Properties

Label 605.2.j.j.444.4
Level $605$
Weight $2$
Character 605.444
Analytic conductor $4.831$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(9,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.j (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.343361479062744140625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 3 x^{14} - 8 x^{13} + 8 x^{12} + 7 x^{11} + 6 x^{10} + 56 x^{9} - 137 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 444.4
Root \(-1.70149 - 0.323920i\) of defining polynomial
Character \(\chi\) \(=\) 605.444
Dual form 605.2.j.j.124.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.48377 - 2.04223i) q^{2} +(0.753510 + 0.244830i) q^{3} +(-1.35111 - 4.15829i) q^{4} +(0.695822 + 2.12505i) q^{5} +(1.61803 - 1.17557i) q^{6} +(3.29456 - 1.07047i) q^{7} +(-5.69534 - 1.85053i) q^{8} +(-1.91922 - 1.39439i) q^{9} +(5.37228 + 1.73205i) q^{10} -3.46410i q^{12} +(2.70222 - 8.31657i) q^{14} +(0.00403247 + 1.77160i) q^{15} +(-5.15528 + 3.74553i) q^{16} +(0.931389 + 1.28195i) q^{17} +(-5.69534 + 1.85053i) q^{18} +(1.23607 - 3.80423i) q^{19} +(7.89643 - 5.76460i) q^{20} +2.74456 q^{21} -0.792287i q^{23} +(-3.83843 - 2.78878i) q^{24} +(-4.03166 + 2.95731i) q^{25} +(-2.50184 - 3.44349i) q^{27} +(-8.90261 - 12.2534i) q^{28} +(2.70222 + 8.31657i) q^{29} +(3.62401 + 2.62041i) q^{30} +(-2.72823 - 1.98218i) q^{31} +4.10891i q^{32} +4.00000 q^{34} +(4.56722 + 6.25624i) q^{35} +(-3.20521 + 9.86463i) q^{36} +(1.03403 - 0.335976i) q^{37} +(-5.93507 - 8.16893i) q^{38} +(-0.0304791 - 13.3905i) q^{40} +(-2.70222 + 8.31657i) q^{41} +(4.07230 - 5.60503i) q^{42} +3.46410i q^{43} +(1.62772 - 5.04868i) q^{45} +(-1.61803 - 1.17557i) q^{46} +(-6.30860 - 2.04979i) q^{47} +(-4.80158 + 1.56013i) q^{48} +(4.04508 - 2.93893i) q^{49} +(0.0574579 + 12.6216i) q^{50} +(0.387951 + 1.19399i) q^{51} +(-5.93507 + 8.16893i) q^{53} -10.7446 q^{54} -20.7446 q^{56} +(1.86278 - 2.56389i) q^{57} +(20.9938 + 6.82131i) q^{58} +(2.27816 + 7.01146i) q^{59} +(7.36138 - 2.41040i) q^{60} +(-0.602364 + 0.437643i) q^{61} +(-8.09613 + 2.63059i) q^{62} +(-7.81561 - 2.53945i) q^{63} +(-1.91922 - 1.39439i) q^{64} +9.30506i q^{67} +(4.07230 - 5.60503i) q^{68} +(0.193976 - 0.596996i) q^{69} +(19.5534 - 0.0445068i) q^{70} +(8.18470 - 5.94653i) q^{71} +(8.35023 + 11.4931i) q^{72} +(6.58911 - 2.14093i) q^{73} +(0.848116 - 2.61023i) q^{74} +(-3.76194 + 1.24129i) q^{75} -17.4891 q^{76} +(-1.01567 - 0.737928i) q^{79} +(-11.5466 - 8.34901i) q^{80} +(1.15713 + 3.56129i) q^{81} +(12.9749 + 17.8584i) q^{82} +(-3.89893 - 5.36641i) q^{83} +(-3.70820 - 11.4127i) q^{84} +(-2.07612 + 2.87125i) q^{85} +(7.07450 + 5.13992i) q^{86} +6.92820i q^{87} -1.37228 q^{89} +(-7.89541 - 10.8152i) q^{90} +(-3.29456 + 1.07047i) q^{92} +(-1.57045 - 2.16154i) q^{93} +(-13.5466 + 9.84221i) q^{94} +(8.94425 - 0.0203586i) q^{95} +(-1.00599 + 3.09610i) q^{96} +(3.43323 - 4.72544i) q^{97} -12.6217i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{4} + 3 q^{5} + 8 q^{6} + 2 q^{9} + 40 q^{10} - 12 q^{14} - q^{15} - 14 q^{16} - 16 q^{19} + 12 q^{20} - 48 q^{21} + 4 q^{24} - q^{25} - 12 q^{29} - 6 q^{30} - 2 q^{31} + 64 q^{34} + 18 q^{35}+ \cdots + 36 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48377 2.04223i 1.04918 1.44408i 0.159667 0.987171i \(-0.448958\pi\)
0.889515 0.456905i \(-0.151042\pi\)
\(3\) 0.753510 + 0.244830i 0.435039 + 0.141353i 0.518346 0.855171i \(-0.326548\pi\)
−0.0833066 + 0.996524i \(0.526548\pi\)
\(4\) −1.35111 4.15829i −0.675555 2.07914i
\(5\) 0.695822 + 2.12505i 0.311181 + 0.950351i
\(6\) 1.61803 1.17557i 0.660560 0.479925i
\(7\) 3.29456 1.07047i 1.24523 0.404598i 0.389018 0.921230i \(-0.372814\pi\)
0.856208 + 0.516632i \(0.172814\pi\)
\(8\) −5.69534 1.85053i −2.01361 0.654261i
\(9\) −1.91922 1.39439i −0.639739 0.464797i
\(10\) 5.37228 + 1.73205i 1.69886 + 0.547723i
\(11\) 0 0
\(12\) 3.46410i 1.00000i
\(13\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(14\) 2.70222 8.31657i 0.722198 2.22270i
\(15\) 0.00403247 + 1.77160i 0.00104118 + 0.457426i
\(16\) −5.15528 + 3.74553i −1.28882 + 0.936383i
\(17\) 0.931389 + 1.28195i 0.225895 + 0.310918i 0.906888 0.421372i \(-0.138451\pi\)
−0.680993 + 0.732290i \(0.738451\pi\)
\(18\) −5.69534 + 1.85053i −1.34241 + 0.436174i
\(19\) 1.23607 3.80423i 0.283573 0.872749i −0.703249 0.710943i \(-0.748268\pi\)
0.986823 0.161806i \(-0.0517318\pi\)
\(20\) 7.89643 5.76460i 1.76570 1.28900i
\(21\) 2.74456 0.598913
\(22\) 0 0
\(23\) 0.792287i 0.165203i −0.996583 0.0826016i \(-0.973677\pi\)
0.996583 0.0826016i \(-0.0263229\pi\)
\(24\) −3.83843 2.78878i −0.783517 0.569258i
\(25\) −4.03166 + 2.95731i −0.806333 + 0.591462i
\(26\) 0 0
\(27\) −2.50184 3.44349i −0.481480 0.662700i
\(28\) −8.90261 12.2534i −1.68244 2.31567i
\(29\) 2.70222 + 8.31657i 0.501789 + 1.54435i 0.806102 + 0.591777i \(0.201573\pi\)
−0.304313 + 0.952572i \(0.598427\pi\)
\(30\) 3.62401 + 2.62041i 0.661650 + 0.478420i
\(31\) −2.72823 1.98218i −0.490005 0.356010i 0.315181 0.949032i \(-0.397935\pi\)
−0.805186 + 0.593022i \(0.797935\pi\)
\(32\) 4.10891i 0.726360i
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) 4.56722 + 6.25624i 0.772001 + 1.05750i
\(36\) −3.20521 + 9.86463i −0.534202 + 1.64410i
\(37\) 1.03403 0.335976i 0.169993 0.0552341i −0.222784 0.974868i \(-0.571514\pi\)
0.392777 + 0.919634i \(0.371514\pi\)
\(38\) −5.93507 8.16893i −0.962796 1.32518i
\(39\) 0 0
\(40\) −0.0304791 13.3905i −0.00481917 2.11723i
\(41\) −2.70222 + 8.31657i −0.422016 + 1.29883i 0.483807 + 0.875174i \(0.339253\pi\)
−0.905823 + 0.423656i \(0.860747\pi\)
\(42\) 4.07230 5.60503i 0.628369 0.864876i
\(43\) 3.46410i 0.528271i 0.964486 + 0.264135i \(0.0850865\pi\)
−0.964486 + 0.264135i \(0.914913\pi\)
\(44\) 0 0
\(45\) 1.62772 5.04868i 0.242646 0.752612i
\(46\) −1.61803 1.17557i −0.238566 0.173328i
\(47\) −6.30860 2.04979i −0.920203 0.298992i −0.189653 0.981851i \(-0.560736\pi\)
−0.730550 + 0.682859i \(0.760736\pi\)
\(48\) −4.80158 + 1.56013i −0.693048 + 0.225185i
\(49\) 4.04508 2.93893i 0.577869 0.419847i
\(50\) 0.0574579 + 12.6216i 0.00812578 + 1.78496i
\(51\) 0.387951 + 1.19399i 0.0543241 + 0.167192i
\(52\) 0 0
\(53\) −5.93507 + 8.16893i −0.815245 + 1.12209i 0.175248 + 0.984524i \(0.443927\pi\)
−0.990493 + 0.137564i \(0.956073\pi\)
\(54\) −10.7446 −1.46215
\(55\) 0 0
\(56\) −20.7446 −2.77211
\(57\) 1.86278 2.56389i 0.246731 0.339596i
\(58\) 20.9938 + 6.82131i 2.75663 + 0.895682i
\(59\) 2.27816 + 7.01146i 0.296591 + 0.912814i 0.982682 + 0.185298i \(0.0593251\pi\)
−0.686091 + 0.727516i \(0.740675\pi\)
\(60\) 7.36138 2.41040i 0.950351 0.311181i
\(61\) −0.602364 + 0.437643i −0.0771248 + 0.0560344i −0.625680 0.780080i \(-0.715178\pi\)
0.548555 + 0.836115i \(0.315178\pi\)
\(62\) −8.09613 + 2.63059i −1.02821 + 0.334086i
\(63\) −7.81561 2.53945i −0.984675 0.319940i
\(64\) −1.91922 1.39439i −0.239902 0.174299i
\(65\) 0 0
\(66\) 0 0
\(67\) 9.30506i 1.13679i 0.822754 + 0.568397i \(0.192436\pi\)
−0.822754 + 0.568397i \(0.807564\pi\)
\(68\) 4.07230 5.60503i 0.493838 0.679710i
\(69\) 0.193976 0.596996i 0.0233519 0.0718699i
\(70\) 19.5534 0.0445068i 2.33708 0.00531959i
\(71\) 8.18470 5.94653i 0.971345 0.705723i 0.0155873 0.999879i \(-0.495038\pi\)
0.955758 + 0.294155i \(0.0950382\pi\)
\(72\) 8.35023 + 11.4931i 0.984084 + 1.35448i
\(73\) 6.58911 2.14093i 0.771197 0.250577i 0.103120 0.994669i \(-0.467117\pi\)
0.668077 + 0.744092i \(0.267117\pi\)
\(74\) 0.848116 2.61023i 0.0985915 0.303434i
\(75\) −3.76194 + 1.24129i −0.434391 + 0.143332i
\(76\) −17.4891 −2.00614
\(77\) 0 0
\(78\) 0 0
\(79\) −1.01567 0.737928i −0.114272 0.0830233i 0.529182 0.848509i \(-0.322499\pi\)
−0.643453 + 0.765485i \(0.722499\pi\)
\(80\) −11.5466 8.34901i −1.29095 0.933447i
\(81\) 1.15713 + 3.56129i 0.128570 + 0.395699i
\(82\) 12.9749 + 17.8584i 1.43284 + 1.97213i
\(83\) −3.89893 5.36641i −0.427963 0.589040i 0.539521 0.841972i \(-0.318605\pi\)
−0.967484 + 0.252932i \(0.918605\pi\)
\(84\) −3.70820 11.4127i −0.404598 1.24523i
\(85\) −2.07612 + 2.87125i −0.225187 + 0.311431i
\(86\) 7.07450 + 5.13992i 0.762863 + 0.554252i
\(87\) 6.92820i 0.742781i
\(88\) 0 0
\(89\) −1.37228 −0.145462 −0.0727308 0.997352i \(-0.523171\pi\)
−0.0727308 + 0.997352i \(0.523171\pi\)
\(90\) −7.89541 10.8152i −0.832249 1.14003i
\(91\) 0 0
\(92\) −3.29456 + 1.07047i −0.343481 + 0.111604i
\(93\) −1.57045 2.16154i −0.162848 0.224142i
\(94\) −13.5466 + 9.84221i −1.39723 + 1.01515i
\(95\) 8.94425 0.0203586i 0.917661 0.00208875i
\(96\) −1.00599 + 3.09610i −0.102673 + 0.315995i
\(97\) 3.43323 4.72544i 0.348592 0.479796i −0.598334 0.801247i \(-0.704171\pi\)
0.946926 + 0.321451i \(0.104171\pi\)
\(98\) 12.6217i 1.27498i
\(99\) 0 0
\(100\) 17.7446 + 12.7692i 1.77446 + 1.27692i
\(101\) 4.85410 + 3.52671i 0.483001 + 0.350921i 0.802486 0.596670i \(-0.203510\pi\)
−0.319485 + 0.947591i \(0.603510\pi\)
\(102\) 3.01404 + 0.979321i 0.298434 + 0.0969672i
\(103\) −9.88367 + 3.21140i −0.973867 + 0.316429i −0.752376 0.658734i \(-0.771092\pi\)
−0.221491 + 0.975162i \(0.571092\pi\)
\(104\) 0 0
\(105\) 1.90973 + 5.83233i 0.186370 + 0.569177i
\(106\) 7.87657 + 24.2416i 0.765040 + 2.35455i
\(107\) 6.30860 + 2.04979i 0.609875 + 0.198160i 0.597640 0.801765i \(-0.296105\pi\)
0.0122352 + 0.999925i \(0.496105\pi\)
\(108\) −10.9388 + 15.0559i −1.05258 + 1.44876i
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0.861407 0.0817611
\(112\) −12.9749 + 17.8584i −1.22601 + 1.68746i
\(113\) 0.472992 + 0.153684i 0.0444954 + 0.0144574i 0.331180 0.943568i \(-0.392553\pi\)
−0.286685 + 0.958025i \(0.592553\pi\)
\(114\) −2.47214 7.60845i −0.231537 0.712597i
\(115\) 1.68365 0.551291i 0.157001 0.0514081i
\(116\) 30.9317 22.4732i 2.87194 2.08658i
\(117\) 0 0
\(118\) 17.6993 + 5.75085i 1.62935 + 0.529408i
\(119\) 4.44080 + 3.22643i 0.407087 + 0.295766i
\(120\) 3.25544 10.0974i 0.297179 0.921758i
\(121\) 0 0
\(122\) 1.87953i 0.170164i
\(123\) −4.07230 + 5.60503i −0.367187 + 0.505389i
\(124\) −4.55632 + 14.0229i −0.409170 + 1.25929i
\(125\) −9.08975 6.50972i −0.813012 0.582247i
\(126\) −16.7827 + 12.1933i −1.49512 + 1.08627i
\(127\) −4.83032 6.64836i −0.428621 0.589946i 0.539015 0.842296i \(-0.318797\pi\)
−0.967636 + 0.252350i \(0.918797\pi\)
\(128\) −13.5110 + 4.38998i −1.19421 + 0.388023i
\(129\) −0.848116 + 2.61023i −0.0746725 + 0.229818i
\(130\) 0 0
\(131\) 2.74456 0.239794 0.119897 0.992786i \(-0.461744\pi\)
0.119897 + 0.992786i \(0.461744\pi\)
\(132\) 0 0
\(133\) 13.8564i 1.20150i
\(134\) 19.0031 + 13.8066i 1.64162 + 1.19271i
\(135\) 5.57675 7.71259i 0.479970 0.663794i
\(136\) −2.93230 9.02469i −0.251443 0.773861i
\(137\) −8.43692 11.6124i −0.720814 0.992116i −0.999496 0.0317325i \(-0.989898\pi\)
0.278682 0.960383i \(-0.410102\pi\)
\(138\) −0.931389 1.28195i −0.0792851 0.109127i
\(139\) −5.01649 15.4392i −0.425493 1.30953i −0.902522 0.430644i \(-0.858286\pi\)
0.477029 0.878888i \(-0.341714\pi\)
\(140\) 19.8444 27.4447i 1.67716 2.31950i
\(141\) −4.25174 3.08907i −0.358061 0.260147i
\(142\) 25.5383i 2.14313i
\(143\) 0 0
\(144\) 15.1168 1.25974
\(145\) −15.7929 + 11.5292i −1.31153 + 0.957448i
\(146\) 5.40444 16.6331i 0.447274 1.37657i
\(147\) 3.76755 1.22415i 0.310742 0.100966i
\(148\) −2.79417 3.84584i −0.229679 0.316126i
\(149\) 9.29490 6.75314i 0.761468 0.553239i −0.137892 0.990447i \(-0.544033\pi\)
0.899360 + 0.437209i \(0.144033\pi\)
\(150\) −3.04684 + 9.52453i −0.248774 + 0.777675i
\(151\) 3.78042 11.6349i 0.307646 0.946837i −0.671031 0.741430i \(-0.734148\pi\)
0.978677 0.205407i \(-0.0658519\pi\)
\(152\) −14.0797 + 19.3790i −1.14201 + 1.57184i
\(153\) 3.75906i 0.303902i
\(154\) 0 0
\(155\) 2.31386 7.17687i 0.185854 0.576460i
\(156\) 0 0
\(157\) −23.2544 7.55580i −1.85590 0.603019i −0.995653 0.0931428i \(-0.970309\pi\)
−0.860248 0.509876i \(-0.829691\pi\)
\(158\) −3.01404 + 0.979321i −0.239784 + 0.0779106i
\(159\) −6.47214 + 4.70228i −0.513274 + 0.372915i
\(160\) −8.73164 + 2.85907i −0.690297 + 0.226029i
\(161\) −0.848116 2.61023i −0.0668409 0.205715i
\(162\) 8.98990 + 2.92100i 0.706313 + 0.229495i
\(163\) 2.03615 2.80252i 0.159483 0.219510i −0.721796 0.692106i \(-0.756683\pi\)
0.881279 + 0.472596i \(0.156683\pi\)
\(164\) 38.2337 2.98555
\(165\) 0 0
\(166\) −16.7446 −1.29963
\(167\) 9.24935 12.7306i 0.715736 0.985126i −0.283918 0.958848i \(-0.591635\pi\)
0.999655 0.0262779i \(-0.00836549\pi\)
\(168\) −15.6312 5.07889i −1.20598 0.391845i
\(169\) 4.01722 + 12.3637i 0.309017 + 0.951057i
\(170\) 2.78329 + 8.50019i 0.213468 + 0.651935i
\(171\) −7.67686 + 5.57757i −0.587064 + 0.426527i
\(172\) 14.4047 4.68038i 1.09835 0.356876i
\(173\) −8.09613 2.63059i −0.615538 0.200000i −0.0153795 0.999882i \(-0.504896\pi\)
−0.600158 + 0.799881i \(0.704896\pi\)
\(174\) 14.1490 + 10.2798i 1.07263 + 0.779313i
\(175\) −10.1168 + 14.0588i −0.764762 + 1.06274i
\(176\) 0 0
\(177\) 5.84096i 0.439034i
\(178\) −2.03615 + 2.80252i −0.152616 + 0.210058i
\(179\) −3.97439 + 12.2319i −0.297060 + 0.914257i 0.685462 + 0.728109i \(0.259600\pi\)
−0.982522 + 0.186148i \(0.940400\pi\)
\(180\) −23.1931 + 0.0527914i −1.72871 + 0.00393484i
\(181\) −19.5109 + 14.1755i −1.45024 + 1.05366i −0.464461 + 0.885594i \(0.653752\pi\)
−0.985776 + 0.168065i \(0.946248\pi\)
\(182\) 0 0
\(183\) −0.561035 + 0.182291i −0.0414729 + 0.0134754i
\(184\) −1.46615 + 4.51235i −0.108086 + 0.332655i
\(185\) 1.43346 + 1.96358i 0.105390 + 0.144365i
\(186\) −6.74456 −0.494535
\(187\) 0 0
\(188\) 29.0024i 2.11522i
\(189\) −11.9286 8.66664i −0.867678 0.630405i
\(190\) 13.2296 18.2964i 0.959777 1.32736i
\(191\) −5.98636 18.4241i −0.433158 1.33312i −0.894962 0.446142i \(-0.852798\pi\)
0.461804 0.886982i \(-0.347202\pi\)
\(192\) −1.10476 1.52057i −0.0797291 0.109738i
\(193\) 9.66063 + 13.2967i 0.695387 + 0.957119i 0.999989 + 0.00463891i \(0.00147662\pi\)
−0.304602 + 0.952480i \(0.598523\pi\)
\(194\) −4.55632 14.0229i −0.327125 1.00679i
\(195\) 0 0
\(196\) −17.6862 12.8498i −1.26330 0.917844i
\(197\) 8.51278i 0.606510i −0.952909 0.303255i \(-0.901927\pi\)
0.952909 0.303255i \(-0.0980734\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 28.4343 9.38219i 2.01061 0.663421i
\(201\) −2.27816 + 7.01146i −0.160689 + 0.494550i
\(202\) 14.4047 4.68038i 1.01351 0.329310i
\(203\) 17.8052 + 24.5068i 1.24968 + 1.72004i
\(204\) 4.44080 3.22643i 0.310918 0.225895i
\(205\) −19.5534 + 0.0445068i −1.36567 + 0.00310849i
\(206\) −8.10666 + 24.9497i −0.564817 + 1.73833i
\(207\) −1.10476 + 1.52057i −0.0767860 + 0.105687i
\(208\) 0 0
\(209\) 0 0
\(210\) 14.7446 + 4.75372i 1.01747 + 0.328038i
\(211\) 1.20473 + 0.875286i 0.0829369 + 0.0602572i 0.628481 0.777825i \(-0.283677\pi\)
−0.545544 + 0.838082i \(0.683677\pi\)
\(212\) 41.9877 + 13.6426i 2.88373 + 0.936979i
\(213\) 7.62314 2.47691i 0.522329 0.169715i
\(214\) 13.5466 9.84221i 0.926029 0.672799i
\(215\) −7.36138 + 2.41040i −0.502042 + 0.164388i
\(216\) 7.87657 + 24.2416i 0.535933 + 1.64943i
\(217\) −11.1102 3.60991i −0.754208 0.245057i
\(218\) 14.8377 20.4223i 1.00493 1.38317i
\(219\) 5.48913 0.370921
\(220\) 0 0
\(221\) 0 0
\(222\) 1.27813 1.75919i 0.0857823 0.118069i
\(223\) 2.26053 + 0.734490i 0.151376 + 0.0491851i 0.383725 0.923447i \(-0.374641\pi\)
−0.232349 + 0.972633i \(0.574641\pi\)
\(224\) 4.39845 + 13.5370i 0.293884 + 0.904482i
\(225\) 11.8613 0.0539969i 0.790752 0.00359979i
\(226\) 1.01567 0.737928i 0.0675614 0.0490862i
\(227\) 15.9117 5.17004i 1.05610 0.343148i 0.271040 0.962568i \(-0.412632\pi\)
0.785059 + 0.619420i \(0.212632\pi\)
\(228\) −13.1782 4.28187i −0.872749 0.283573i
\(229\) 11.8341 + 8.59796i 0.782018 + 0.568169i 0.905584 0.424167i \(-0.139433\pi\)
−0.123566 + 0.992336i \(0.539433\pi\)
\(230\) 1.37228 4.25639i 0.0904856 0.280658i
\(231\) 0 0
\(232\) 52.3663i 3.43801i
\(233\) −2.20952 + 3.04114i −0.144750 + 0.199232i −0.875236 0.483697i \(-0.839294\pi\)
0.730485 + 0.682928i \(0.239294\pi\)
\(234\) 0 0
\(235\) −0.0337610 14.8324i −0.00220232 0.967556i
\(236\) 26.0776 18.9465i 1.69751 1.23331i
\(237\) −0.584650 0.804702i −0.0379771 0.0522710i
\(238\) 13.1782 4.28187i 0.854217 0.277552i
\(239\) −4.55632 + 14.0229i −0.294724 + 0.907067i 0.688590 + 0.725151i \(0.258230\pi\)
−0.983314 + 0.181916i \(0.941770\pi\)
\(240\) −6.65639 9.11801i −0.429668 0.588565i
\(241\) −16.7446 −1.07861 −0.539306 0.842110i \(-0.681313\pi\)
−0.539306 + 0.842110i \(0.681313\pi\)
\(242\) 0 0
\(243\) 15.7359i 1.00946i
\(244\) 2.63370 + 1.91350i 0.168606 + 0.122499i
\(245\) 9.06002 + 6.55103i 0.578823 + 0.418530i
\(246\) 5.40444 + 16.6331i 0.344574 + 1.06049i
\(247\) 0 0
\(248\) 11.8701 + 16.3379i 0.753755 + 1.03745i
\(249\) −1.62402 4.99822i −0.102918 0.316749i
\(250\) −26.7814 + 8.90446i −1.69381 + 0.563167i
\(251\) 17.8929 + 13.0000i 1.12939 + 0.820550i 0.985606 0.169059i \(-0.0540729\pi\)
0.143784 + 0.989609i \(0.454073\pi\)
\(252\) 35.9306i 2.26342i
\(253\) 0 0
\(254\) −20.7446 −1.30163
\(255\) −2.26735 + 1.65522i −0.141987 + 0.103654i
\(256\) −9.61563 + 29.5939i −0.600977 + 1.84962i
\(257\) −10.1642 + 3.30254i −0.634025 + 0.206007i −0.608357 0.793663i \(-0.708171\pi\)
−0.0256675 + 0.999671i \(0.508171\pi\)
\(258\) 4.07230 + 5.60503i 0.253530 + 0.348954i
\(259\) 3.04701 2.21378i 0.189332 0.137558i
\(260\) 0 0
\(261\) 6.41042 19.7293i 0.396795 1.22121i
\(262\) 4.07230 5.60503i 0.251587 0.346280i
\(263\) 27.4179i 1.69066i 0.534246 + 0.845329i \(0.320595\pi\)
−0.534246 + 0.845329i \(0.679405\pi\)
\(264\) 0 0
\(265\) −21.4891 6.92820i −1.32007 0.425596i
\(266\) −28.2980 20.5597i −1.73506 1.26060i
\(267\) −1.03403 0.335976i −0.0632814 0.0205614i
\(268\) 38.6931 12.5722i 2.36356 0.767967i
\(269\) −9.29490 + 6.75314i −0.566720 + 0.411746i −0.833912 0.551897i \(-0.813904\pi\)
0.267192 + 0.963643i \(0.413904\pi\)
\(270\) −7.47630 22.8327i −0.454993 1.38956i
\(271\) −4.16837 12.8289i −0.253210 0.779301i −0.994177 0.107760i \(-0.965632\pi\)
0.740967 0.671542i \(-0.234368\pi\)
\(272\) −9.60315 3.12025i −0.582277 0.189193i
\(273\) 0 0
\(274\) −36.2337 −2.18896
\(275\) 0 0
\(276\) −2.74456 −0.165203
\(277\) 6.86646 9.45088i 0.412566 0.567848i −0.551276 0.834323i \(-0.685859\pi\)
0.963842 + 0.266475i \(0.0858589\pi\)
\(278\) −38.9736 12.6633i −2.33748 0.759494i
\(279\) 2.47214 + 7.60845i 0.148003 + 0.455506i
\(280\) −14.4345 44.0832i −0.862627 2.63448i
\(281\) −0.413306 + 0.300285i −0.0246558 + 0.0179135i −0.600045 0.799966i \(-0.704851\pi\)
0.575389 + 0.817880i \(0.304851\pi\)
\(282\) −12.6172 + 4.09957i −0.751343 + 0.244126i
\(283\) 14.4047 + 4.68038i 0.856272 + 0.278220i 0.704071 0.710130i \(-0.251364\pi\)
0.152201 + 0.988350i \(0.451364\pi\)
\(284\) −35.7858 25.9999i −2.12350 1.54281i
\(285\) 6.74456 + 2.17448i 0.399513 + 0.128805i
\(286\) 0 0
\(287\) 30.2921i 1.78808i
\(288\) 5.72943 7.88589i 0.337610 0.464680i
\(289\) 4.47739 13.7800i 0.263376 0.810587i
\(290\) 0.112350 + 49.3594i 0.00659744 + 2.89848i
\(291\) 3.74390 2.72010i 0.219471 0.159455i
\(292\) −17.8052 24.5068i −1.04197 1.43415i
\(293\) −3.01404 + 0.979321i −0.176082 + 0.0572125i −0.395731 0.918366i \(-0.629509\pi\)
0.219649 + 0.975579i \(0.429509\pi\)
\(294\) 3.09017 9.51057i 0.180222 0.554667i
\(295\) −13.3145 + 9.71993i −0.775200 + 0.565916i
\(296\) −6.51087 −0.378437
\(297\) 0 0
\(298\) 29.0024i 1.68007i
\(299\) 0 0
\(300\) 10.2444 + 13.9661i 0.591462 + 0.806333i
\(301\) 3.70820 + 11.4127i 0.213737 + 0.657816i
\(302\) −18.1520 24.9840i −1.04453 1.43767i
\(303\) 2.79417 + 3.84584i 0.160521 + 0.220938i
\(304\) 7.87657 + 24.2416i 0.451752 + 1.39035i
\(305\) −1.34915 0.975531i −0.0772521 0.0558587i
\(306\) −7.67686 5.57757i −0.438857 0.318848i
\(307\) 31.5817i 1.80246i −0.433340 0.901231i \(-0.642665\pi\)
0.433340 0.901231i \(-0.357335\pi\)
\(308\) 0 0
\(309\) −8.23369 −0.468398
\(310\) −11.2236 15.3743i −0.637458 0.873199i
\(311\) 1.69623 5.22047i 0.0961845 0.296026i −0.891376 0.453265i \(-0.850259\pi\)
0.987561 + 0.157239i \(0.0502593\pi\)
\(312\) 0 0
\(313\) −12.8560 17.6947i −0.726661 1.00016i −0.999276 0.0380403i \(-0.987888\pi\)
0.272615 0.962123i \(-0.412112\pi\)
\(314\) −49.9348 + 36.2798i −2.81798 + 2.04739i
\(315\) −0.0418259 18.3756i −0.00235662 1.03535i
\(316\) −1.69623 + 5.22047i −0.0954206 + 0.293674i
\(317\) 19.3757 26.6683i 1.08825 1.49784i 0.238141 0.971231i \(-0.423462\pi\)
0.850106 0.526612i \(-0.176538\pi\)
\(318\) 20.1947i 1.13246i
\(319\) 0 0
\(320\) 1.62772 5.04868i 0.0909922 0.282230i
\(321\) 4.25174 + 3.08907i 0.237309 + 0.172415i
\(322\) −6.58911 2.14093i −0.367197 0.119310i
\(323\) 6.02808 1.95864i 0.335411 0.108982i
\(324\) 13.2455 9.62339i 0.735859 0.534633i
\(325\) 0 0
\(326\) −2.70222 8.31657i −0.149662 0.460612i
\(327\) 7.53510 + 2.44830i 0.416692 + 0.135391i
\(328\) 30.7801 42.3652i 1.69955 2.33923i
\(329\) −22.9783 −1.26683
\(330\) 0 0
\(331\) −14.1168 −0.775932 −0.387966 0.921674i \(-0.626822\pi\)
−0.387966 + 0.921674i \(0.626822\pi\)
\(332\) −17.0472 + 23.4635i −0.935587 + 1.28772i
\(333\) −2.45300 0.797029i −0.134424 0.0436769i
\(334\) −12.2750 37.7786i −0.671659 2.06716i
\(335\) −19.7737 + 6.47467i −1.08035 + 0.353749i
\(336\) −14.1490 + 10.2798i −0.771891 + 0.560812i
\(337\) −30.8775 + 10.0327i −1.68201 + 0.546517i −0.985299 0.170840i \(-0.945352\pi\)
−0.696706 + 0.717356i \(0.745352\pi\)
\(338\) 31.2102 + 10.1408i 1.69761 + 0.551588i
\(339\) 0.318778 + 0.231605i 0.0173136 + 0.0125791i
\(340\) 14.7446 + 4.75372i 0.799636 + 0.257807i
\(341\) 0 0
\(342\) 23.9538i 1.29527i
\(343\) −4.07230 + 5.60503i −0.219883 + 0.302643i
\(344\) 6.41042 19.7293i 0.345627 1.06373i
\(345\) 1.40362 0.00319487i 0.0755683 0.000172006i
\(346\) −17.3851 + 12.6310i −0.934627 + 0.679046i
\(347\) −13.3216 18.3357i −0.715143 0.984310i −0.999671 0.0256427i \(-0.991837\pi\)
0.284528 0.958668i \(-0.408163\pi\)
\(348\) 28.8095 9.36076i 1.54435 0.501789i
\(349\) 4.78640 14.7310i 0.256210 0.788534i −0.737379 0.675480i \(-0.763937\pi\)
0.993589 0.113054i \(-0.0360634\pi\)
\(350\) 13.7003 + 41.5209i 0.732309 + 2.21939i
\(351\) 0 0
\(352\) 0 0
\(353\) 25.0410i 1.33280i −0.745595 0.666399i \(-0.767835\pi\)
0.745595 0.666399i \(-0.232165\pi\)
\(354\) 11.9286 + 8.66664i 0.633998 + 0.460627i
\(355\) 18.3318 + 13.2552i 0.972949 + 0.703511i
\(356\) 1.85410 + 5.70634i 0.0982672 + 0.302435i
\(357\) 2.55626 + 3.51838i 0.135291 + 0.186213i
\(358\) 19.0834 + 26.2660i 1.00859 + 1.38820i
\(359\) 9.11264 + 28.0458i 0.480947 + 1.48020i 0.837766 + 0.546029i \(0.183861\pi\)
−0.356820 + 0.934173i \(0.616139\pi\)
\(360\) −18.6131 + 25.7418i −0.980999 + 1.35671i
\(361\) 2.42705 + 1.76336i 0.127740 + 0.0928082i
\(362\) 60.8791i 3.19973i
\(363\) 0 0
\(364\) 0 0
\(365\) 9.13443 + 12.5125i 0.478118 + 0.654933i
\(366\) −0.460165 + 1.41624i −0.0240532 + 0.0740282i
\(367\) −24.4809 + 7.95432i −1.27789 + 0.415212i −0.867837 0.496849i \(-0.834490\pi\)
−0.410054 + 0.912061i \(0.634490\pi\)
\(368\) 2.96754 + 4.08446i 0.154694 + 0.212917i
\(369\) 16.7827 12.1933i 0.873673 0.634760i
\(370\) 6.13701 0.0139689i 0.319048 0.000726208i
\(371\) −10.8089 + 33.2663i −0.561169 + 1.72710i
\(372\) −6.86646 + 9.45088i −0.356010 + 0.490005i
\(373\) 11.6819i 0.604867i −0.953170 0.302434i \(-0.902201\pi\)
0.953170 0.302434i \(-0.0977990\pi\)
\(374\) 0 0
\(375\) −5.25544 7.13058i −0.271390 0.368222i
\(376\) 32.1364 + 23.3485i 1.65731 + 1.20411i
\(377\) 0 0
\(378\) −35.3986 + 11.5017i −1.82071 + 0.591583i
\(379\) −0.507835 + 0.368964i −0.0260857 + 0.0189524i −0.600752 0.799436i \(-0.705132\pi\)
0.574666 + 0.818388i \(0.305132\pi\)
\(380\) −12.1693 37.1652i −0.624273 1.90654i
\(381\) −2.01197 6.19221i −0.103076 0.317237i
\(382\) −46.5087 15.1116i −2.37959 0.773177i
\(383\) 6.40077 8.80990i 0.327064 0.450165i −0.613544 0.789661i \(-0.710256\pi\)
0.940608 + 0.339496i \(0.110256\pi\)
\(384\) −11.2554 −0.574377
\(385\) 0 0
\(386\) 41.4891 2.11174
\(387\) 4.83032 6.64836i 0.245539 0.337955i
\(388\) −24.2884 7.89178i −1.23306 0.400644i
\(389\) −5.82850 17.9383i −0.295516 0.909506i −0.983047 0.183351i \(-0.941305\pi\)
0.687531 0.726155i \(-0.258695\pi\)
\(390\) 0 0
\(391\) 1.01567 0.737928i 0.0513646 0.0373186i
\(392\) −28.4767 + 9.25265i −1.43829 + 0.467329i
\(393\) 2.06805 + 0.671952i 0.104320 + 0.0338955i
\(394\) −17.3851 12.6310i −0.875847 0.636340i
\(395\) 0.861407 2.67181i 0.0433421 0.134434i
\(396\) 0 0
\(397\) 16.4356i 0.824881i −0.910984 0.412441i \(-0.864676\pi\)
0.910984 0.412441i \(-0.135324\pi\)
\(398\) 11.8701 16.3379i 0.594997 0.818943i
\(399\) 3.39247 10.4409i 0.169836 0.522701i
\(400\) 9.70767 30.3465i 0.485383 1.51733i
\(401\) 9.29490 6.75314i 0.464165 0.337236i −0.330998 0.943631i \(-0.607385\pi\)
0.795163 + 0.606396i \(0.207385\pi\)
\(402\) 10.9388 + 15.0559i 0.545576 + 0.750921i
\(403\) 0 0
\(404\) 8.10666 24.9497i 0.403321 1.24129i
\(405\) −6.76276 + 4.93699i −0.336044 + 0.245321i
\(406\) 76.4674 3.79501
\(407\) 0 0
\(408\) 7.51811i 0.372202i
\(409\) −22.2392 16.1577i −1.09966 0.798947i −0.118652 0.992936i \(-0.537857\pi\)
−0.981004 + 0.193989i \(0.937857\pi\)
\(410\) −28.9218 + 39.9986i −1.42835 + 1.97539i
\(411\) −3.51423 10.8157i −0.173344 0.533498i
\(412\) 26.7078 + 36.7602i 1.31580 + 1.81104i
\(413\) 15.0111 + 20.6609i 0.738646 + 1.01666i
\(414\) 1.46615 + 4.51235i 0.0720574 + 0.221770i
\(415\) 8.69093 12.0195i 0.426621 0.590013i
\(416\) 0 0
\(417\) 12.8617i 0.629842i
\(418\) 0 0
\(419\) 22.9783 1.12256 0.561280 0.827626i \(-0.310309\pi\)
0.561280 + 0.827626i \(0.310309\pi\)
\(420\) 21.6722 15.8213i 1.05750 0.772001i
\(421\) 2.63000 8.09432i 0.128179 0.394493i −0.866288 0.499545i \(-0.833501\pi\)
0.994467 + 0.105051i \(0.0335007\pi\)
\(422\) 3.57507 1.16161i 0.174032 0.0565464i
\(423\) 9.24935 + 12.7306i 0.449719 + 0.618985i
\(424\) 48.9191 35.5418i 2.37572 1.72606i
\(425\) −7.54616 2.41397i −0.366043 0.117095i
\(426\) 6.25255 19.2434i 0.302937 0.932345i
\(427\) −1.51604 + 2.08665i −0.0733663 + 0.100980i
\(428\) 29.0024i 1.40189i
\(429\) 0 0
\(430\) −6.00000 + 18.6101i −0.289346 + 0.897460i
\(431\) −20.8102 15.1195i −1.00239 0.728280i −0.0397920 0.999208i \(-0.512670\pi\)
−0.962600 + 0.270928i \(0.912670\pi\)
\(432\) 25.7954 + 8.38144i 1.24108 + 0.403252i
\(433\) 27.7754 9.02478i 1.33480 0.433703i 0.447249 0.894409i \(-0.352404\pi\)
0.887553 + 0.460706i \(0.152404\pi\)
\(434\) −23.8572 + 17.3333i −1.14518 + 0.832024i
\(435\) −14.7228 + 4.82079i −0.705903 + 0.231139i
\(436\) −13.5111 41.5829i −0.647064 1.99146i
\(437\) −3.01404 0.979321i −0.144181 0.0468473i
\(438\) 8.14459 11.2101i 0.389164 0.535638i
\(439\) 21.4891 1.02562 0.512810 0.858502i \(-0.328605\pi\)
0.512810 + 0.858502i \(0.328605\pi\)
\(440\) 0 0
\(441\) −11.8614 −0.564829
\(442\) 0 0
\(443\) 30.1240 + 9.78788i 1.43123 + 0.465036i 0.919153 0.393901i \(-0.128875\pi\)
0.512081 + 0.858937i \(0.328875\pi\)
\(444\) −1.16385 3.58198i −0.0552341 0.169993i
\(445\) −0.954863 2.91616i −0.0452649 0.138239i
\(446\) 4.85410 3.52671i 0.229848 0.166995i
\(447\) 8.65717 2.81288i 0.409470 0.133045i
\(448\) −7.81561 2.53945i −0.369253 0.119978i
\(449\) 5.55099 + 4.03303i 0.261968 + 0.190331i 0.711014 0.703178i \(-0.248236\pi\)
−0.449046 + 0.893508i \(0.648236\pi\)
\(450\) 17.4891 24.3036i 0.824445 1.14568i
\(451\) 0 0
\(452\) 2.17448i 0.102279i
\(453\) 5.69716 7.84147i 0.267676 0.368424i
\(454\) 13.0509 40.1666i 0.612510 1.88511i
\(455\) 0 0
\(456\) −15.3537 + 11.1551i −0.719004 + 0.522387i
\(457\) −12.2169 16.8151i −0.571482 0.786577i 0.421247 0.906946i \(-0.361592\pi\)
−0.992729 + 0.120368i \(0.961592\pi\)
\(458\) 35.1181 11.4105i 1.64096 0.533180i
\(459\) 2.08418 6.41446i 0.0972814 0.299401i
\(460\) −4.56722 6.25624i −0.212948 0.291699i
\(461\) −2.23369 −0.104033 −0.0520166 0.998646i \(-0.516565\pi\)
−0.0520166 + 0.998646i \(0.516565\pi\)
\(462\) 0 0
\(463\) 30.0897i 1.39839i 0.714933 + 0.699193i \(0.246457\pi\)
−0.714933 + 0.699193i \(0.753543\pi\)
\(464\) −45.0807 32.7530i −2.09282 1.52052i
\(465\) 3.50063 4.84134i 0.162338 0.224512i
\(466\) 2.93230 + 9.02469i 0.135836 + 0.418061i
\(467\) 4.53799 + 6.24601i 0.209993 + 0.289031i 0.901001 0.433816i \(-0.142833\pi\)
−0.691008 + 0.722847i \(0.742833\pi\)
\(468\) 0 0
\(469\) 9.96076 + 30.6561i 0.459945 + 1.41557i
\(470\) −30.3412 21.9388i −1.39954 1.01196i
\(471\) −15.6725 11.3867i −0.722151 0.524673i
\(472\) 44.1485i 2.03210i
\(473\) 0 0
\(474\) −2.51087 −0.115328
\(475\) 6.26687 + 18.9928i 0.287544 + 0.871449i
\(476\) 7.41641 22.8254i 0.339930 1.04620i
\(477\) 22.7814 7.40212i 1.04309 0.338920i
\(478\) 21.8775 + 30.1118i 1.00065 + 1.37728i
\(479\) 4.44080 3.22643i 0.202905 0.147419i −0.481693 0.876340i \(-0.659978\pi\)
0.684598 + 0.728921i \(0.259978\pi\)
\(480\) −7.27936 + 0.0165691i −0.332256 + 0.000756271i
\(481\) 0 0
\(482\) −24.8451 + 34.1963i −1.13166 + 1.55760i
\(483\) 2.17448i 0.0989423i
\(484\) 0 0
\(485\) 12.4307 + 4.00772i 0.564449 + 0.181981i
\(486\) 32.1364 + 23.3485i 1.45774 + 1.05911i
\(487\) −6.78159 2.20347i −0.307303 0.0998488i 0.151306 0.988487i \(-0.451652\pi\)
−0.458609 + 0.888638i \(0.651652\pi\)
\(488\) 4.24054 1.37784i 0.191960 0.0623717i
\(489\) 2.22040 1.61321i 0.100410 0.0729520i
\(490\) 26.8217 8.78245i 1.21168 0.396750i
\(491\) −2.01197 6.19221i −0.0907990 0.279451i 0.895337 0.445389i \(-0.146935\pi\)
−0.986136 + 0.165939i \(0.946935\pi\)
\(492\) 28.8095 + 9.36076i 1.29883 + 0.422016i
\(493\) −8.14459 + 11.2101i −0.366814 + 0.504876i
\(494\) 0 0
\(495\) 0 0
\(496\) 21.4891 0.964890
\(497\) 20.5994 28.3526i 0.924009 1.27179i
\(498\) −12.6172 4.09957i −0.565390 0.183706i
\(499\) 6.18034 + 19.0211i 0.276670 + 0.851503i 0.988773 + 0.149427i \(0.0477430\pi\)
−0.712103 + 0.702075i \(0.752257\pi\)
\(500\) −14.7880 + 46.5931i −0.661342 + 2.08371i
\(501\) 10.0863 7.32814i 0.450623 0.327397i
\(502\) 53.0979 17.2525i 2.36987 0.770018i
\(503\) 12.8977 + 4.19072i 0.575080 + 0.186855i 0.582095 0.813120i \(-0.302233\pi\)
−0.00701509 + 0.999975i \(0.502233\pi\)
\(504\) 39.8133 + 28.9261i 1.77343 + 1.28847i
\(505\) −4.11684 + 12.7692i −0.183197 + 0.568220i
\(506\) 0 0
\(507\) 10.2997i 0.457427i
\(508\) −21.1195 + 29.0685i −0.937026 + 1.28971i
\(509\) −6.99235 + 21.5202i −0.309930 + 0.953868i 0.667861 + 0.744286i \(0.267210\pi\)
−0.977791 + 0.209582i \(0.932790\pi\)
\(510\) 0.0161299 + 7.08641i 0.000714243 + 0.313792i
\(511\) 19.4164 14.1068i 0.858931 0.624050i
\(512\) 29.4697 + 40.5616i 1.30239 + 1.79259i
\(513\) −16.1923 + 5.26119i −0.714906 + 0.232287i
\(514\) −8.33674 + 25.6578i −0.367718 + 1.13172i
\(515\) −13.7017 18.7687i −0.603767 0.827049i
\(516\) 12.0000 0.528271
\(517\) 0 0
\(518\) 9.50744i 0.417733i
\(519\) −5.45647 3.96435i −0.239512 0.174016i
\(520\) 0 0
\(521\) −6.67661 20.5485i −0.292508 0.900246i −0.984047 0.177907i \(-0.943067\pi\)
0.691540 0.722339i \(-0.256933\pi\)
\(522\) −30.7801 42.3652i −1.34721 1.85428i
\(523\) −17.0472 23.4635i −0.745422 1.02599i −0.998288 0.0584843i \(-0.981373\pi\)
0.252866 0.967501i \(-0.418627\pi\)
\(524\) −3.70820 11.4127i −0.161994 0.498565i
\(525\) −11.0652 + 8.11652i −0.482923 + 0.354234i
\(526\) 55.9936 + 40.6818i 2.44144 + 1.77381i
\(527\) 5.34363i 0.232772i
\(528\) 0 0
\(529\) 22.3723 0.972708
\(530\) −46.0339 + 33.6059i −1.99958 + 1.45975i
\(531\) 5.40444 16.6331i 0.234533 0.721817i
\(532\) −57.6189 + 18.7215i −2.49810 + 0.811681i
\(533\) 0 0
\(534\) −2.22040 + 1.61321i −0.0960860 + 0.0698106i
\(535\) 0.0337610 + 14.8324i 0.00145961 + 0.641259i
\(536\) 17.2193 52.9955i 0.743760 2.28906i
\(537\) −5.98949 + 8.24382i −0.258465 + 0.355747i
\(538\) 29.0024i 1.25038i
\(539\) 0 0
\(540\) −39.6060 12.7692i −1.70437 0.549497i
\(541\) 27.6956 + 20.1221i 1.19073 + 0.865115i 0.993341 0.115211i \(-0.0367544\pi\)
0.197387 + 0.980326i \(0.436754\pi\)
\(542\) −32.3845 10.5224i −1.39103 0.451975i
\(543\) −18.1723 + 5.90453i −0.779847 + 0.253388i
\(544\) −5.26741 + 3.82700i −0.225838 + 0.164081i
\(545\) 6.95822 + 21.2505i 0.298057 + 0.910271i
\(546\) 0 0
\(547\) 27.5830 + 8.96224i 1.17936 + 0.383198i 0.832130 0.554581i \(-0.187122\pi\)
0.347232 + 0.937779i \(0.387122\pi\)
\(548\) −36.8886 + 50.7728i −1.57580 + 2.16891i
\(549\) 1.76631 0.0753844
\(550\) 0 0
\(551\) 34.9783 1.49012
\(552\) −2.20952 + 3.04114i −0.0940433 + 0.129439i
\(553\) −4.13611 1.34390i −0.175885 0.0571486i
\(554\) −9.11264 28.0458i −0.387159 1.19155i
\(555\) 0.599385 + 1.83053i 0.0254425 + 0.0777017i
\(556\) −57.4226 + 41.7200i −2.43526 + 1.76932i
\(557\) −0.945984 + 0.307369i −0.0400826 + 0.0130236i −0.328990 0.944334i \(-0.606708\pi\)
0.288907 + 0.957357i \(0.406708\pi\)
\(558\) 19.2063 + 6.24051i 0.813068 + 0.264182i
\(559\) 0 0
\(560\) −46.9783 15.1460i −1.98519 0.640036i
\(561\) 0 0
\(562\) 1.28962i 0.0543994i
\(563\) −11.1121 + 15.2945i −0.468320 + 0.644588i −0.976208 0.216836i \(-0.930426\pi\)
0.507888 + 0.861423i \(0.330426\pi\)
\(564\) −7.10067 + 21.8536i −0.298992 + 0.920203i
\(565\) 0.00253126 + 1.11207i 0.000106491 + 0.0467851i
\(566\) 30.9317 22.4732i 1.30016 0.944619i
\(567\) 7.62448 + 10.4942i 0.320198 + 0.440715i
\(568\) −57.6189 + 18.7215i −2.41764 + 0.785537i
\(569\) −8.42239 + 25.9215i −0.353085 + 1.08668i 0.604026 + 0.796964i \(0.293562\pi\)
−0.957111 + 0.289720i \(0.906438\pi\)
\(570\) 14.4482 10.5475i 0.605167 0.441788i
\(571\) −1.48913 −0.0623180 −0.0311590 0.999514i \(-0.509920\pi\)
−0.0311590 + 0.999514i \(0.509920\pi\)
\(572\) 0 0
\(573\) 15.3484i 0.641189i
\(574\) 61.8634 + 44.9464i 2.58213 + 1.87603i
\(575\) 2.34304 + 3.19424i 0.0977115 + 0.133209i
\(576\) 1.73906 + 5.35228i 0.0724609 + 0.223012i
\(577\) −12.8560 17.6947i −0.535200 0.736640i 0.452712 0.891657i \(-0.350457\pi\)
−0.987912 + 0.155017i \(0.950457\pi\)
\(578\) −21.4985 29.5902i −0.894220 1.23079i
\(579\) 4.02394 + 12.3844i 0.167229 + 0.514679i
\(580\) 69.2796 + 50.0940i 2.87668 + 2.08004i
\(581\) −18.5898 13.5063i −0.771235 0.560335i
\(582\) 11.6819i 0.484231i
\(583\) 0 0
\(584\) −41.4891 −1.71683
\(585\) 0 0
\(586\) −2.47214 + 7.60845i −0.102123 + 0.314302i
\(587\) 39.2542 12.7544i 1.62019 0.526432i 0.648205 0.761466i \(-0.275520\pi\)
0.971987 + 0.235033i \(0.0755199\pi\)
\(588\) −10.1807 14.0126i −0.419847 0.577869i
\(589\) −10.9129 + 7.92871i −0.449660 + 0.326697i
\(590\) 0.0947192 + 41.6134i 0.00389953 + 1.71320i
\(591\) 2.08418 6.41446i 0.0857319 0.263856i
\(592\) −4.07230 + 5.60503i −0.167370 + 0.230365i
\(593\) 22.7739i 0.935214i −0.883937 0.467607i \(-0.845116\pi\)
0.883937 0.467607i \(-0.154884\pi\)
\(594\) 0 0
\(595\) −3.76631 + 11.6819i −0.154404 + 0.478912i
\(596\) −40.6399 29.5266i −1.66468 1.20946i
\(597\) 6.02808 + 1.95864i 0.246713 + 0.0801618i
\(598\) 0 0
\(599\) 8.88159 6.45285i 0.362892 0.263656i −0.391365 0.920235i \(-0.627997\pi\)
0.754257 + 0.656579i \(0.227997\pi\)
\(600\) 23.7226 0.107994i 0.968470 0.00440883i
\(601\) 11.8871 + 36.5846i 0.484884 + 1.49232i 0.832149 + 0.554552i \(0.187110\pi\)
−0.347265 + 0.937767i \(0.612890\pi\)
\(602\) 28.8095 + 9.36076i 1.17419 + 0.381516i
\(603\) 12.9749 17.8584i 0.528379 0.727251i
\(604\) −53.4891 −2.17644
\(605\) 0 0
\(606\) 12.0000 0.487467
\(607\) −2.03615 + 2.80252i −0.0826447 + 0.113751i −0.848338 0.529456i \(-0.822396\pi\)
0.765693 + 0.643206i \(0.222396\pi\)
\(608\) 15.6312 + 5.07889i 0.633930 + 0.205976i
\(609\) 7.41641 + 22.8254i 0.300528 + 0.924930i
\(610\) −3.99409 + 1.30782i −0.161716 + 0.0529519i
\(611\) 0 0
\(612\) −15.6312 + 5.07889i −0.631855 + 0.205302i
\(613\) −4.13611 1.34390i −0.167056 0.0542797i 0.224295 0.974521i \(-0.427992\pi\)
−0.391351 + 0.920242i \(0.627992\pi\)
\(614\) −64.4971 46.8599i −2.60289 1.89111i
\(615\) −14.7446 4.75372i −0.594558 0.191689i
\(616\) 0 0
\(617\) 17.0256i 0.685423i −0.939441 0.342712i \(-0.888655\pi\)
0.939441 0.342712i \(-0.111345\pi\)
\(618\) −12.2169 + 16.8151i −0.491435 + 0.676403i
\(619\) −4.36234 + 13.4259i −0.175337 + 0.539633i −0.999649 0.0265037i \(-0.991563\pi\)
0.824311 + 0.566137i \(0.191563\pi\)
\(620\) −32.9698 + 0.0750448i −1.32410 + 0.00301387i
\(621\) −2.72823 + 1.98218i −0.109480 + 0.0795420i
\(622\) −8.14459 11.2101i −0.326568 0.449483i
\(623\) −4.52106 + 1.46898i −0.181132 + 0.0588535i
\(624\) 0 0
\(625\) 7.50863 23.8458i 0.300345 0.953831i
\(626\) −55.2119 −2.20671
\(627\) 0 0
\(628\) 106.907i 4.26606i
\(629\) 1.39379 + 1.01264i 0.0555739 + 0.0403768i
\(630\) −37.5892 27.1797i −1.49759 1.08286i
\(631\) 7.29465 + 22.4506i 0.290395 + 0.893745i 0.984729 + 0.174092i \(0.0556990\pi\)
−0.694334 + 0.719653i \(0.744301\pi\)
\(632\) 4.41903 + 6.08228i 0.175780 + 0.241940i
\(633\) 0.693478 + 0.954490i 0.0275633 + 0.0379376i
\(634\) −25.7139 79.1393i −1.02123 3.14302i
\(635\) 10.7670 14.8907i 0.427277 0.590921i
\(636\) 28.2980 + 20.5597i 1.12209 + 0.815245i
\(637\) 0 0
\(638\) 0 0
\(639\) −24.0000 −0.949425
\(640\) −18.7301 25.6568i −0.740374 1.01417i
\(641\) −7.84047 + 24.1305i −0.309680 + 0.953096i 0.668210 + 0.743973i \(0.267061\pi\)
−0.977889 + 0.209123i \(0.932939\pi\)
\(642\) 12.6172 4.09957i 0.497961 0.161797i
\(643\) −17.9242 24.6705i −0.706861 0.972910i −0.999859 0.0167972i \(-0.994653\pi\)
0.292998 0.956113i \(-0.405347\pi\)
\(644\) −9.70820 + 7.05342i −0.382557 + 0.277944i
\(645\) −6.13701 + 0.0139689i −0.241645 + 0.000550025i
\(646\) 4.94427 15.2169i 0.194530 0.598701i
\(647\) −12.9205 + 17.7835i −0.507957 + 0.699143i −0.983573 0.180510i \(-0.942225\pi\)
0.475616 + 0.879653i \(0.342225\pi\)
\(648\) 22.4241i 0.880901i
\(649\) 0 0
\(650\) 0 0
\(651\) −7.48781 5.44021i −0.293470 0.213219i
\(652\) −14.4047 4.68038i −0.564133 0.183298i
\(653\) −29.2824 + 9.51444i −1.14591 + 0.372329i −0.819601 0.572934i \(-0.805805\pi\)
−0.326309 + 0.945263i \(0.605805\pi\)
\(654\) 16.1803 11.7557i 0.632701 0.459684i
\(655\) 1.90973 + 5.83233i 0.0746192 + 0.227888i
\(656\) −17.2193 52.9955i −0.672301 2.06913i
\(657\) −15.6312 5.07889i −0.609832 0.198147i
\(658\) −34.0944 + 46.9269i −1.32914 + 1.82940i
\(659\) 21.2554 0.827994 0.413997 0.910278i \(-0.364132\pi\)
0.413997 + 0.910278i \(0.364132\pi\)
\(660\) 0 0
\(661\) −16.3505 −0.635962 −0.317981 0.948097i \(-0.603005\pi\)
−0.317981 + 0.948097i \(0.603005\pi\)
\(662\) −20.9461 + 28.8299i −0.814094 + 1.12050i
\(663\) 0 0
\(664\) 12.2750 + 37.7786i 0.476363 + 1.46610i
\(665\) 29.4455 9.64159i 1.14185 0.373885i
\(666\) −5.26741 + 3.82700i −0.204108 + 0.148293i
\(667\) 6.58911 2.14093i 0.255131 0.0828972i
\(668\) −65.4345 21.2610i −2.53174 0.822611i
\(669\) 1.52351 + 1.10689i 0.0589021 + 0.0427949i
\(670\) −16.1168 + 49.9894i −0.622648 + 1.93126i
\(671\) 0 0
\(672\) 11.2772i 0.435026i
\(673\) 10.9388 15.0559i 0.421658 0.580363i −0.544355 0.838855i \(-0.683226\pi\)
0.966013 + 0.258492i \(0.0832256\pi\)
\(674\) −25.3260 + 77.9453i −0.975519 + 3.00234i
\(675\) 20.2701 + 6.48427i 0.780195 + 0.249580i
\(676\) 45.9842 33.4095i 1.76862 1.28498i
\(677\) 29.4375 + 40.5172i 1.13137 + 1.55720i 0.785434 + 0.618945i \(0.212440\pi\)
0.345939 + 0.938257i \(0.387560\pi\)
\(678\) 0.945984 0.307369i 0.0363303 0.0118044i
\(679\) 6.25255 19.2434i 0.239951 0.738493i
\(680\) 17.1376 12.5109i 0.657195 0.479770i
\(681\) 13.2554 0.507949
\(682\) 0 0
\(683\) 17.9104i 0.685323i −0.939459 0.342661i \(-0.888672\pi\)
0.939459 0.342661i \(-0.111328\pi\)
\(684\) 33.5654 + 24.3867i 1.28341 + 0.932449i
\(685\) 18.8064 26.0090i 0.718554 0.993754i
\(686\) 5.40444 + 16.6331i 0.206342 + 0.635056i
\(687\) 6.81205 + 9.37598i 0.259896 + 0.357716i
\(688\) −12.9749 17.8584i −0.494664 0.680846i
\(689\) 0 0
\(690\) 2.07612 2.87125i 0.0790365 0.109307i
\(691\) −36.2936 26.3689i −1.38068 1.00312i −0.996817 0.0797273i \(-0.974595\pi\)
−0.383858 0.923392i \(-0.625405\pi\)
\(692\) 37.2203i 1.41490i
\(693\) 0 0
\(694\) −57.2119 −2.17174
\(695\) 29.3184 21.4032i 1.11211 0.811869i
\(696\) 12.8208 39.4585i 0.485973 1.49567i
\(697\) −13.1782 + 4.28187i −0.499161 + 0.162187i
\(698\) −22.9823 31.6324i −0.869892 1.19730i
\(699\) −2.40946 + 1.75057i −0.0911340 + 0.0662127i
\(700\) 72.1294 + 23.0738i 2.72624 + 0.872107i
\(701\) 3.86607 11.8985i 0.146020 0.449402i −0.851121 0.524969i \(-0.824077\pi\)
0.997141 + 0.0755673i \(0.0240768\pi\)
\(702\) 0 0
\(703\) 4.34896i 0.164024i
\(704\) 0 0
\(705\) 3.60597 11.1846i 0.135809 0.421236i
\(706\) −51.1395 37.1550i −1.92466 1.39835i
\(707\) 19.7673 + 6.42280i 0.743427 + 0.241554i
\(708\) 24.2884 7.89178i 0.912814 0.296591i
\(709\) 19.3219 14.0382i 0.725648 0.527214i −0.162535 0.986703i \(-0.551967\pi\)
0.888184 + 0.459488i \(0.151967\pi\)
\(710\) 54.2702 17.7701i 2.03672 0.666901i
\(711\) 0.920330 + 2.83248i 0.0345151 + 0.106226i
\(712\) 7.81561 + 2.53945i 0.292903 + 0.0951698i
\(713\) −1.57045 + 2.16154i −0.0588139 + 0.0809504i
\(714\) 10.9783 0.410851
\(715\) 0 0
\(716\) 56.2337 2.10155
\(717\) −6.86646 + 9.45088i −0.256433 + 0.352949i
\(718\) 70.7971 + 23.0034i 2.64213 + 0.858479i
\(719\) 9.37883 + 28.8651i 0.349771 + 1.07649i 0.958980 + 0.283475i \(0.0914874\pi\)
−0.609208 + 0.793010i \(0.708513\pi\)
\(720\) 10.5186 + 32.1240i 0.392006 + 1.19719i
\(721\) −29.1246 + 21.1603i −1.08466 + 0.788050i
\(722\) 7.20236 2.34019i 0.268044 0.0870928i
\(723\) −12.6172 4.09957i −0.469238 0.152465i
\(724\) 85.3073 + 61.9794i 3.17042 + 2.30345i
\(725\) −35.4891 25.5383i −1.31803 0.948470i
\(726\) 0 0
\(727\) 14.0588i 0.521412i 0.965418 + 0.260706i \(0.0839552\pi\)
−0.965418 + 0.260706i \(0.916045\pi\)
\(728\) 0 0
\(729\) −0.381231 + 1.17331i −0.0141196 + 0.0434558i
\(730\) 39.1068 0.0890137i 1.44741 0.00329454i
\(731\) −4.44080 + 3.22643i −0.164249 + 0.119334i
\(732\) 1.51604 + 2.08665i 0.0560344 + 0.0771248i
\(733\) 9.04212 2.93796i 0.333978 0.108516i −0.137227 0.990540i \(-0.543819\pi\)
0.471205 + 0.882024i \(0.343819\pi\)
\(734\) −20.0794 + 61.7980i −0.741144 + 2.28101i
\(735\) 5.22292 + 7.15443i 0.192650 + 0.263895i
\(736\) 3.25544 0.119997
\(737\) 0 0
\(738\) 52.3663i 1.92763i
\(739\) 8.69253 + 6.31550i 0.319760 + 0.232319i 0.736073 0.676902i \(-0.236678\pi\)
−0.416313 + 0.909221i \(0.636678\pi\)
\(740\) 6.22836 8.61376i 0.228959 0.316648i
\(741\) 0 0
\(742\) 51.8996 + 71.4337i 1.90530 + 2.62241i
\(743\) −6.69309 9.21225i −0.245546 0.337965i 0.668399 0.743803i \(-0.266980\pi\)
−0.913945 + 0.405838i \(0.866980\pi\)
\(744\) 4.94427 + 15.2169i 0.181266 + 0.557879i
\(745\) 20.8183 + 15.0531i 0.762725 + 0.551504i
\(746\) −23.8572 17.3333i −0.873474 0.634616i
\(747\) 15.7359i 0.575748i
\(748\) 0 0
\(749\) 22.9783 0.839607
\(750\) −22.3602 + 0.152689i −0.816478 + 0.00557540i
\(751\) 8.45850 26.0326i 0.308655 0.949943i −0.669633 0.742692i \(-0.733549\pi\)
0.978288 0.207250i \(-0.0664515\pi\)
\(752\) 40.2001 13.0618i 1.46595 0.476316i
\(753\) 10.2997 + 14.1763i 0.375342 + 0.516614i
\(754\) 0 0
\(755\) 27.3553 0.0622653i 0.995561 0.00226607i
\(756\) −19.9215 + 61.3121i −0.724538 + 2.22990i
\(757\) 23.3936 32.1985i 0.850253 1.17027i −0.133554 0.991042i \(-0.542639\pi\)
0.983807 0.179232i \(-0.0573612\pi\)
\(758\) 1.58457i 0.0575543i
\(759\) 0 0
\(760\) −50.9783 16.4356i −1.84918 0.596184i
\(761\) 26.4909 + 19.2468i 0.960295 + 0.697695i 0.953219 0.302280i \(-0.0977478\pi\)
0.00707549 + 0.999975i \(0.497748\pi\)
\(762\) −15.6312 5.07889i −0.566260 0.183989i
\(763\) 32.9456 10.7047i 1.19271 0.387535i
\(764\) −68.5246 + 49.7860i −2.47913 + 1.80120i
\(765\) 7.98818 2.61563i 0.288813 0.0945684i
\(766\) −8.49461 26.1437i −0.306923 0.944611i
\(767\) 0 0
\(768\) −14.4909 + 19.9451i −0.522897 + 0.719706i
\(769\) 29.2119 1.05341 0.526705 0.850048i \(-0.323427\pi\)
0.526705 + 0.850048i \(0.323427\pi\)
\(770\) 0 0
\(771\) −8.46738 −0.304945
\(772\) 42.2390 58.1370i 1.52021 2.09240i
\(773\) 16.7533 + 5.44348i 0.602574 + 0.195788i 0.594388 0.804178i \(-0.297394\pi\)
0.00818608 + 0.999966i \(0.497394\pi\)
\(774\) −6.41042 19.7293i −0.230418 0.709153i
\(775\) 16.8612 0.0767585i 0.605673 0.00275725i
\(776\) −28.2980 + 20.5597i −1.01584 + 0.738050i
\(777\) 2.83795 0.922107i 0.101811 0.0330804i
\(778\) −45.2822 14.7131i −1.62345 0.527490i
\(779\) 28.2980 + 20.5597i 1.01388 + 0.736628i
\(780\) 0 0
\(781\) 0 0
\(782\) 3.16915i 0.113328i
\(783\) 21.8775 30.1118i 0.781839 1.07611i
\(784\) −9.84572 + 30.3020i −0.351633 + 1.08221i
\(785\) −0.124448 54.6742i −0.00444173 1.95140i
\(786\) 4.44080 3.22643i 0.158398 0.115083i
\(787\) −8.90261 12.2534i −0.317344 0.436786i 0.620310 0.784357i \(-0.287007\pi\)
−0.937654 + 0.347570i \(0.887007\pi\)
\(788\) −35.3986 + 11.5017i −1.26102 + 0.409731i
\(789\) −6.71272 + 20.6596i −0.238979 + 0.735502i
\(790\) −4.17834 5.72355i −0.148659 0.203635i
\(791\) 1.72281 0.0612562
\(792\) 0 0
\(793\) 0 0
\(794\) −33.5654 24.3867i −1.19119 0.865451i
\(795\) −14.4960 10.4817i −0.514121 0.371746i
\(796\) −10.8089 33.2663i −0.383110 1.17909i
\(797\) −3.08649 4.24819i −0.109329 0.150479i 0.750846 0.660477i \(-0.229646\pi\)
−0.860175 + 0.509998i \(0.829646\pi\)
\(798\) −16.2892 22.4201i −0.576631 0.793664i
\(799\) −3.24804 9.99644i −0.114907 0.353648i
\(800\) −12.1513 16.5658i −0.429614 0.585688i
\(801\) 2.63370 + 1.91350i 0.0930574 + 0.0676101i
\(802\) 29.0024i 1.02411i
\(803\) 0 0
\(804\) 32.2337 1.13679
\(805\) 4.95674 3.61855i 0.174702 0.127537i
\(806\) 0 0
\(807\) −8.65717 + 2.81288i −0.304747 + 0.0990182i
\(808\) −21.1195 29.0685i −0.742981 1.02263i
\(809\) 26.4909 19.2468i 0.931371 0.676680i −0.0149573 0.999888i \(-0.504761\pi\)
0.946328 + 0.323208i \(0.104761\pi\)
\(810\) 0.0481102 + 21.1365i 0.00169042 + 0.742660i
\(811\) 0.0722135 0.222250i 0.00253576 0.00780427i −0.949781 0.312917i \(-0.898694\pi\)
0.952316 + 0.305112i \(0.0986940\pi\)
\(812\) 77.8494 107.151i 2.73198 3.76025i
\(813\) 10.6873i 0.374819i
\(814\) 0 0
\(815\) 7.37228 + 2.37686i 0.258240 + 0.0832578i
\(816\) −6.47214 4.70228i −0.226570 0.164613i
\(817\) 13.1782 + 4.28187i 0.461048 + 0.149803i
\(818\) −65.9956 + 21.4433i −2.30748 + 0.749746i
\(819\) 0 0
\(820\) 26.6038 + 81.2484i 0.929046 + 2.83732i
\(821\) 5.56231 + 17.1190i 0.194126 + 0.597458i 0.999986 + 0.00535152i \(0.00170345\pi\)
−0.805860 + 0.592106i \(0.798297\pi\)
\(822\) −27.3024 8.87110i −0.952282 0.309415i
\(823\) −32.9352 + 45.3315i −1.14805 + 1.58016i −0.399997 + 0.916516i \(0.630989\pi\)
−0.748053 + 0.663639i \(0.769011\pi\)
\(824\) 62.2337 2.16801
\(825\) 0 0
\(826\) 64.4674 2.24311
\(827\) −16.7005 + 22.9862i −0.580732 + 0.799309i −0.993775 0.111402i \(-0.964466\pi\)
0.413043 + 0.910711i \(0.364466\pi\)
\(828\) 7.81561 + 2.53945i 0.271611 + 0.0882519i
\(829\) 6.28866 + 19.3545i 0.218414 + 0.672210i 0.998894 + 0.0470282i \(0.0149751\pi\)
−0.780479 + 0.625182i \(0.785025\pi\)
\(830\) −11.6512 35.5830i −0.404420 1.23510i
\(831\) 7.48781 5.44021i 0.259749 0.188719i
\(832\) 0 0
\(833\) 7.53510 + 2.44830i 0.261076 + 0.0848286i
\(834\) −26.2667 19.0838i −0.909540 0.660819i
\(835\) 33.4891 + 10.7971i 1.15894 + 0.373648i
\(836\) 0 0
\(837\) 14.3537i 0.496138i
\(838\) 34.0944 46.9269i 1.17777 1.62106i
\(839\) 3.12628 9.62169i 0.107931 0.332178i −0.882476 0.470357i \(-0.844125\pi\)
0.990407 + 0.138180i \(0.0441251\pi\)
\(840\) −0.0836519 36.7511i −0.00288626 1.26803i
\(841\) −38.4019 + 27.9006i −1.32420 + 0.962090i
\(842\) −12.6282 17.3812i −0.435195 0.598995i
\(843\) −0.384949 + 0.125078i −0.0132583 + 0.00430790i
\(844\) 2.01197 6.19221i 0.0692549 0.213145i
\(845\) −23.4783 + 17.1397i −0.807677 + 0.589625i
\(846\) 39.7228 1.36570
\(847\) 0 0
\(848\) 64.3432i 2.20955i
\(849\) 9.70820 + 7.05342i 0.333185 + 0.242073i
\(850\) −16.1267 + 11.8292i −0.553140 + 0.405740i
\(851\) −0.266189 0.819246i −0.00912485 0.0280834i
\(852\) −20.5994 28.3526i −0.705723 0.971345i
\(853\) −20.5994 28.3526i −0.705310 0.970775i −0.999885 0.0151473i \(-0.995178\pi\)
0.294576 0.955628i \(-0.404822\pi\)
\(854\) 2.01197 + 6.19221i 0.0688482 + 0.211893i
\(855\) −17.1943 12.4327i −0.588034 0.425190i
\(856\) −32.1364 23.3485i −1.09840 0.798035i
\(857\) 23.9538i 0.818245i 0.912480 + 0.409122i \(0.134165\pi\)
−0.912480 + 0.409122i \(0.865835\pi\)
\(858\) 0 0
\(859\) 6.11684 0.208704 0.104352 0.994540i \(-0.466723\pi\)
0.104352 + 0.994540i \(0.466723\pi\)
\(860\) 19.9692 + 27.3540i 0.680943 + 0.932765i
\(861\) −7.41641 + 22.8254i −0.252751 + 0.777886i
\(862\) −61.7550 + 20.0654i −2.10338 + 0.683431i
\(863\) −1.68941 2.32527i −0.0575082 0.0791532i 0.779294 0.626658i \(-0.215578\pi\)
−0.836802 + 0.547505i \(0.815578\pi\)
\(864\) 14.1490 10.2798i 0.481359 0.349728i
\(865\) −0.0433271 19.0351i −0.00147317 0.647213i
\(866\) 22.7816 70.1146i 0.774150 2.38259i
\(867\) 6.74751 9.28715i 0.229157 0.315408i
\(868\) 51.0767i 1.73365i
\(869\) 0 0
\(870\) −12.0000 + 37.2203i −0.406838 + 1.26188i
\(871\) 0 0
\(872\) −56.9534 18.5053i −1.92869 0.626668i
\(873\) −13.1782 + 4.28187i −0.446015 + 0.144919i
\(874\) −6.47214 + 4.70228i −0.218923 + 0.159057i
\(875\) −36.9151 11.7164i −1.24796 0.396086i
\(876\) −7.41641 22.8254i −0.250577 0.771197i
\(877\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(878\) 31.8849 43.8858i 1.07606 1.48107i
\(879\) −2.51087 −0.0846897
\(880\) 0 0
\(881\) −6.86141 −0.231167 −0.115583 0.993298i \(-0.536874\pi\)
−0.115583 + 0.993298i \(0.536874\pi\)
\(882\) −17.5996 + 24.2237i −0.592609 + 0.815656i
\(883\) −23.0619 7.49326i −0.776095 0.252168i −0.105923 0.994374i \(-0.533780\pi\)
−0.670172 + 0.742206i \(0.733780\pi\)
\(884\) 0 0
\(885\) −12.4123 + 4.06427i −0.417236 + 0.136619i
\(886\) 64.6862 46.9973i 2.17317 1.57890i
\(887\) −26.0759 + 8.47258i −0.875544 + 0.284482i −0.712106 0.702072i \(-0.752258\pi\)
−0.163438 + 0.986554i \(0.552258\pi\)
\(888\) −4.90601 1.59406i −0.164635 0.0534931i
\(889\) −23.0306 16.7327i −0.772421 0.561197i
\(890\) −7.37228 2.37686i −0.247119 0.0796726i
\(891\) 0 0
\(892\) 10.3923i 0.347960i
\(893\) −15.5957 + 21.4656i −0.521890 + 0.718320i
\(894\) 7.10067 21.8536i 0.237482 0.730894i
\(895\) −28.7589 + 0.0654602i −0.961304 + 0.00218809i
\(896\) −39.8133 + 28.9261i −1.33007 + 0.966352i
\(897\) 0 0
\(898\) 16.4728 5.35233i 0.549704 0.178610i
\(899\) 9.11264 28.0458i 0.303924 0.935381i
\(900\) −16.2504 49.2497i −0.541681 1.64166i
\(901\) −16.0000 −0.533037
\(902\) 0 0
\(903\) 9.50744i 0.316388i
\(904\) −2.40946 1.75057i −0.0801373 0.0582232i
\(905\) −43.6998 31.5981i −1.45263 1.05035i
\(906\) −7.56083 23.2699i −0.251192 0.773089i
\(907\) 11.6968 + 16.0992i 0.388385 + 0.534566i 0.957782 0.287497i \(-0.0928230\pi\)
−0.569396 + 0.822063i \(0.692823\pi\)
\(908\) −42.9970 59.1803i −1.42691 1.96397i
\(909\) −4.39845 13.5370i −0.145887 0.448995i
\(910\) 0 0
\(911\) 43.2736 + 31.4401i 1.43372 + 1.04166i 0.989309 + 0.145834i \(0.0465865\pi\)
0.444410 + 0.895824i \(0.353413\pi\)
\(912\) 20.1947i 0.668713i
\(913\) 0 0
\(914\) −52.4674 −1.73547
\(915\) −0.777759 1.06538i −0.0257119 0.0352205i
\(916\) 19.7636 60.8262i 0.653009 2.00976i
\(917\) 9.04212 2.93796i 0.298597 0.0970200i
\(918\) −10.0074 13.7740i −0.330292 0.454609i
\(919\) 22.8415 16.5953i 0.753473 0.547430i −0.143429 0.989661i \(-0.545813\pi\)
0.896901 + 0.442231i \(0.145813\pi\)
\(920\) −10.6091 + 0.0241482i −0.349773 + 0.000796143i
\(921\) 7.73215 23.7971i 0.254783 0.784141i
\(922\) −3.31428 + 4.56171i −0.109150 + 0.150232i
\(923\) 0 0
\(924\) 0 0
\(925\) −3.17527 + 4.41248i −0.104402 + 0.145081i
\(926\) 61.4501 + 44.6461i 2.01938 + 1.46716i
\(927\) 23.4468 + 7.61834i 0.770095 + 0.250219i
\(928\) −34.1721 + 11.1032i −1.12175 + 0.364480i
\(929\) −5.68071 + 4.12728i −0.186378 + 0.135412i −0.677062 0.735926i \(-0.736747\pi\)
0.490684 + 0.871338i \(0.336747\pi\)
\(930\) −4.69301 14.3325i −0.153890 0.469982i
\(931\) −6.18034 19.0211i −0.202552 0.623392i
\(932\) 15.6312 + 5.07889i 0.512018 + 0.166365i
\(933\) 2.55626 3.51838i 0.0836881 0.115187i
\(934\) 19.4891 0.637704
\(935\) 0 0
\(936\) 0 0
\(937\) −31.5381 + 43.4085i −1.03031 + 1.41810i −0.125589 + 0.992082i \(0.540082\pi\)
−0.904717 + 0.426013i \(0.859918\pi\)
\(938\) 77.3862 + 25.1443i 2.52675 + 0.820991i
\(939\) −5.35489 16.4807i −0.174750 0.537826i
\(940\) −61.6316 + 20.1805i −2.01020 + 0.658216i
\(941\) −47.3011 + 34.3663i −1.54197 + 1.12031i −0.592888 + 0.805285i \(0.702012\pi\)
−0.949084 + 0.315023i \(0.897988\pi\)
\(942\) −46.5087 + 15.1116i −1.51534 + 0.492363i
\(943\) 6.58911 + 2.14093i 0.214571 + 0.0697184i
\(944\) −38.0062 27.6131i −1.23700 0.898731i
\(945\) 10.1168 31.3793i 0.329101 1.02077i
\(946\) 0 0
\(947\) 26.7354i 0.868783i −0.900724 0.434392i \(-0.856963\pi\)
0.900724 0.434392i \(-0.143037\pi\)
\(948\) −2.55626 + 3.51838i −0.0830233 + 0.114272i
\(949\) 0 0
\(950\) 48.0863 + 15.3825i 1.56013 + 0.499075i
\(951\) 21.1290 15.3511i 0.685154 0.497793i
\(952\) −19.3213 26.5934i −0.626206 0.861898i
\(953\) −29.7554 + 9.66813i −0.963873 + 0.313181i −0.748340 0.663315i \(-0.769149\pi\)
−0.215533 + 0.976497i \(0.569149\pi\)
\(954\) 18.6854 57.5079i 0.604964 1.86189i
\(955\) 34.9867 25.5412i 1.13214 0.826495i
\(956\) 64.4674 2.08502
\(957\) 0 0
\(958\) 13.8564i 0.447680i
\(959\) −40.2266 29.2263i −1.29898 0.943768i
\(960\) 2.46257 3.40571i 0.0794791 0.109919i
\(961\) −6.06530 18.6671i −0.195655 0.602164i
\(962\) 0 0
\(963\) −9.24935 12.7306i −0.298056 0.410239i
\(964\) 22.6237 + 69.6287i 0.728661 + 2.24259i
\(965\) −21.5341 + 29.7815i −0.693207 + 0.958699i
\(966\) −4.44080 3.22643i −0.142880 0.103809i
\(967\) 26.4232i 0.849713i 0.905261 + 0.424856i \(0.139675\pi\)
−0.905261 + 0.424856i \(0.860325\pi\)
\(968\) 0 0
\(969\) 5.02175 0.161322
\(970\) 26.6290 19.4399i 0.855005 0.624176i
\(971\) −2.81054 + 8.64995i −0.0901945 + 0.277590i −0.985972 0.166914i \(-0.946620\pi\)
0.895777 + 0.444504i \(0.146620\pi\)
\(972\) 65.4345 21.2610i 2.09881 0.681946i
\(973\) −33.0542 45.4952i −1.05967 1.45851i
\(974\) −14.5623 + 10.5801i −0.466606 + 0.339009i
\(975\) 0 0
\(976\) 1.46615 4.51235i 0.0469303 0.144437i
\(977\) −29.7298 + 40.9195i −0.951140 + 1.30913i −0.000120920 1.00000i \(0.500038\pi\)
−0.951019 + 0.309132i \(0.899962\pi\)
\(978\) 6.92820i 0.221540i
\(979\) 0 0
\(980\) 15.0000 46.5253i 0.479157 1.48620i
\(981\) −19.1922 13.9439i −0.612758 0.445195i
\(982\) −15.6312 5.07889i −0.498813 0.162074i
\(983\) −23.5349 + 7.64695i −0.750646 + 0.243900i −0.659259 0.751916i \(-0.729130\pi\)
−0.0913870 + 0.995815i \(0.529130\pi\)
\(984\) 33.5654 24.3867i 1.07003 0.777419i
\(985\) 18.0901 5.92338i 0.576397 0.188734i
\(986\) 10.8089 + 33.2663i 0.344225 + 1.05941i
\(987\) −17.3143 5.62577i −0.551121 0.179070i
\(988\) 0 0
\(989\) 2.74456 0.0872720
\(990\) 0 0
\(991\) 18.9783 0.602864 0.301432 0.953488i \(-0.402535\pi\)
0.301432 + 0.953488i \(0.402535\pi\)
\(992\) 8.14459 11.2101i 0.258591 0.355920i
\(993\) −10.6372 3.45623i −0.337561 0.109680i
\(994\) −27.3379 84.1375i −0.867106 2.66868i
\(995\) 5.56657 + 17.0004i 0.176472 + 0.538949i
\(996\) −18.5898 + 13.5063i −0.589040 + 0.427963i
\(997\) 2.06805 0.671952i 0.0654959 0.0212809i −0.276086 0.961133i \(-0.589037\pi\)
0.341582 + 0.939852i \(0.389037\pi\)
\(998\) 48.0158 + 15.6013i 1.51991 + 0.493849i
\(999\) −3.74390 2.72010i −0.118452 0.0860603i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.j.j.444.4 16
5.4 even 2 inner 605.2.j.j.444.1 16
11.2 odd 10 605.2.j.i.269.4 16
11.3 even 5 inner 605.2.j.j.124.1 16
11.4 even 5 inner 605.2.j.j.9.4 16
11.5 even 5 605.2.b.c.364.4 4
11.6 odd 10 55.2.b.a.34.1 4
11.7 odd 10 605.2.j.i.9.1 16
11.8 odd 10 605.2.j.i.124.4 16
11.9 even 5 inner 605.2.j.j.269.1 16
11.10 odd 2 605.2.j.i.444.1 16
33.17 even 10 495.2.c.a.199.4 4
44.39 even 10 880.2.b.h.529.2 4
55.4 even 10 inner 605.2.j.j.9.1 16
55.9 even 10 inner 605.2.j.j.269.4 16
55.14 even 10 inner 605.2.j.j.124.4 16
55.17 even 20 275.2.a.h.1.4 4
55.19 odd 10 605.2.j.i.124.1 16
55.24 odd 10 605.2.j.i.269.1 16
55.27 odd 20 3025.2.a.ba.1.1 4
55.28 even 20 275.2.a.h.1.1 4
55.29 odd 10 605.2.j.i.9.4 16
55.38 odd 20 3025.2.a.ba.1.4 4
55.39 odd 10 55.2.b.a.34.4 yes 4
55.49 even 10 605.2.b.c.364.1 4
55.54 odd 2 605.2.j.i.444.4 16
165.17 odd 20 2475.2.a.bi.1.1 4
165.83 odd 20 2475.2.a.bi.1.4 4
165.149 even 10 495.2.c.a.199.1 4
220.39 even 10 880.2.b.h.529.3 4
220.83 odd 20 4400.2.a.cc.1.3 4
220.127 odd 20 4400.2.a.cc.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.b.a.34.1 4 11.6 odd 10
55.2.b.a.34.4 yes 4 55.39 odd 10
275.2.a.h.1.1 4 55.28 even 20
275.2.a.h.1.4 4 55.17 even 20
495.2.c.a.199.1 4 165.149 even 10
495.2.c.a.199.4 4 33.17 even 10
605.2.b.c.364.1 4 55.49 even 10
605.2.b.c.364.4 4 11.5 even 5
605.2.j.i.9.1 16 11.7 odd 10
605.2.j.i.9.4 16 55.29 odd 10
605.2.j.i.124.1 16 55.19 odd 10
605.2.j.i.124.4 16 11.8 odd 10
605.2.j.i.269.1 16 55.24 odd 10
605.2.j.i.269.4 16 11.2 odd 10
605.2.j.i.444.1 16 11.10 odd 2
605.2.j.i.444.4 16 55.54 odd 2
605.2.j.j.9.1 16 55.4 even 10 inner
605.2.j.j.9.4 16 11.4 even 5 inner
605.2.j.j.124.1 16 11.3 even 5 inner
605.2.j.j.124.4 16 55.14 even 10 inner
605.2.j.j.269.1 16 11.9 even 5 inner
605.2.j.j.269.4 16 55.9 even 10 inner
605.2.j.j.444.1 16 5.4 even 2 inner
605.2.j.j.444.4 16 1.1 even 1 trivial
880.2.b.h.529.2 4 44.39 even 10
880.2.b.h.529.3 4 220.39 even 10
2475.2.a.bi.1.1 4 165.17 odd 20
2475.2.a.bi.1.4 4 165.83 odd 20
3025.2.a.ba.1.1 4 55.27 odd 20
3025.2.a.ba.1.4 4 55.38 odd 20
4400.2.a.cc.1.2 4 220.127 odd 20
4400.2.a.cc.1.3 4 220.83 odd 20