\) 0 0
\(726\) 0 0
\(727\) 31.4749 31.4749i 1.16734 1.16734i 0.184510 0.982831i \(-0.440930\pi\)
0.982831 0.184510i \(-0.0590699\pi\)
\(728\) 0 0
\(729\) −10.1195 13.9283i −0.374797 0.515864i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(734\) 0 0
\(735\) −12.4704 + 46.1201i −0.459978 + 1.70116i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(740\) 5.85399 + 7.26281i 0.215197 + 0.266986i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 18.6074 13.5191i 0.678993 0.493318i −0.194030 0.980996i \(-0.562156\pi\)
0.873024 + 0.487678i \(0.162156\pi\)
\(752\) −52.0539 + 8.24453i −1.89821 + 0.300647i
\(753\) 37.4145 73.4301i 1.36346 2.67594i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.577674 + 1.13375i 0.0209959 + 0.0412068i 0.901266 0.433266i \(-0.142639\pi\)
−0.880270 + 0.474473i \(0.842639\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 44.1602 14.3485i 1.59766 0.519111i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −43.5141 + 22.1715i −1.57018 + 0.800047i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −96.1161 −3.46154
\(772\) 0 0
\(773\) −46.9790 7.44074i −1.68972 0.267625i −0.763828 0.645420i \(-0.776682\pi\)
−0.925889 + 0.377795i \(0.876682\pi\)
\(774\) 0 0
\(775\) 45.5400 20.0278i 1.63584 0.719419i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −16.4580 22.6525i −0.587785 0.809017i
\(785\) −43.6286 28.4742i −1.55717 1.01629i
\(786\) 0 0
\(787\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −3.74509 + 34.8685i −0.132825 + 1.23666i
\(796\) −32.1985 23.3936i −1.14124 0.829163i
\(797\) −33.6330 17.1369i −1.19134 0.607019i −0.258048 0.966132i \(-0.583079\pi\)
−0.933294 + 0.359113i \(0.883079\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 17.5675 54.0672i 0.620717 1.91037i
\(802\) 0 0
\(803\) 0 0
\(804\) 99.0660i 3.49379i
\(805\) 0 0
\(806\) 0 0
\(807\) 39.9950 6.33458i 1.40789 0.222988i
\(808\) 0 0
\(809\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(810\) 0 0
\(811\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.84169 56.6913i −0.0995400 1.98581i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(822\) 0 0
\(823\) 49.6782 25.3123i 1.73167 0.882331i 0.758689 0.651453i \(-0.225840\pi\)
0.972983 0.230878i \(-0.0741598\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(828\) −50.1448 7.94216i −1.74265 0.276009i
\(829\) −17.0458 + 23.4615i −0.592024 + 0.814851i −0.994949 0.100382i \(-0.967994\pi\)
0.402925 + 0.915233i \(0.367994\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −71.2243 + 71.2243i −2.46187 + 2.46187i
\(838\) 0 0
\(839\) −21.4441 29.5153i −0.740332 1.01898i −0.998599 0.0529065i \(-0.983151\pi\)
0.258267 0.966074i \(-0.416849\pi\)
\(840\) 0 0
\(841\) −8.96149 27.5806i −0.309017 0.951057i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 14.4771 + 25.2074i 0.498027 + 0.867161i
\(846\) 0 0
\(847\) 0 0
\(848\) −14.5330 14.5330i −0.499065 0.499065i
\(849\) 0 0
\(850\) 0 0
\(851\) −6.78168 4.92718i −0.232473 0.168902i
\(852\) 16.3178 + 8.31433i 0.559038 + 0.284844i
\(853\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 31.0000i 1.05771i 0.848713 + 0.528853i \(0.177378\pi\)
−0.848713 + 0.528853i \(0.822622\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.34912 + 6.57301i −0.114005 + 0.223748i −0.940958 0.338524i \(-0.890072\pi\)
0.826953 + 0.562272i \(0.190072\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 23.5573 + 46.2337i 0.800047 + 1.57018i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 4.92606 + 31.1019i 0.166722 + 1.05264i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 57.0000 1.92038 0.960189 0.279350i \(-0.0901189\pi\)
0.960189 + 0.279350i \(0.0901189\pi\)
\(882\) 0 0
\(883\) 53.0085 + 8.39572i 1.78388 + 0.282538i 0.959130 0.282964i \(-0.0913178\pi\)
0.824747 + 0.565503i \(0.191318\pi\)
\(884\) 0 0
\(885\) 8.06410 + 21.1515i 0.271072 + 0.710999i
\(886\) 0 0
\(887\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 28.8496 28.8496i 0.965957 0.965957i
\(893\) 0 0
\(894\) 0 0
\(895\) 45.9534 9.65843i 1.53605 0.322846i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 61.7255 + 13.4141i 2.05752 + 0.447138i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 22.1214 + 2.37597i 0.735339 + 0.0789799i
\(906\) 0 0
\(907\) 42.6530 + 21.7328i 1.41627 + 0.721626i 0.983674 0.179962i \(-0.0575975\pi\)
0.432597 + 0.901588i \(0.357597\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.04979 6.30860i 0.0679125 0.209013i −0.911341 0.411652i \(-0.864952\pi\)
0.979253 + 0.202639i \(0.0649518\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 48.2977 35.0903i 1.59580 1.15942i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 8.07519 + 6.60025i 0.265511 + 0.217015i
\(926\) 0 0
\(927\) −11.1095 + 70.1423i −0.364882 + 2.30378i
\(928\) 0 0
\(929\) −50.4688 + 16.3983i −1.65583 + 0.538011i −0.979991 0.199042i \(-0.936217\pi\)
−0.675835 + 0.737053i \(0.736217\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −32.6356 + 16.6287i −1.06844 + 0.544398i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(938\) 0 0
\(939\) −61.9718 + 85.2969i −2.02237 + 2.78356i
\(940\) −55.0578 + 20.9910i −1.79579 + 0.684652i
\(941\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −12.6172 4.09957i −0.410655 0.133430i
\(945\) 0 0
\(946\) 0 0
\(947\) −40.1082 + 40.1082i −1.30334 + 1.30334i −0.377215 + 0.926126i \(0.623118\pi\)
−0.926126 + 0.377215i \(0.876882\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 33.4921 + 103.078i 1.08605 + 3.34253i
\(952\) 0 0
\(953\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(954\) 0 0
\(955\) 45.0173 25.8543i 1.45672 0.836625i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −42.5114 + 34.2651i −1.37205 + 1.10590i
\(961\) −55.0132 39.9694i −1.77462 1.28934i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 34.8817 25.3430i 1.11941 0.813296i 0.135287 0.990806i \(-0.456804\pi\)
0.984119 + 0.177510i \(0.0568043\pi\)
\(972\) −12.0589 + 1.90995i −0.386791 + 0.0612616i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 26.7675 + 52.5341i 0.856367 + 1.68072i 0.724311 + 0.689473i \(0.242158\pi\)
0.132056 + 0.991242i \(0.457842\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −23.2164 21.0000i −0.741620 0.670820i
\(981\) 0 0
\(982\) 0 0
\(983\) 9.67699 + 61.0981i 0.308648 + 1.94873i 0.316012 + 0.948755i \(0.397656\pi\)
−0.00736431 + 0.999973i \(0.502344\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −59.6992 −1.89641 −0.948205 0.317660i \(-0.897103\pi\)
−0.948205 + 0.317660i \(0.897103\pi\)
\(992\) 0 0
\(993\) −29.9962 4.75094i −0.951902 0.150766i
\(994\) 0 0
\(995\) −40.6089 18.1911i −1.28739 0.576697i
\(996\) 0 0
\(997\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(998\) 0 0
\(999\) −20.0826 6.52524i −0.635386 0.206449i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.m.a.233.2 16
5.2 odd 4 inner 605.2.m.a.112.2 16
11.2 odd 10 inner 605.2.m.a.118.2 16
11.3 even 5 inner 605.2.m.a.403.1 16
11.4 even 5 55.2.e.b.43.1 yes 4
11.5 even 5 inner 605.2.m.a.578.2 16
11.6 odd 10 inner 605.2.m.a.578.2 16
11.7 odd 10 55.2.e.b.43.1 yes 4
11.8 odd 10 inner 605.2.m.a.403.1 16
11.9 even 5 inner 605.2.m.a.118.2 16
11.10 odd 2 CM 605.2.m.a.233.2 16
33.26 odd 10 495.2.k.a.208.1 4
33.29 even 10 495.2.k.a.208.1 4
44.7 even 10 880.2.bd.d.593.2 4
44.15 odd 10 880.2.bd.d.593.2 4
55.2 even 20 inner 605.2.m.a.602.1 16
55.4 even 10 275.2.e.a.43.2 4
55.7 even 20 55.2.e.b.32.1 4
55.17 even 20 inner 605.2.m.a.457.2 16
55.18 even 20 275.2.e.a.32.2 4
55.27 odd 20 inner 605.2.m.a.457.2 16
55.29 odd 10 275.2.e.a.43.2 4
55.32 even 4 inner 605.2.m.a.112.2 16
55.37 odd 20 55.2.e.b.32.1 4
55.42 odd 20 inner 605.2.m.a.602.1 16
55.47 odd 20 inner 605.2.m.a.282.2 16
55.48 odd 20 275.2.e.a.32.2 4
55.52 even 20 inner 605.2.m.a.282.2 16
165.62 odd 20 495.2.k.a.307.1 4
165.92 even 20 495.2.k.a.307.1 4
220.7 odd 20 880.2.bd.d.417.2 4
220.147 even 20 880.2.bd.d.417.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.e.b.32.1 4 55.7 even 20
55.2.e.b.32.1 4 55.37 odd 20
55.2.e.b.43.1 yes 4 11.4 even 5
55.2.e.b.43.1 yes 4 11.7 odd 10
275.2.e.a.32.2 4 55.18 even 20
275.2.e.a.32.2 4 55.48 odd 20
275.2.e.a.43.2 4 55.4 even 10
275.2.e.a.43.2 4 55.29 odd 10
495.2.k.a.208.1 4 33.26 odd 10
495.2.k.a.208.1 4 33.29 even 10
495.2.k.a.307.1 4 165.62 odd 20
495.2.k.a.307.1 4 165.92 even 20
605.2.m.a.112.2 16 5.2 odd 4 inner
605.2.m.a.112.2 16 55.32 even 4 inner
605.2.m.a.118.2 16 11.2 odd 10 inner
605.2.m.a.118.2 16 11.9 even 5 inner
605.2.m.a.233.2 16 1.1 even 1 trivial
605.2.m.a.233.2 16 11.10 odd 2 CM
605.2.m.a.282.2 16 55.47 odd 20 inner
605.2.m.a.282.2 16 55.52 even 20 inner
605.2.m.a.403.1 16 11.3 even 5 inner
605.2.m.a.403.1 16 11.8 odd 10 inner
605.2.m.a.457.2 16 55.17 even 20 inner
605.2.m.a.457.2 16 55.27 odd 20 inner
605.2.m.a.578.2 16 11.5 even 5 inner
605.2.m.a.578.2 16 11.6 odd 10 inner
605.2.m.a.602.1 16 55.2 even 20 inner
605.2.m.a.602.1 16 55.42 odd 20 inner
880.2.bd.d.417.2 4 220.7 odd 20
880.2.bd.d.417.2 4 220.147 even 20
880.2.bd.d.593.2 4 44.7 even 10
880.2.bd.d.593.2 4 44.15 odd 10