Properties

Label 605.2.m.a.112.1
Level $605$
Weight $2$
Character 605.112
Analytic conductor $4.831$
Analytic rank $0$
Dimension $16$
CM discriminant -11
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(112,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.112");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.m (of order \(20\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{20})\)
Coefficient field: 16.0.3429742096000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 5x^{14} + 16x^{12} + 35x^{10} + 31x^{8} + 315x^{6} + 1296x^{4} + 3645x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{U}(1)[D_{20}]$

Embedding invariants

Embedding label 112.1
Root \(-1.04771 + 1.37924i\) of defining polynomial
Character \(\chi\) \(=\) 605.112
Dual form 605.2.m.a.578.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.256255 + 1.61793i) q^{3} +(1.17557 - 1.61803i) q^{4} +(0.914138 - 2.04067i) q^{5} +(0.301128 + 0.0978424i) q^{9} +(2.31662 + 2.31662i) q^{12} +(3.06742 + 2.00195i) q^{15} +(-1.23607 - 3.80423i) q^{16} +(-2.22725 - 3.87806i) q^{20} +(6.15831 - 6.15831i) q^{23} +(-3.32870 - 3.73092i) q^{25} +(-2.46652 + 4.84081i) q^{27} +(3.07468 - 9.46289i) q^{31} +(0.512310 - 0.372215i) q^{36} +(1.87493 + 11.8378i) q^{37} +(0.474937 - 0.525063i) q^{45} +(3.74814 + 0.593648i) q^{47} +(6.47173 - 1.02502i) q^{48} +(-6.65740 + 2.16312i) q^{49} +(6.18493 + 12.1386i) q^{53} +(1.94946 - 2.68321i) q^{59} +(6.84519 - 2.60976i) q^{60} +(-7.60845 - 2.47214i) q^{64} +(1.52506 + 1.52506i) q^{67} +(8.38564 + 11.5418i) q^{69} +(-0.927051 - 2.85317i) q^{71} +(6.88937 - 4.42955i) q^{75} +(-8.89312 - 0.955176i) q^{80} +(-6.43158 - 4.67282i) q^{81} +9.00000i q^{89} +(-2.72483 - 17.2039i) q^{92} +(14.5224 + 7.39955i) q^{93} +(-16.9794 + 8.65144i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{3} - 16 q^{12} + 8 q^{15} + 16 q^{16} - 12 q^{20} + 72 q^{23} - 2 q^{25} - 22 q^{27} - 24 q^{36} + 14 q^{37} - 72 q^{45} + 24 q^{47} - 8 q^{48} + 12 q^{53} + 28 q^{60} + 104 q^{67} + 12 q^{71}+ \cdots + 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(3\) −0.256255 + 1.61793i −0.147949 + 0.934114i 0.796305 + 0.604896i \(0.206785\pi\)
−0.944254 + 0.329218i \(0.893215\pi\)
\(4\) 1.17557 1.61803i 0.587785 0.809017i
\(5\) 0.914138 2.04067i 0.408815 0.912617i
\(6\) 0 0
\(7\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(8\) 0 0
\(9\) 0.301128 + 0.0978424i 0.100376 + 0.0326141i
\(10\) 0 0
\(11\) 0 0
\(12\) 2.31662 + 2.31662i 0.668752 + 0.668752i
\(13\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(14\) 0 0
\(15\) 3.06742 + 2.00195i 0.792005 + 0.516901i
\(16\) −1.23607 3.80423i −0.309017 0.951057i
\(17\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(18\) 0 0
\(19\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(20\) −2.22725 3.87806i −0.498027 0.867161i
\(21\) 0 0
\(22\) 0 0
\(23\) 6.15831 6.15831i 1.28410 1.28410i 0.345782 0.938315i \(-0.387614\pi\)
0.938315 0.345782i \(-0.112386\pi\)
\(24\) 0 0
\(25\) −3.32870 3.73092i −0.665741 0.746183i
\(26\) 0 0
\(27\) −2.46652 + 4.84081i −0.474681 + 0.931614i
\(28\) 0 0
\(29\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(30\) 0 0
\(31\) 3.07468 9.46289i 0.552229 1.69959i −0.150923 0.988546i \(-0.548224\pi\)
0.703151 0.711040i \(-0.251776\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.512310 0.372215i 0.0853849 0.0620358i
\(37\) 1.87493 + 11.8378i 0.308236 + 1.94612i 0.323465 + 0.946240i \(0.395152\pi\)
−0.0152291 + 0.999884i \(0.504848\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) 0.474937 0.525063i 0.0707995 0.0782717i
\(46\) 0 0
\(47\) 3.74814 + 0.593648i 0.546723 + 0.0865924i 0.423685 0.905810i \(-0.360736\pi\)
0.123038 + 0.992402i \(0.460736\pi\)
\(48\) 6.47173 1.02502i 0.934114 0.147949i
\(49\) −6.65740 + 2.16312i −0.951057 + 0.309017i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.18493 + 12.1386i 0.849565 + 1.66737i 0.739212 + 0.673473i \(0.235198\pi\)
0.110353 + 0.993892i \(0.464802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.94946 2.68321i 0.253798 0.349324i −0.663039 0.748585i \(-0.730733\pi\)
0.916837 + 0.399262i \(0.130733\pi\)
\(60\) 6.84519 2.60976i 0.883710 0.336919i
\(61\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −7.60845 2.47214i −0.951057 0.309017i
\(65\) 0 0
\(66\) 0 0
\(67\) 1.52506 + 1.52506i 0.186316 + 0.186316i 0.794101 0.607785i \(-0.207942\pi\)
−0.607785 + 0.794101i \(0.707942\pi\)
\(68\) 0 0
\(69\) 8.38564 + 11.5418i 1.00951 + 1.38947i
\(70\) 0 0
\(71\) −0.927051 2.85317i −0.110021 0.338609i 0.880855 0.473386i \(-0.156968\pi\)
−0.990876 + 0.134777i \(0.956968\pi\)
\(72\) 0 0
\(73\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(74\) 0 0
\(75\) 6.88937 4.42955i 0.795516 0.511481i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(80\) −8.89312 0.955176i −0.994281 0.106792i
\(81\) −6.43158 4.67282i −0.714620 0.519202i
\(82\) 0 0
\(83\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.00000i 0.953998i 0.878904 + 0.476999i \(0.158275\pi\)
−0.878904 + 0.476999i \(0.841725\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.72483 17.2039i −0.284083 1.79363i
\(93\) 14.5224 + 7.39955i 1.50591 + 0.767297i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −16.9794 + 8.65144i −1.72400 + 0.878421i −0.747101 + 0.664711i \(0.768555\pi\)
−0.976897 + 0.213710i \(0.931445\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −9.94987 + 1.00000i −0.994987 + 0.100000i
\(101\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(102\) 0 0
\(103\) −16.6916 + 2.64369i −1.64467 + 0.260491i −0.908985 0.416829i \(-0.863141\pi\)
−0.735689 + 0.677320i \(0.763141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(108\) 4.93303 + 9.68162i 0.474681 + 0.931614i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −19.6332 −1.86351
\(112\) 0 0
\(113\) 1.95606 12.3501i 0.184011 1.16180i −0.706796 0.707417i \(-0.749860\pi\)
0.890807 0.454382i \(-0.150140\pi\)
\(114\) 0 0
\(115\) −6.93756 18.1967i −0.646931 1.69685i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) −11.6968 16.0992i −1.05040 1.44575i
\(125\) −10.6565 + 3.38223i −0.953144 + 0.302516i
\(126\) 0 0
\(127\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 7.62378 + 9.45852i 0.656150 + 0.814060i
\(136\) 0 0
\(137\) −8.41597 + 16.5173i −0.719025 + 1.41117i 0.184588 + 0.982816i \(0.440905\pi\)
−0.903613 + 0.428350i \(0.859095\pi\)
\(138\) 0 0
\(139\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(140\) 0 0
\(141\) −1.92097 + 5.91212i −0.161774 + 0.497891i
\(142\) 0 0
\(143\) 0 0
\(144\) 1.26650i 0.105542i
\(145\) 0 0
\(146\) 0 0
\(147\) −1.79379 11.3255i −0.147949 0.934114i
\(148\) 21.3581 + 10.8825i 1.75562 + 0.894535i
\(149\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(150\) 0 0
\(151\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16.5000 14.9248i −1.32531 1.19879i
\(156\) 0 0
\(157\) −9.11422 1.44355i −0.727394 0.115208i −0.218255 0.975892i \(-0.570036\pi\)
−0.509140 + 0.860684i \(0.670036\pi\)
\(158\) 0 0
\(159\) −21.2244 + 6.89622i −1.68320 + 0.546906i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.25190 2.45699i −0.0980561 0.192446i 0.836768 0.547558i \(-0.184443\pi\)
−0.934824 + 0.355112i \(0.884443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(168\) 0 0
\(169\) −7.64121 + 10.5172i −0.587785 + 0.809017i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3.84169 + 3.84169i 0.288759 + 0.288759i
\(178\) 0 0
\(179\) 12.3435 + 16.9894i 0.922596 + 1.26984i 0.962678 + 0.270648i \(0.0872379\pi\)
−0.0400827 + 0.999196i \(0.512762\pi\)
\(180\) −0.291247 1.38571i −0.0217083 0.103285i
\(181\) 3.07468 + 9.46289i 0.228539 + 0.703371i 0.997913 + 0.0645725i \(0.0205684\pi\)
−0.769374 + 0.638799i \(0.779432\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 25.8711 + 6.99528i 1.90208 + 0.514303i
\(186\) 0 0
\(187\) 0 0
\(188\) 5.36675 5.36675i 0.391411 0.391411i
\(189\) 0 0
\(190\) 0 0
\(191\) 18.7824 + 13.6462i 1.35905 + 0.987407i 0.998505 + 0.0546656i \(0.0174093\pi\)
0.360545 + 0.932742i \(0.382591\pi\)
\(192\) 5.94946 11.6765i 0.429365 0.842677i
\(193\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −4.32624 + 13.3148i −0.309017 + 0.951057i
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 0 0
\(199\) 19.8997i 1.41066i 0.708881 + 0.705328i \(0.249200\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) −2.85826 + 2.07664i −0.201606 + 0.146475i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.45699 1.25190i 0.170772 0.0870128i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(212\) 26.9115 + 4.26236i 1.84829 + 0.292740i
\(213\) 4.85380 0.768766i 0.332577 0.0526750i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 3.41246 21.5454i 0.228515 1.44279i −0.560368 0.828244i \(-0.689340\pi\)
0.788883 0.614544i \(-0.210660\pi\)
\(224\) 0 0
\(225\) −0.637324 1.44917i −0.0424883 0.0966115i
\(226\) 0 0
\(227\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(228\) 0 0
\(229\) −28.3887 9.22404i −1.87598 0.609542i −0.989039 0.147652i \(-0.952828\pi\)
−0.886937 0.461890i \(-0.847172\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(234\) 0 0
\(235\) 4.63776 7.10607i 0.302534 0.463549i
\(236\) −2.04979 6.30860i −0.133430 0.410655i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(240\) 3.82432 14.1437i 0.246859 0.912973i
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) −2.31662 + 2.31662i −0.148612 + 0.148612i
\(244\) 0 0
\(245\) −1.67156 + 15.5630i −0.106792 + 0.994281i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.34346 25.6785i 0.526634 1.62081i −0.234427 0.972134i \(-0.575321\pi\)
0.761061 0.648680i \(-0.224679\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −12.9443 + 9.40456i −0.809017 + 0.587785i
\(257\) 0.943885 + 5.95946i 0.0588779 + 0.371741i 0.999480 + 0.0322308i \(0.0102612\pi\)
−0.940603 + 0.339510i \(0.889739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0 0
\(265\) 30.4248 1.52506i 1.86898 0.0936839i
\(266\) 0 0
\(267\) −14.5614 2.30630i −0.891143 0.141143i
\(268\) 4.26042 0.674785i 0.260247 0.0412190i
\(269\) 12.6172 4.09957i 0.769284 0.249955i 0.102025 0.994782i \(-0.467468\pi\)
0.667258 + 0.744826i \(0.267468\pi\)
\(270\) 0 0
\(271\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 28.5330 1.71748
\(277\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(278\) 0 0
\(279\) 1.85175 2.54871i 0.110861 0.152587i
\(280\) 0 0
\(281\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(282\) 0 0
\(283\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(284\) −5.70634 1.85410i −0.338609 0.110021i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.99235 13.7533i −0.587785 0.809017i
\(290\) 0 0
\(291\) −9.64639 29.6885i −0.565481 1.74037i
\(292\) 0 0
\(293\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(294\) 0 0
\(295\) −3.69347 6.43104i −0.215042 0.374430i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0.931776 16.3545i 0.0537961 0.944227i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 27.6834i 1.57485i
\(310\) 0 0
\(311\) −9.70820 + 7.05342i −0.550502 + 0.399963i −0.827970 0.560772i \(-0.810505\pi\)
0.277469 + 0.960735i \(0.410505\pi\)
\(312\) 0 0
\(313\) −6.83566 3.48294i −0.386374 0.196868i 0.250004 0.968245i \(-0.419568\pi\)
−0.636378 + 0.771377i \(0.719568\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.38382 + 1.21462i −0.133889 + 0.0682198i −0.519652 0.854378i \(-0.673938\pi\)
0.385763 + 0.922598i \(0.373938\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −12.0000 + 13.2665i −0.670820 + 0.741620i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −15.1216 + 4.91329i −0.840087 + 0.272961i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 9.94987 0.546895 0.273447 0.961887i \(-0.411836\pi\)
0.273447 + 0.961887i \(0.411836\pi\)
\(332\) 0 0
\(333\) −0.593648 + 3.74814i −0.0325317 + 0.205397i
\(334\) 0 0
\(335\) 4.50627 1.71804i 0.246204 0.0938665i
\(336\) 0 0
\(337\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(338\) 0 0
\(339\) 19.4804 + 6.32956i 1.05803 + 0.343774i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 31.2188 6.56152i 1.68076 0.353260i
\(346\) 0 0
\(347\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 22.7414 22.7414i 1.21040 1.21040i 0.239511 0.970894i \(-0.423013\pi\)
0.970894 0.239511i \(-0.0769871\pi\)
\(354\) 0 0
\(355\) −6.66984 0.716382i −0.353998 0.0380216i
\(356\) 14.5623 + 10.5801i 0.771801 + 0.560746i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(360\) 0 0
\(361\) −5.87132 + 18.0701i −0.309017 + 0.951057i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 5.19340 + 32.7898i 0.271093 + 1.71162i 0.628620 + 0.777713i \(0.283620\pi\)
−0.357526 + 0.933903i \(0.616380\pi\)
\(368\) −31.0397 15.8155i −1.61806 0.824441i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 29.0449 14.7991i 1.50591 0.767297i
\(373\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) −2.74144 18.1082i −0.141567 0.935103i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 28.3887 9.22404i 1.45823 0.473807i 0.530700 0.847560i \(-0.321929\pi\)
0.927528 + 0.373753i \(0.121929\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −13.5845 26.6610i −0.694134 1.36231i −0.921451 0.388494i \(-0.872995\pi\)
0.227317 0.973821i \(-0.427005\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −5.96217 + 37.6436i −0.302683 + 1.91107i
\(389\) 21.4441 29.5153i 1.08726 1.49648i 0.235988 0.971756i \(-0.424167\pi\)
0.851270 0.524727i \(-0.175833\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 18.8997 + 18.8997i 0.948551 + 0.948551i 0.998740 0.0501886i \(-0.0159822\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −10.0787 + 17.2748i −0.503937 + 0.863740i
\(401\) 8.19915 + 25.2344i 0.409446 + 1.26014i 0.917125 + 0.398599i \(0.130503\pi\)
−0.507679 + 0.861546i \(0.669497\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −15.4151 + 8.85317i −0.765980 + 0.439917i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(410\) 0 0
\(411\) −24.5672 17.8491i −1.21181 0.880433i
\(412\) −15.3446 + 30.1154i −0.755973 + 1.48368i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000i 1.17248i 0.810139 + 0.586238i \(0.199392\pi\)
−0.810139 + 0.586238i \(0.800608\pi\)
\(420\) 0 0
\(421\) 32.1985 23.3936i 1.56926 1.14013i 0.641394 0.767211i \(-0.278356\pi\)
0.927863 0.372921i \(-0.121644\pi\)
\(422\) 0 0
\(423\) 1.07059 + 0.545492i 0.0520537 + 0.0265227i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(432\) 21.4643 + 3.39961i 1.03270 + 0.163564i
\(433\) 0.593378 0.0939818i 0.0285159 0.00451648i −0.142160 0.989844i \(-0.545405\pi\)
0.170676 + 0.985327i \(0.445405\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −2.21637 −0.105542
\(442\) 0 0
\(443\) −1.71265 + 10.8133i −0.0813705 + 0.513753i 0.913014 + 0.407928i \(0.133748\pi\)
−0.994385 + 0.105825i \(0.966252\pi\)
\(444\) −23.0803 + 31.7673i −1.09534 + 1.50761i
\(445\) 18.3661 + 8.22724i 0.870635 + 0.390009i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 37.0912 + 12.0517i 1.75044 + 0.568753i 0.996140 0.0877747i \(-0.0279756\pi\)
0.754302 + 0.656528i \(0.227976\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −17.6834 17.6834i −0.831756 0.831756i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −37.5984 10.1662i −1.75303 0.474004i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −30.4248 + 30.4248i −1.41396 + 1.41396i −0.693615 + 0.720346i \(0.743983\pi\)
−0.720346 + 0.693615i \(0.756017\pi\)
\(464\) 0 0
\(465\) 28.3756 22.8713i 1.31589 1.06063i
\(466\) 0 0
\(467\) 12.8781 25.2746i 0.595926 1.16957i −0.374286 0.927313i \(-0.622112\pi\)
0.970212 0.242257i \(-0.0778878\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 4.67114 14.3763i 0.215235 0.662424i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.674785 + 4.26042i 0.0308963 + 0.195071i
\(478\) 0 0
\(479\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.13325 + 42.5581i 0.0968659 + 1.93246i
\(486\) 0 0
\(487\) −23.0822 3.65587i −1.04596 0.165663i −0.390273 0.920699i \(-0.627619\pi\)
−0.655683 + 0.755036i \(0.727619\pi\)
\(488\) 0 0
\(489\) 4.29604 1.39587i 0.194274 0.0631234i
\(490\) 0 0
\(491\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −39.7995 −1.78705
\(497\) 0 0
\(498\) 0 0
\(499\) 11.6968 16.0992i 0.523620 0.720701i −0.462522 0.886608i \(-0.653055\pi\)
0.986141 + 0.165907i \(0.0530552\pi\)
\(500\) −7.05488 + 21.2186i −0.315504 + 0.948924i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −15.0581 15.0581i −0.668752 0.668752i
\(508\) 0 0
\(509\) −1.94946 2.68321i −0.0864084 0.118931i 0.763624 0.645661i \(-0.223418\pi\)
−0.850033 + 0.526730i \(0.823418\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.86352 + 36.4788i −0.434639 + 1.60745i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −34.8817 25.3430i −1.52819 1.11030i −0.957232 0.289321i \(-0.906570\pi\)
−0.570962 0.820977i \(-0.693430\pi\)
\(522\) 0 0
\(523\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 52.8496i 2.29781i
\(530\) 0 0
\(531\) 0.849569 0.617248i 0.0368682 0.0267863i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −30.6507 + 15.6173i −1.32268 + 0.673937i
\(538\) 0 0
\(539\) 0 0
\(540\) 24.2665 1.21637i 1.04426 0.0523444i
\(541\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(542\) 0 0
\(543\) −16.0982 + 2.54971i −0.690841 + 0.109419i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(548\) 16.8319 + 33.0346i 0.719025 + 1.41117i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −17.9475 + 40.0651i −0.761829 + 1.70067i
\(556\) 0 0
\(557\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(564\) 7.30779 + 10.0583i 0.307713 + 0.423531i
\(565\) −23.4144 15.2814i −0.985051 0.642892i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −26.8918 + 26.8918i −1.12342 + 1.12342i
\(574\) 0 0
\(575\) −43.4753 2.47695i −1.81305 0.103296i
\(576\) −2.04924 1.48886i −0.0853849 0.0620358i
\(577\) 18.2820 35.8805i 0.761091 1.49373i −0.105344 0.994436i \(-0.533594\pi\)
0.866435 0.499290i \(-0.166406\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.04330 38.1559i −0.249434 1.57486i −0.720938 0.693000i \(-0.756289\pi\)
0.471504 0.881864i \(-0.343711\pi\)
\(588\) −20.4338 10.4116i −0.842677 0.429365i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 42.7162 21.7650i 1.75562 0.894535i
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −32.1965 5.09942i −1.31771 0.208705i
\(598\) 0 0
\(599\) 34.2380 11.1246i 1.39893 0.454539i 0.490084 0.871675i \(-0.336966\pi\)
0.908844 + 0.417136i \(0.136966\pi\)
\(600\) 0 0
\(601\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(602\) 0 0
\(603\) 0.310023 + 0.608455i 0.0126251 + 0.0247782i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −34.2665 34.2665i −1.37952 1.37952i −0.845428 0.534089i \(-0.820655\pi\)
−0.534089 0.845428i \(-0.679345\pi\)
\(618\) 0 0
\(619\) 0.587785 + 0.809017i 0.0236251 + 0.0325171i 0.820666 0.571408i \(-0.193603\pi\)
−0.797041 + 0.603925i \(0.793603\pi\)
\(620\) −43.5458 + 9.15239i −1.74884 + 0.367569i
\(621\) 14.6216 + 45.0008i 0.586746 + 1.80582i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −2.83947 + 24.8382i −0.113579 + 0.993529i
\(626\) 0 0
\(627\) 0 0
\(628\) −13.0501 + 13.0501i −0.520757 + 0.520757i
\(629\) 0 0
\(630\) 0 0
\(631\) −5.66312 4.11450i −0.225445 0.163796i 0.469329 0.883023i \(-0.344496\pi\)
−0.694774 + 0.719228i \(0.744496\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −13.7924 + 42.4487i −0.546906 + 1.68320i
\(637\) 0 0
\(638\) 0 0
\(639\) 0.949874i 0.0375764i
\(640\) 0 0
\(641\) 18.7824 13.6462i 0.741862 0.538994i −0.151432 0.988468i \(-0.548388\pi\)
0.893294 + 0.449474i \(0.148388\pi\)
\(642\) 0 0
\(643\) −44.6379 22.7441i −1.76035 0.896941i −0.950753 0.309948i \(-0.899688\pi\)
−0.809592 0.586993i \(-0.800312\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −44.1757 + 22.5087i −1.73673 + 0.884907i −0.766666 + 0.642046i \(0.778086\pi\)
−0.970061 + 0.242861i \(0.921914\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −5.44718 0.862748i −0.213328 0.0337878i
\(653\) 33.3021 5.27454i 1.30321 0.206409i 0.534045 0.845456i \(-0.320671\pi\)
0.769167 + 0.639047i \(0.220671\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −13.0000 −0.505641 −0.252821 0.967513i \(-0.581358\pi\)
−0.252821 + 0.967513i \(0.581358\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 33.9846 + 11.0423i 1.31392 + 0.426918i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(674\) 0 0
\(675\) 26.2709 6.91125i 1.01117 0.266014i
\(676\) 8.03444 + 24.7275i 0.309017 + 0.951057i
\(677\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.2164 + 11.2164i −0.429183 + 0.429183i −0.888350 0.459167i \(-0.848148\pi\)
0.459167 + 0.888350i \(0.348148\pi\)
\(684\) 0 0
\(685\) 26.0130 + 32.2733i 0.993907 + 1.23310i
\(686\) 0 0
\(687\) 22.1986 43.5673i 0.846931 1.66220i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 5.25329 16.1680i 0.199845 0.615058i −0.800041 0.599945i \(-0.795189\pi\)
0.999886 0.0151132i \(-0.00481087\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 10.3087 + 9.32456i 0.388248 + 0.351183i
\(706\) 0 0
\(707\) 0 0
\(708\) 10.7322 1.69981i 0.403339 0.0638826i
\(709\) −18.0701 + 5.87132i −0.678636 + 0.220502i −0.627998 0.778215i \(-0.716125\pi\)
−0.0506378 + 0.998717i \(0.516125\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −39.3406 77.2103i −1.47332 2.89155i
\(714\) 0 0
\(715\) 0 0
\(716\) 42.0000 1.56961
\(717\) 0 0
\(718\) 0 0
\(719\) −29.9770 + 41.2599i −1.11796 + 1.53873i −0.308811 + 0.951123i \(0.599931\pi\)
−0.809144 + 0.587610i \(0.800069\pi\)
\(720\) −2.58451 1.15776i −0.0963191 0.0431470i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 18.9258 + 6.14936i 0.703371 + 0.228539i
\(725\) 0 0
\(726\) 0 0
\(727\) 21.5251 + 21.5251i 0.798320 + 0.798320i 0.982831 0.184510i \(-0.0590699\pi\)
−0.184510 + 0.982831i \(0.559070\pi\)
\(728\) 0 0
\(729\) −17.1730 23.6365i −0.636035 0.875428i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(734\) 0 0
\(735\) −24.7515 6.69256i −0.912973 0.246859i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(740\) 41.7319 33.6368i 1.53409 1.23651i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 18.6074 13.5191i 0.678993 0.493318i −0.194030 0.980996i \(-0.562156\pi\)
0.873024 + 0.487678i \(0.162156\pi\)
\(752\) −2.37459 14.9926i −0.0865924 0.546723i
\(753\) 39.4081 + 20.0794i 1.43611 + 0.731735i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 49.0165 24.9752i 1.78154 0.907738i 0.880270 0.474473i \(-0.157361\pi\)
0.901266 0.433266i \(-0.142639\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 44.1602 14.3485i 1.59766 0.519111i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −11.8989 23.3529i −0.429365 0.842677i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −9.88388 −0.355959
\(772\) 0 0
\(773\) −4.50577 + 28.4483i −0.162061 + 1.02322i 0.763828 + 0.645420i \(0.223318\pi\)
−0.925889 + 0.377795i \(0.876682\pi\)
\(774\) 0 0
\(775\) −45.5400 + 20.0278i −1.63584 + 0.719419i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 16.4580 + 22.6525i 0.587785 + 0.809017i
\(785\) −11.2775 + 17.2796i −0.402510 + 0.616734i
\(786\) 0 0
\(787\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −5.32907 + 49.6161i −0.189003 + 1.75970i
\(796\) 32.1985 + 23.3936i 1.14124 + 0.829163i
\(797\) −19.0630 + 37.4132i −0.675246 + 1.32524i 0.258048 + 0.966132i \(0.416921\pi\)
−0.933294 + 0.359113i \(0.883079\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −0.880582 + 2.71015i −0.0311138 + 0.0957585i
\(802\) 0 0
\(803\) 0 0
\(804\) 7.06600i 0.249198i
\(805\) 0 0
\(806\) 0 0
\(807\) 3.39961 + 21.4643i 0.119672 + 0.755580i
\(808\) 0 0
\(809\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(810\) 0 0
\(811\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.15831 + 0.308689i −0.215716 + 0.0108129i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(822\) 0 0
\(823\) −6.14765 12.0654i −0.214294 0.420575i 0.758689 0.651453i \(-0.225840\pi\)
−0.972983 + 0.230878i \(0.925840\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(828\) 0.862748 5.44718i 0.0299826 0.189303i
\(829\) 17.0458 23.4615i 0.592024 0.814851i −0.402925 0.915233i \(-0.632006\pi\)
0.994949 + 0.100382i \(0.0320064\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 38.2243 + 38.2243i 1.32123 + 1.32123i
\(838\) 0 0
\(839\) −21.4441 29.5153i −0.740332 1.01898i −0.998599 0.0529065i \(-0.983151\pi\)
0.258267 0.966074i \(-0.416849\pi\)
\(840\) 0 0
\(841\) −8.96149 27.5806i −0.309017 0.951057i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 14.4771 + 25.2074i 0.498027 + 0.867161i
\(846\) 0 0
\(847\) 0 0
\(848\) 38.5330 38.5330i 1.32323 1.32323i
\(849\) 0 0
\(850\) 0 0
\(851\) 84.4473 + 61.3546i 2.89482 + 2.10321i
\(852\) 4.46209 8.75735i 0.152869 0.300022i
\(853\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(858\) 0 0
\(859\) 31.0000i 1.05771i −0.848713 0.528853i \(-0.822622\pi\)
0.848713 0.528853i \(-0.177378\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −51.9357 26.4625i −1.76791 0.900795i −0.940958 0.338524i \(-0.890072\pi\)
−0.826953 0.562272i \(-0.809928\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 24.8125 12.6426i 0.842677 0.429365i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −5.95946 + 0.943885i −0.201697 + 0.0319457i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 57.0000 1.92038 0.960189 0.279350i \(-0.0901189\pi\)
0.960189 + 0.279350i \(0.0901189\pi\)
\(882\) 0 0
\(883\) 3.99326 25.2125i 0.134384 0.848467i −0.824747 0.565503i \(-0.808682\pi\)
0.959130 0.282964i \(-0.0913178\pi\)
\(884\) 0 0
\(885\) 11.3515 4.32780i 0.381575 0.145477i
\(886\) 0 0
\(887\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −30.8496 30.8496i −1.03292 1.03292i
\(893\) 0 0
\(894\) 0 0
\(895\) 45.9534 9.65843i 1.53605 0.322846i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −3.09403 0.672392i −0.103134 0.0224131i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 22.1214 + 2.37597i 0.735339 + 0.0789799i
\(906\) 0 0
\(907\) 16.5965 32.5724i 0.551077 1.08155i −0.432597 0.901588i \(-0.642403\pi\)
0.983674 0.179962i \(-0.0575975\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2.04979 + 6.30860i −0.0679125 + 0.209013i −0.979253 0.202639i \(-0.935048\pi\)
0.911341 + 0.411652i \(0.135048\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −48.2977 + 35.0903i −1.59580 + 1.15942i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 37.9248 46.3997i 1.24696 1.52561i
\(926\) 0 0
\(927\) −5.28498 0.837058i −0.173581 0.0274926i
\(928\) 0 0
\(929\) −50.4688 + 16.3983i −1.65583 + 0.538011i −0.979991 0.199042i \(-0.936217\pi\)
−0.675835 + 0.737053i \(0.736217\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −8.92419 17.5147i −0.292165 0.573406i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(938\) 0 0
\(939\) 7.38685 10.1671i 0.241061 0.331791i
\(940\) −6.04584 15.8577i −0.197194 0.517222i
\(941\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −12.6172 4.09957i −0.410655 0.133430i
\(945\) 0 0
\(946\) 0 0
\(947\) −16.8918 16.8918i −0.548910 0.548910i 0.377215 0.926126i \(-0.376882\pi\)
−0.926126 + 0.377215i \(0.876882\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.35430 4.16812i −0.0439163 0.135161i
\(952\) 0 0
\(953\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(954\) 0 0
\(955\) 45.0173 25.8543i 1.45672 0.836625i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −18.3892 22.8148i −0.593510 0.736345i
\(961\) −55.0132 39.9694i −1.77462 1.28934i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −34.8817 + 25.3430i −1.11941 + 0.813296i −0.984119 0.177510i \(-0.943196\pi\)
−0.135287 + 0.990806i \(0.543196\pi\)
\(972\) 1.02502 + 6.47173i 0.0328776 + 0.207581i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 18.5121 9.43240i 0.592256 0.301769i −0.132056 0.991242i \(-0.542158\pi\)
0.724311 + 0.689473i \(0.242158\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 23.2164 + 21.0000i 0.741620 + 0.670820i
\(981\) 0 0
\(982\) 0 0
\(983\) 10.1388 1.60582i 0.323377 0.0512179i 0.00736431 0.999973i \(-0.497656\pi\)
0.316012 + 0.948755i \(0.397656\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 59.6992 1.89641 0.948205 0.317660i \(-0.102897\pi\)
0.948205 + 0.317660i \(0.102897\pi\)
\(992\) 0 0
\(993\) −2.54971 + 16.0982i −0.0809126 + 0.510862i
\(994\) 0 0
\(995\) 40.6089 + 18.1911i 1.28739 + 0.576697i
\(996\) 0 0
\(997\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(998\) 0 0
\(999\) −61.9291 20.1220i −1.95935 0.636632i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.m.a.112.1 16
5.3 odd 4 inner 605.2.m.a.233.1 16
11.2 odd 10 inner 605.2.m.a.602.2 16
11.3 even 5 inner 605.2.m.a.282.1 16
11.4 even 5 55.2.e.b.32.2 4
11.5 even 5 inner 605.2.m.a.457.1 16
11.6 odd 10 inner 605.2.m.a.457.1 16
11.7 odd 10 55.2.e.b.32.2 4
11.8 odd 10 inner 605.2.m.a.282.1 16
11.9 even 5 inner 605.2.m.a.602.2 16
11.10 odd 2 CM 605.2.m.a.112.1 16
33.26 odd 10 495.2.k.a.307.2 4
33.29 even 10 495.2.k.a.307.2 4
44.7 even 10 880.2.bd.d.417.1 4
44.15 odd 10 880.2.bd.d.417.1 4
55.3 odd 20 inner 605.2.m.a.403.2 16
55.4 even 10 275.2.e.a.32.1 4
55.7 even 20 275.2.e.a.43.1 4
55.8 even 20 inner 605.2.m.a.403.2 16
55.13 even 20 inner 605.2.m.a.118.1 16
55.18 even 20 55.2.e.b.43.2 yes 4
55.28 even 20 inner 605.2.m.a.578.1 16
55.29 odd 10 275.2.e.a.32.1 4
55.37 odd 20 275.2.e.a.43.1 4
55.38 odd 20 inner 605.2.m.a.578.1 16
55.43 even 4 inner 605.2.m.a.233.1 16
55.48 odd 20 55.2.e.b.43.2 yes 4
55.53 odd 20 inner 605.2.m.a.118.1 16
165.128 odd 20 495.2.k.a.208.2 4
165.158 even 20 495.2.k.a.208.2 4
220.103 even 20 880.2.bd.d.593.1 4
220.183 odd 20 880.2.bd.d.593.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.e.b.32.2 4 11.4 even 5
55.2.e.b.32.2 4 11.7 odd 10
55.2.e.b.43.2 yes 4 55.18 even 20
55.2.e.b.43.2 yes 4 55.48 odd 20
275.2.e.a.32.1 4 55.4 even 10
275.2.e.a.32.1 4 55.29 odd 10
275.2.e.a.43.1 4 55.7 even 20
275.2.e.a.43.1 4 55.37 odd 20
495.2.k.a.208.2 4 165.128 odd 20
495.2.k.a.208.2 4 165.158 even 20
495.2.k.a.307.2 4 33.26 odd 10
495.2.k.a.307.2 4 33.29 even 10
605.2.m.a.112.1 16 1.1 even 1 trivial
605.2.m.a.112.1 16 11.10 odd 2 CM
605.2.m.a.118.1 16 55.13 even 20 inner
605.2.m.a.118.1 16 55.53 odd 20 inner
605.2.m.a.233.1 16 5.3 odd 4 inner
605.2.m.a.233.1 16 55.43 even 4 inner
605.2.m.a.282.1 16 11.3 even 5 inner
605.2.m.a.282.1 16 11.8 odd 10 inner
605.2.m.a.403.2 16 55.3 odd 20 inner
605.2.m.a.403.2 16 55.8 even 20 inner
605.2.m.a.457.1 16 11.5 even 5 inner
605.2.m.a.457.1 16 11.6 odd 10 inner
605.2.m.a.578.1 16 55.28 even 20 inner
605.2.m.a.578.1 16 55.38 odd 20 inner
605.2.m.a.602.2 16 11.2 odd 10 inner
605.2.m.a.602.2 16 11.9 even 5 inner
880.2.bd.d.417.1 4 44.7 even 10
880.2.bd.d.417.1 4 44.15 odd 10
880.2.bd.d.593.1 4 220.103 even 20
880.2.bd.d.593.1 4 220.183 odd 20