Properties

Label 605.2.m.a.112.2
Level $605$
Weight $2$
Character 605.112
Analytic conductor $4.831$
Analytic rank $0$
Dimension $16$
CM discriminant -11
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(112,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.112");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.m (of order \(20\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{20})\)
Coefficient field: 16.0.3429742096000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 5x^{14} + 16x^{12} + 35x^{10} + 31x^{8} + 315x^{6} + 1296x^{4} + 3645x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{U}(1)[D_{20}]$

Embedding invariants

Embedding label 112.2
Root \(1.63550 - 0.570223i\) of defining polynomial
Character \(\chi\) \(=\) 605.112
Dual form 605.2.m.a.578.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.477487 - 3.01474i) q^{3} +(1.17557 - 1.61803i) q^{4} +(1.93903 + 1.11362i) q^{5} +(-6.00747 - 1.95194i) q^{9} +(-4.31662 - 4.31662i) q^{12} +(4.28314 - 5.31393i) q^{15} +(-1.23607 - 3.80423i) q^{16} +(4.08135 - 1.82828i) q^{20} +(2.84169 - 2.84169i) q^{23} +(2.51969 + 4.31870i) q^{25} +(-4.59592 + 9.02000i) q^{27} +(-3.07468 + 9.46289i) q^{31} +(-10.2205 + 7.42564i) q^{36} +(-0.326303 - 2.06020i) q^{37} +(-9.47494 - 10.4749i) q^{45} +(13.0135 + 2.06113i) q^{47} +(-12.0589 + 1.90995i) q^{48} +(-6.65740 + 2.16312i) q^{49} +(-2.33269 - 4.57816i) q^{53} +(-1.94946 + 2.68321i) q^{59} +(-3.56298 - 13.1772i) q^{60} +(-7.60845 - 2.47214i) q^{64} +(11.4749 + 11.4749i) q^{67} +(-7.21007 - 9.92381i) q^{69} +(-0.927051 - 2.85317i) q^{71} +(14.2229 - 5.53406i) q^{75} +(1.83970 - 8.75303i) q^{80} +(9.66765 + 7.02396i) q^{81} +9.00000i q^{89} +(-1.25734 - 7.93855i) q^{92} +(27.0600 + 13.7878i) q^{93} +(-4.44184 + 2.26323i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{3} - 16 q^{12} + 8 q^{15} + 16 q^{16} - 12 q^{20} + 72 q^{23} - 2 q^{25} - 22 q^{27} - 24 q^{36} + 14 q^{37} - 72 q^{45} + 24 q^{47} - 8 q^{48} + 12 q^{53} + 28 q^{60} + 104 q^{67} + 12 q^{71}+ \cdots + 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(3\) 0.477487 3.01474i 0.275677 1.74056i −0.329218 0.944254i \(-0.606785\pi\)
0.604896 0.796305i \(-0.293215\pi\)
\(4\) 1.17557 1.61803i 0.587785 0.809017i
\(5\) 1.93903 + 1.11362i 0.867161 + 0.498027i
\(6\) 0 0
\(7\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(8\) 0 0
\(9\) −6.00747 1.95194i −2.00249 0.650648i
\(10\) 0 0
\(11\) 0 0
\(12\) −4.31662 4.31662i −1.24610 1.24610i
\(13\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(14\) 0 0
\(15\) 4.28314 5.31393i 1.10590 1.37205i
\(16\) −1.23607 3.80423i −0.309017 0.951057i
\(17\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(18\) 0 0
\(19\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(20\) 4.08135 1.82828i 0.912617 0.408815i
\(21\) 0 0
\(22\) 0 0
\(23\) 2.84169 2.84169i 0.592533 0.592533i −0.345782 0.938315i \(-0.612386\pi\)
0.938315 + 0.345782i \(0.112386\pi\)
\(24\) 0 0
\(25\) 2.51969 + 4.31870i 0.503937 + 0.863740i
\(26\) 0 0
\(27\) −4.59592 + 9.02000i −0.884485 + 1.73590i
\(28\) 0 0
\(29\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(30\) 0 0
\(31\) −3.07468 + 9.46289i −0.552229 + 1.69959i 0.150923 + 0.988546i \(0.451776\pi\)
−0.703151 + 0.711040i \(0.748224\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −10.2205 + 7.42564i −1.70342 + 1.23761i
\(37\) −0.326303 2.06020i −0.0536439 0.338694i −0.999884 0.0152291i \(-0.995152\pi\)
0.946240 0.323465i \(-0.104848\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) −9.47494 10.4749i −1.41244 1.56151i
\(46\) 0 0
\(47\) 13.0135 + 2.06113i 1.89821 + 0.300647i 0.992402 0.123038i \(-0.0392637\pi\)
0.905810 + 0.423685i \(0.139264\pi\)
\(48\) −12.0589 + 1.90995i −1.74056 + 0.275677i
\(49\) −6.65740 + 2.16312i −0.951057 + 0.309017i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.33269 4.57816i −0.320420 0.628859i 0.673473 0.739212i \(-0.264802\pi\)
−0.993892 + 0.110353i \(0.964802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.94946 + 2.68321i −0.253798 + 0.349324i −0.916837 0.399262i \(-0.869267\pi\)
0.663039 + 0.748585i \(0.269267\pi\)
\(60\) −3.56298 13.1772i −0.459978 1.70116i
\(61\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −7.60845 2.47214i −0.951057 0.309017i
\(65\) 0 0
\(66\) 0 0
\(67\) 11.4749 + 11.4749i 1.40189 + 1.40189i 0.794101 + 0.607785i \(0.207942\pi\)
0.607785 + 0.794101i \(0.292058\pi\)
\(68\) 0 0
\(69\) −7.21007 9.92381i −0.867990 1.19469i
\(70\) 0 0
\(71\) −0.927051 2.85317i −0.110021 0.338609i 0.880855 0.473386i \(-0.156968\pi\)
−0.990876 + 0.134777i \(0.956968\pi\)
\(72\) 0 0
\(73\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(74\) 0 0
\(75\) 14.2229 5.53406i 1.64231 0.639019i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(80\) 1.83970 8.75303i 0.205685 0.978618i
\(81\) 9.66765 + 7.02396i 1.07418 + 0.780440i
\(82\) 0 0
\(83\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.00000i 0.953998i 0.878904 + 0.476999i \(0.158275\pi\)
−0.878904 + 0.476999i \(0.841725\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.25734 7.93855i −0.131087 0.827651i
\(93\) 27.0600 + 13.7878i 2.80599 + 1.42972i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −4.44184 + 2.26323i −0.451000 + 0.229796i −0.664711 0.747101i \(-0.731445\pi\)
0.213710 + 0.976897i \(0.431445\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 9.94987 + 1.00000i 0.994987 + 0.100000i
\(101\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(102\) 0 0
\(103\) 11.1044 1.75876i 1.09415 0.173296i 0.416829 0.908985i \(-0.363141\pi\)
0.677320 + 0.735689i \(0.263141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(108\) 9.19184 + 18.0400i 0.884485 + 1.73590i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −6.36675 −0.604305
\(112\) 0 0
\(113\) 2.68980 16.9828i 0.253036 1.59760i −0.454382 0.890807i \(-0.650140\pi\)
0.707417 0.706796i \(-0.249860\pi\)
\(114\) 0 0
\(115\) 8.67469 2.34555i 0.808919 0.218724i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 11.6968 + 16.0992i 1.05040 + 1.44575i
\(125\) 0.0763444 + 11.1801i 0.00682845 + 0.999977i
\(126\) 0 0
\(127\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −18.9565 + 12.3719i −1.63152 + 1.06481i
\(136\) 0 0
\(137\) 6.48986 12.7371i 0.554466 1.08820i −0.428350 0.903613i \(-0.640905\pi\)
0.982816 0.184588i \(-0.0590949\pi\)
\(138\) 0 0
\(139\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(140\) 0 0
\(141\) 12.4275 38.2480i 1.04659 3.22107i
\(142\) 0 0
\(143\) 0 0
\(144\) 25.2665i 2.10554i
\(145\) 0 0
\(146\) 0 0
\(147\) 3.34241 + 21.1031i 0.275677 + 1.74056i
\(148\) −3.71706 1.89394i −0.305540 0.155681i
\(149\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(150\) 0 0
\(151\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16.5000 + 14.9248i −1.32531 + 1.19879i
\(156\) 0 0
\(157\) −23.0122 3.64478i −1.83658 0.290885i −0.860684 0.509140i \(-0.829964\pi\)
−0.975892 + 0.218255i \(0.929964\pi\)
\(158\) 0 0
\(159\) −14.9158 + 4.84643i −1.18290 + 0.384347i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 11.5245 + 22.6182i 0.902671 + 1.77159i 0.547558 + 0.836768i \(0.315557\pi\)
0.355112 + 0.934824i \(0.384443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(168\) 0 0
\(169\) −7.64121 + 10.5172i −0.587785 + 0.809017i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.15831 + 7.15831i 0.538052 + 0.538052i
\(178\) 0 0
\(179\) 12.3435 + 16.9894i 0.922596 + 1.26984i 0.962678 + 0.270648i \(0.0872379\pi\)
−0.0400827 + 0.999196i \(0.512762\pi\)
\(180\) −28.0873 + 3.01674i −2.09350 + 0.224855i
\(181\) −3.07468 9.46289i −0.228539 0.703371i −0.997913 0.0645725i \(-0.979432\pi\)
0.769374 0.638799i \(-0.220568\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.66157 4.35816i 0.122161 0.320418i
\(186\) 0 0
\(187\) 0 0
\(188\) 18.6332 18.6332i 1.35897 1.35897i
\(189\) 0 0
\(190\) 0 0
\(191\) −18.7824 13.6462i −1.35905 0.987407i −0.998505 0.0546656i \(-0.982591\pi\)
−0.360545 0.932742i \(-0.617409\pi\)
\(192\) −11.0858 + 21.7571i −0.800047 + 1.57018i
\(193\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −4.32624 + 13.3148i −0.309017 + 0.951057i
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 0 0
\(199\) 19.8997i 1.41066i −0.708881 0.705328i \(-0.750800\pi\)
0.708881 0.705328i \(-0.249200\pi\)
\(200\) 0 0
\(201\) 40.0730 29.1148i 2.82653 2.05360i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −22.6182 + 11.5245i −1.57207 + 0.801010i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(212\) −10.1499 1.60758i −0.697095 0.110409i
\(213\) −9.04421 + 1.43246i −0.619699 + 0.0981507i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −3.19123 + 20.1486i −0.213700 + 1.34925i 0.614544 + 0.788883i \(0.289340\pi\)
−0.828244 + 0.560368i \(0.810660\pi\)
\(224\) 0 0
\(225\) −6.70707 30.8627i −0.447138 2.05752i
\(226\) 0 0
\(227\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(228\) 0 0
\(229\) 28.3887 + 9.22404i 1.87598 + 0.609542i 0.989039 + 0.147652i \(0.0471715\pi\)
0.886937 + 0.461890i \(0.152828\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(234\) 0 0
\(235\) 22.9382 + 18.4887i 1.49632 + 1.20607i
\(236\) 2.04979 + 6.30860i 0.133430 + 0.410655i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(240\) −25.5096 9.72567i −1.64664 0.627789i
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 4.31662 4.31662i 0.276912 0.276912i
\(244\) 0 0
\(245\) −15.3178 3.21948i −0.978618 0.205685i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.34346 25.6785i 0.526634 1.62081i −0.234427 0.972134i \(-0.575321\pi\)
0.761061 0.648680i \(-0.224679\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −12.9443 + 9.40456i −0.809017 + 0.587785i
\(257\) −4.92606 31.1019i −0.307279 1.94008i −0.339510 0.940603i \(-0.610261\pi\)
0.0322308 0.999480i \(-0.489739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0 0
\(265\) 0.575188 11.4749i 0.0353335 0.704900i
\(266\) 0 0
\(267\) 27.1326 + 4.29738i 1.66049 + 0.262996i
\(268\) 32.0564 5.07724i 1.95816 0.310142i
\(269\) −12.6172 + 4.09957i −0.769284 + 0.249955i −0.667258 0.744826i \(-0.732532\pi\)
−0.102025 + 0.994782i \(0.532532\pi\)
\(270\) 0 0
\(271\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −24.5330 −1.47671
\(277\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(278\) 0 0
\(279\) 36.9421 50.8464i 2.21166 3.04410i
\(280\) 0 0
\(281\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(282\) 0 0
\(283\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(284\) −5.70634 1.85410i −0.338609 0.110021i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.99235 13.7533i −0.587785 0.809017i
\(290\) 0 0
\(291\) 4.70212 + 14.4716i 0.275643 + 0.848342i
\(292\) 0 0
\(293\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(294\) 0 0
\(295\) −6.76815 + 3.03185i −0.394057 + 0.176521i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 7.76567 29.5188i 0.448351 1.70427i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 34.3166i 1.95220i
\(310\) 0 0
\(311\) −9.70820 + 7.05342i −0.550502 + 0.399963i −0.827970 0.560772i \(-0.810505\pi\)
0.277469 + 0.960735i \(0.410505\pi\)
\(312\) 0 0
\(313\) 30.7771 + 15.6817i 1.73962 + 0.886382i 0.968245 + 0.250004i \(0.0804318\pi\)
0.771377 + 0.636378i \(0.219568\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −31.6382 + 16.1204i −1.77698 + 0.905415i −0.854378 + 0.519652i \(0.826062\pi\)
−0.922598 + 0.385763i \(0.873938\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −12.0000 13.2665i −0.670820 0.741620i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 22.7300 7.38543i 1.26278 0.410302i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −9.94987 −0.546895 −0.273447 0.961887i \(-0.588164\pi\)
−0.273447 + 0.961887i \(0.588164\pi\)
\(332\) 0 0
\(333\) −2.06113 + 13.0135i −0.112949 + 0.713134i
\(334\) 0 0
\(335\) 9.47151 + 35.0290i 0.517484 + 1.91384i
\(336\) 0 0
\(337\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(338\) 0 0
\(339\) −49.9142 16.2181i −2.71097 0.880846i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2.92917 27.2719i −0.157701 1.46827i
\(346\) 0 0
\(347\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.7414 + 13.7414i −0.731383 + 0.731383i −0.970894 0.239511i \(-0.923013\pi\)
0.239511 + 0.970894i \(0.423013\pi\)
\(354\) 0 0
\(355\) 1.37978 6.56477i 0.0732309 0.348422i
\(356\) 14.5623 + 10.5801i 0.771801 + 0.560746i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(360\) 0 0
\(361\) −5.87132 + 18.0701i −0.309017 + 0.951057i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.99217 + 18.8918i 0.156190 + 0.986146i 0.933903 + 0.357526i \(0.116380\pi\)
−0.777713 + 0.628620i \(0.783620\pi\)
\(368\) −14.3229 7.29790i −0.746635 0.380429i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 54.1200 27.5755i 2.80599 1.42972i
\(373\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) 33.7414 + 5.10819i 1.74240 + 0.263786i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −28.3887 + 9.22404i −1.45823 + 0.473807i −0.927528 0.373753i \(-0.878071\pi\)
−0.530700 + 0.847560i \(0.678071\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.4551 22.4818i −0.585327 1.14877i −0.973821 0.227317i \(-0.927005\pi\)
0.388494 0.921451i \(-0.372995\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −1.55971 + 9.84763i −0.0791824 + 0.499938i
\(389\) −21.4441 + 29.5153i −1.08726 + 1.49648i −0.235988 + 0.971756i \(0.575833\pi\)
−0.851270 + 0.524727i \(0.824167\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −20.8997 20.8997i −1.04893 1.04893i −0.998740 0.0501886i \(-0.984018\pi\)
−0.0501886 0.998740i \(-0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 13.3148 14.9237i 0.665741 0.746183i
\(401\) −8.19915 25.2344i −0.409446 1.26014i −0.917125 0.398599i \(-0.869497\pi\)
0.507679 0.861546i \(-0.330503\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 10.9238 + 24.3858i 0.542810 + 1.21174i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(410\) 0 0
\(411\) −35.3000 25.6470i −1.74122 1.26507i
\(412\) 10.2083 20.0349i 0.502925 0.987046i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000i 1.17248i 0.810139 + 0.586238i \(0.199392\pi\)
−0.810139 + 0.586238i \(0.800608\pi\)
\(420\) 0 0
\(421\) −32.1985 + 23.3936i −1.56926 + 1.14013i −0.641394 + 0.767211i \(0.721644\pi\)
−0.927863 + 0.372921i \(0.878356\pi\)
\(422\) 0 0
\(423\) −74.1549 37.7838i −3.60553 1.83711i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(432\) 39.9950 + 6.33458i 1.92426 + 0.304773i
\(433\) −41.1006 + 6.50970i −1.97517 + 0.312836i −0.985327 + 0.170676i \(0.945405\pi\)
−0.989844 + 0.142160i \(0.954595\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 44.2164 2.10554
\(442\) 0 0
\(443\) 6.35852 40.1461i 0.302102 1.90740i −0.105825 0.994385i \(-0.533748\pi\)
0.407928 0.913014i \(-0.366252\pi\)
\(444\) −7.48456 + 10.3016i −0.355202 + 0.488893i
\(445\) −10.0226 + 17.4513i −0.475117 + 0.827270i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 37.0912 + 12.0517i 1.75044 + 0.568753i 0.996140 0.0877747i \(-0.0279756\pi\)
0.754302 + 0.656528i \(0.227976\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −24.3166 24.3166i −1.14376 1.14376i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 6.40253 16.7933i 0.298519 0.782992i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −0.575188 + 0.575188i −0.0267313 + 0.0267313i −0.720346 0.693615i \(-0.756017\pi\)
0.693615 + 0.720346i \(0.256017\pi\)
\(464\) 0 0
\(465\) 37.1158 + 56.8695i 1.72121 + 2.63726i
\(466\) 0 0
\(467\) −14.8042 + 29.0549i −0.685056 + 1.34450i 0.242257 + 0.970212i \(0.422112\pi\)
−0.927313 + 0.374286i \(0.877888\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −21.9761 + 67.6355i −1.01260 + 3.11648i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 5.07724 + 32.0564i 0.232471 + 1.46776i
\(478\) 0 0
\(479\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.1332 0.558061i −0.505535 0.0253403i
\(486\) 0 0
\(487\) −36.9803 5.85710i −1.67574 0.265410i −0.755036 0.655683i \(-0.772381\pi\)
−0.920699 + 0.390273i \(0.872381\pi\)
\(488\) 0 0
\(489\) 73.6906 23.9435i 3.33240 1.08276i
\(490\) 0 0
\(491\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 39.7995 1.78705
\(497\) 0 0
\(498\) 0 0
\(499\) −11.6968 + 16.0992i −0.523620 + 0.720701i −0.986141 0.165907i \(-0.946945\pi\)
0.462522 + 0.886608i \(0.346945\pi\)
\(500\) 18.1795 + 13.0194i 0.813012 + 0.582247i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 28.0581 + 28.0581i 1.24610 + 1.24610i
\(508\) 0 0
\(509\) 1.94946 + 2.68321i 0.0864084 + 0.118931i 0.850033 0.526730i \(-0.176582\pi\)
−0.763624 + 0.645661i \(0.776582\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 23.4904 + 8.95582i 1.03511 + 0.394641i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 34.8817 + 25.3430i 1.52819 + 1.11030i 0.957232 + 0.289321i \(0.0934296\pi\)
0.570962 + 0.820977i \(0.306570\pi\)
\(522\) 0 0
\(523\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 6.84962i 0.297810i
\(530\) 0 0
\(531\) 16.9488 12.3140i 0.735515 0.534383i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 57.1123 29.1002i 2.46458 1.25576i
\(538\) 0 0
\(539\) 0 0
\(540\) −2.26650 + 45.2164i −0.0975346 + 1.94580i
\(541\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(542\) 0 0
\(543\) −29.9962 + 4.75094i −1.28726 + 0.203882i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(548\) −12.9797 25.4741i −0.554466 1.08820i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −12.3453 7.09016i −0.524030 0.300961i
\(556\) 0 0
\(557\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(564\) −47.2772 65.0715i −1.99073 2.74000i
\(565\) 24.1280 29.9347i 1.01507 1.25936i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −50.1082 + 50.1082i −2.09330 + 2.09330i
\(574\) 0 0
\(575\) 19.4326 + 5.11224i 0.810394 + 0.213195i
\(576\) 40.8821 + 29.7026i 1.70342 + 1.23761i
\(577\) 11.8938 23.3429i 0.495146 0.971779i −0.499290 0.866435i \(-0.666406\pi\)
0.994436 0.105344i \(-0.0335944\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.57582 28.8906i −0.188864 1.19244i −0.881864 0.471504i \(-0.843711\pi\)
0.693000 0.720938i \(-0.256289\pi\)
\(588\) 38.0749 + 19.4001i 1.57018 + 0.800047i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −7.43412 + 3.78787i −0.305540 + 0.155681i
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −59.9925 9.50188i −2.45533 0.388886i
\(598\) 0 0
\(599\) 34.2380 11.1246i 1.39893 0.454539i 0.490084 0.871675i \(-0.336966\pi\)
0.908844 + 0.417136i \(0.136966\pi\)
\(600\) 0 0
\(601\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(602\) 0 0
\(603\) −46.5369 91.3337i −1.89513 3.71940i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7.73350 7.73350i −0.311339 0.311339i 0.534089 0.845428i \(-0.320655\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) 0 0
\(619\) 0.587785 + 0.809017i 0.0236251 + 0.0325171i 0.820666 0.571408i \(-0.193603\pi\)
−0.797041 + 0.603925i \(0.793603\pi\)
\(620\) 4.75194 + 44.2427i 0.190842 + 1.77683i
\(621\) 12.5719 + 38.6922i 0.504491 + 1.55266i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.3024 + 21.7635i −0.492095 + 0.870542i
\(626\) 0 0
\(627\) 0 0
\(628\) −32.9499 + 32.9499i −1.31484 + 1.31484i
\(629\) 0 0
\(630\) 0 0
\(631\) −5.66312 4.11450i −0.225445 0.163796i 0.469329 0.883023i \(-0.344496\pi\)
−0.694774 + 0.719228i \(0.744496\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −9.69286 + 29.8316i −0.384347 + 1.18290i
\(637\) 0 0
\(638\) 0 0
\(639\) 18.9499i 0.749645i
\(640\) 0 0
\(641\) −18.7824 + 13.6462i −0.741862 + 0.538994i −0.893294 0.449474i \(-0.851612\pi\)
0.151432 + 0.988468i \(0.451612\pi\)
\(642\) 0 0
\(643\) −7.02515 3.57949i −0.277045 0.141161i 0.309948 0.950753i \(-0.399688\pi\)
−0.586993 + 0.809592i \(0.699688\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.1537 5.17359i 0.399185 0.203395i −0.242861 0.970061i \(-0.578086\pi\)
0.642046 + 0.766666i \(0.278086\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 50.1448 + 7.94216i 1.96382 + 0.311039i
\(653\) 37.9348 6.00828i 1.48450 0.235122i 0.639047 0.769167i \(-0.279329\pi\)
0.845456 + 0.534045i \(0.179329\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −13.0000 −0.505641 −0.252821 0.967513i \(-0.581358\pi\)
−0.252821 + 0.967513i \(0.581358\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 59.2190 + 19.2414i 2.28954 + 0.743916i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(674\) 0 0
\(675\) −50.5350 + 2.87917i −1.94509 + 0.110819i
\(676\) 8.03444 + 24.7275i 0.309017 + 0.951057i
\(677\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 35.2164 35.2164i 1.34752 1.34752i 0.459167 0.888350i \(-0.348148\pi\)
0.888350 0.459167i \(-0.151852\pi\)
\(684\) 0 0
\(685\) 26.7683 17.4703i 1.02276 0.667506i
\(686\) 0 0
\(687\) 41.3633 81.1800i 1.57811 3.09721i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 5.25329 16.1680i 0.199845 0.615058i −0.800041 0.599945i \(-0.795189\pi\)
0.999886 0.0151132i \(-0.00481087\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 66.6913 60.3246i 2.51174 2.27195i
\(706\) 0 0
\(707\) 0 0
\(708\) 19.9975 3.16729i 0.751552 0.119034i
\(709\) −18.0701 + 5.87132i −0.678636 + 0.220502i −0.627998 0.778215i \(-0.716125\pi\)
−0.0506378 + 0.998717i \(0.516125\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18.1533 + 35.6279i 0.679847 + 1.33427i
\(714\) 0 0
\(715\) 0 0
\(716\) 42.0000 1.56961
\(717\) 0 0
\(718\) 0 0
\(719\) −29.9770 + 41.2599i −1.11796 + 1.53873i −0.308811 + 0.951123i \(0.599931\pi\)
−0.809144 + 0.587610i \(0.800069\pi\)
\(720\) −28.1374 + 48.9925i −1.04862 + 1.82584i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) −18.9258 6.14936i −0.703371 0.228539i
\(725\) 0 0
\(726\) 0 0
\(727\) 31.4749 + 31.4749i 1.16734 + 1.16734i 0.982831 + 0.184510i \(0.0590699\pi\)
0.184510 + 0.982831i \(0.440930\pi\)
\(728\) 0 0
\(729\) 10.1195 + 13.9283i 0.374797 + 0.515864i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(734\) 0 0
\(735\) −17.0199 + 44.6419i −0.627789 + 1.64664i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(740\) −5.09836 7.81180i −0.187420 0.287168i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 18.6074 13.5191i 0.678993 0.493318i −0.194030 0.980996i \(-0.562156\pi\)
0.873024 + 0.487678i \(0.162156\pi\)
\(752\) −8.24453 52.0539i −0.300647 1.89821i
\(753\) −73.4301 37.4145i −2.67594 1.36346i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.13375 + 0.577674i −0.0412068 + 0.0209959i −0.474473 0.880270i \(-0.657361\pi\)
0.433266 + 0.901266i \(0.357361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −44.1602 + 14.3485i −1.59766 + 0.519111i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 22.1715 + 43.5141i 0.800047 + 1.57018i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −96.1161 −3.46154
\(772\) 0 0
\(773\) −7.44074 + 46.9790i −0.267625 + 1.68972i 0.377795 + 0.925889i \(0.376682\pi\)
−0.645420 + 0.763828i \(0.723318\pi\)
\(774\) 0 0
\(775\) −48.6146 + 10.5649i −1.74629 + 0.379502i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 16.4580 + 22.6525i 0.587785 + 0.809017i
\(785\) −40.5625 32.6943i −1.44774 1.16691i
\(786\) 0 0
\(787\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −34.3193 7.21318i −1.21718 0.255825i
\(796\) −32.1985 23.3936i −1.14124 0.829163i
\(797\) 17.1369 33.6330i 0.607019 1.19134i −0.359113 0.933294i \(-0.616921\pi\)
0.966132 0.258048i \(-0.0830794\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 17.5675 54.0672i 0.620717 1.91037i
\(802\) 0 0
\(803\) 0 0
\(804\) 99.0660i 3.49379i
\(805\) 0 0
\(806\) 0 0
\(807\) 6.33458 + 39.9950i 0.222988 + 1.40789i
\(808\) 0 0
\(809\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(810\) 0 0
\(811\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.84169 + 56.6913i −0.0995400 + 1.98581i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(822\) 0 0
\(823\) −25.3123 49.6782i −0.882331 1.73167i −0.651453 0.758689i \(-0.725840\pi\)
−0.230878 0.972983i \(-0.574160\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(828\) −7.94216 + 50.1448i −0.276009 + 1.74265i
\(829\) 17.0458 23.4615i 0.592024 0.814851i −0.402925 0.915233i \(-0.632006\pi\)
0.994949 + 0.100382i \(0.0320064\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −71.2243 71.2243i −2.46187 2.46187i
\(838\) 0 0
\(839\) 21.4441 + 29.5153i 0.740332 + 1.01898i 0.998599 + 0.0529065i \(0.0168485\pi\)
−0.258267 + 0.966074i \(0.583151\pi\)
\(840\) 0 0
\(841\) −8.96149 27.5806i −0.309017 0.951057i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −26.5288 + 11.8838i −0.912617 + 0.408815i
\(846\) 0 0
\(847\) 0 0
\(848\) −14.5330 + 14.5330i −0.499065 + 0.499065i
\(849\) 0 0
\(850\) 0 0
\(851\) −6.78168 4.92718i −0.232473 0.168902i
\(852\) −8.31433 + 16.3178i −0.284844 + 0.559038i
\(853\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(858\) 0 0
\(859\) 31.0000i 1.05771i −0.848713 0.528853i \(-0.822622\pi\)
0.848713 0.528853i \(-0.177378\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.57301 + 3.34912i 0.223748 + 0.114005i 0.562272 0.826953i \(-0.309928\pi\)
−0.338524 + 0.940958i \(0.609928\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −46.2337 + 23.5573i −1.57018 + 0.800047i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 31.1019 4.92606i 1.05264 0.166722i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 57.0000 1.92038 0.960189 0.279350i \(-0.0901189\pi\)
0.960189 + 0.279350i \(0.0901189\pi\)
\(882\) 0 0
\(883\) 8.39572 53.0085i 0.282538 1.78388i −0.282964 0.959130i \(-0.591318\pi\)
0.565503 0.824747i \(-0.308682\pi\)
\(884\) 0 0
\(885\) 5.90853 + 21.8519i 0.198613 + 0.734542i
\(886\) 0 0
\(887\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 28.8496 + 28.8496i 0.965957 + 0.965957i
\(893\) 0 0
\(894\) 0 0
\(895\) 5.01467 + 46.6889i 0.167622 + 1.56064i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −57.8216 25.4291i −1.92739 0.847636i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.57620 21.7729i 0.152118 0.723755i
\(906\) 0 0
\(907\) −21.7328 + 42.6530i −0.721626 + 1.41627i 0.179962 + 0.983674i \(0.442403\pi\)
−0.901588 + 0.432597i \(0.857597\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.04979 6.30860i 0.0679125 0.209013i −0.911341 0.411652i \(-0.864952\pi\)
0.979253 + 0.202639i \(0.0649518\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 48.2977 35.0903i 1.59580 1.15942i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 8.07519 6.60025i 0.265511 0.217015i
\(926\) 0 0
\(927\) −70.1423 11.1095i −2.30378 0.364882i
\(928\) 0 0
\(929\) 50.4688 16.3983i 1.65583 0.538011i 0.675835 0.737053i \(-0.263783\pi\)
0.979991 + 0.199042i \(0.0637830\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 16.6287 + 32.6356i 0.544398 + 1.06844i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(938\) 0 0
\(939\) 61.9718 85.2969i 2.02237 2.78356i
\(940\) 56.8809 15.3800i 1.85525 0.501641i
\(941\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 12.6172 + 4.09957i 0.410655 + 0.133430i
\(945\) 0 0
\(946\) 0 0
\(947\) −40.1082 40.1082i −1.30334 1.30334i −0.926126 0.377215i \(-0.876882\pi\)
−0.377215 0.926126i \(-0.623118\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 33.4921 + 103.078i 1.08605 + 3.34253i
\(952\) 0 0
\(953\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(954\) 0 0
\(955\) −21.2230 47.3771i −0.686759 1.53309i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −45.7248 + 29.8422i −1.47576 + 0.963154i
\(961\) −55.0132 39.9694i −1.77462 1.28934i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 34.8817 25.3430i 1.11941 0.813296i 0.135287 0.990806i \(-0.456804\pi\)
0.984119 + 0.177510i \(0.0568043\pi\)
\(972\) −1.90995 12.0589i −0.0612616 0.386791i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −52.5341 + 26.7675i −1.68072 + 0.856367i −0.689473 + 0.724311i \(0.742158\pi\)
−0.991242 + 0.132056i \(0.957842\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −23.2164 + 21.0000i −0.741620 + 0.670820i
\(981\) 0 0
\(982\) 0 0
\(983\) 61.0981 9.67699i 1.94873 0.308648i 0.948755 0.316012i \(-0.102344\pi\)
0.999973 + 0.00736431i \(0.00234415\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −59.6992 −1.89641 −0.948205 0.317660i \(-0.897103\pi\)
−0.948205 + 0.317660i \(0.897103\pi\)
\(992\) 0 0
\(993\) −4.75094 + 29.9962i −0.150766 + 0.951902i
\(994\) 0 0
\(995\) 22.1608 38.5862i 0.702545 1.22327i
\(996\) 0 0
\(997\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(998\) 0 0
\(999\) 20.0826 + 6.52524i 0.635386 + 0.206449i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.m.a.112.2 16
5.3 odd 4 inner 605.2.m.a.233.2 16
11.2 odd 10 inner 605.2.m.a.602.1 16
11.3 even 5 inner 605.2.m.a.282.2 16
11.4 even 5 55.2.e.b.32.1 4
11.5 even 5 inner 605.2.m.a.457.2 16
11.6 odd 10 inner 605.2.m.a.457.2 16
11.7 odd 10 55.2.e.b.32.1 4
11.8 odd 10 inner 605.2.m.a.282.2 16
11.9 even 5 inner 605.2.m.a.602.1 16
11.10 odd 2 CM 605.2.m.a.112.2 16
33.26 odd 10 495.2.k.a.307.1 4
33.29 even 10 495.2.k.a.307.1 4
44.7 even 10 880.2.bd.d.417.2 4
44.15 odd 10 880.2.bd.d.417.2 4
55.3 odd 20 inner 605.2.m.a.403.1 16
55.4 even 10 275.2.e.a.32.2 4
55.7 even 20 275.2.e.a.43.2 4
55.8 even 20 inner 605.2.m.a.403.1 16
55.13 even 20 inner 605.2.m.a.118.2 16
55.18 even 20 55.2.e.b.43.1 yes 4
55.28 even 20 inner 605.2.m.a.578.2 16
55.29 odd 10 275.2.e.a.32.2 4
55.37 odd 20 275.2.e.a.43.2 4
55.38 odd 20 inner 605.2.m.a.578.2 16
55.43 even 4 inner 605.2.m.a.233.2 16
55.48 odd 20 55.2.e.b.43.1 yes 4
55.53 odd 20 inner 605.2.m.a.118.2 16
165.128 odd 20 495.2.k.a.208.1 4
165.158 even 20 495.2.k.a.208.1 4
220.103 even 20 880.2.bd.d.593.2 4
220.183 odd 20 880.2.bd.d.593.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.e.b.32.1 4 11.4 even 5
55.2.e.b.32.1 4 11.7 odd 10
55.2.e.b.43.1 yes 4 55.18 even 20
55.2.e.b.43.1 yes 4 55.48 odd 20
275.2.e.a.32.2 4 55.4 even 10
275.2.e.a.32.2 4 55.29 odd 10
275.2.e.a.43.2 4 55.7 even 20
275.2.e.a.43.2 4 55.37 odd 20
495.2.k.a.208.1 4 165.128 odd 20
495.2.k.a.208.1 4 165.158 even 20
495.2.k.a.307.1 4 33.26 odd 10
495.2.k.a.307.1 4 33.29 even 10
605.2.m.a.112.2 16 1.1 even 1 trivial
605.2.m.a.112.2 16 11.10 odd 2 CM
605.2.m.a.118.2 16 55.13 even 20 inner
605.2.m.a.118.2 16 55.53 odd 20 inner
605.2.m.a.233.2 16 5.3 odd 4 inner
605.2.m.a.233.2 16 55.43 even 4 inner
605.2.m.a.282.2 16 11.3 even 5 inner
605.2.m.a.282.2 16 11.8 odd 10 inner
605.2.m.a.403.1 16 55.3 odd 20 inner
605.2.m.a.403.1 16 55.8 even 20 inner
605.2.m.a.457.2 16 11.5 even 5 inner
605.2.m.a.457.2 16 11.6 odd 10 inner
605.2.m.a.578.2 16 55.28 even 20 inner
605.2.m.a.578.2 16 55.38 odd 20 inner
605.2.m.a.602.1 16 11.2 odd 10 inner
605.2.m.a.602.1 16 11.9 even 5 inner
880.2.bd.d.417.2 4 44.7 even 10
880.2.bd.d.417.2 4 44.15 odd 10
880.2.bd.d.593.2 4 220.103 even 20
880.2.bd.d.593.2 4 220.183 odd 20