Properties

Label 605.2.j.j.124.2
Level $605$
Weight $2$
Character 605.124
Analytic conductor $4.831$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(9,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.j (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.343361479062744140625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 3 x^{14} - 8 x^{13} + 8 x^{12} + 7 x^{11} + 6 x^{10} + 56 x^{9} - 137 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 124.2
Root \(1.59696 + 0.670602i\) of defining polynomial
Character \(\chi\) \(=\) 605.124
Dual form 605.2.j.j.444.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.465695 - 0.640974i) q^{2} +(-2.40079 + 0.780063i) q^{3} +(0.424058 - 1.30512i) q^{4} +(2.04481 + 0.904839i) q^{5} +(1.61803 + 1.17557i) q^{6} +(3.29456 + 1.07047i) q^{7} +(-2.54105 + 0.825636i) q^{8} +(2.72823 - 1.98218i) q^{9} +(-0.372281 - 1.73205i) q^{10} +3.46410i q^{12} +(-0.848116 - 2.61023i) q^{14} +(-5.61500 - 0.577241i) q^{15} +(-0.507835 - 0.368964i) q^{16} +(-2.96754 + 4.08446i) q^{17} +(-2.54105 - 0.825636i) q^{18} +(1.23607 + 3.80423i) q^{19} +(2.04804 - 2.28502i) q^{20} -8.74456 q^{21} -2.52434i q^{23} +(5.45647 - 3.96435i) q^{24} +(3.36253 + 3.70046i) q^{25} +(-0.552379 + 0.760285i) q^{27} +(2.79417 - 3.84584i) q^{28} +(-0.848116 + 2.61023i) q^{29} +(2.24488 + 3.86788i) q^{30} +(1.91922 - 1.39439i) q^{31} +5.84096i q^{32} +4.00000 q^{34} +(5.76816 + 5.16995i) q^{35} +(-1.43004 - 4.40122i) q^{36} +(10.4969 + 3.41066i) q^{37} +(1.86278 - 2.56389i) q^{38} +(-5.94304 - 0.610965i) q^{40} +(0.848116 + 2.61023i) q^{41} +(4.07230 + 5.60503i) q^{42} -3.46410i q^{43} +(7.37228 - 1.58457i) q^{45} +(-1.61803 + 1.17557i) q^{46} +(6.30860 - 2.04979i) q^{47} +(1.50702 + 0.489660i) q^{48} +(4.04508 + 2.93893i) q^{49} +(0.805980 - 3.87858i) q^{50} +(3.93829 - 12.1208i) q^{51} +(1.86278 + 2.56389i) q^{53} +0.744563 q^{54} -9.25544 q^{56} +(-5.93507 - 8.16893i) q^{57} +(2.06805 - 0.671952i) q^{58} +(0.502993 - 1.54805i) q^{59} +(-3.13445 + 7.08345i) q^{60} +(8.69253 + 6.31550i) q^{61} +(-1.78754 - 0.580806i) q^{62} +(11.1102 - 3.60991i) q^{63} +(2.72823 - 1.98218i) q^{64} +0.644810i q^{67} +(4.07230 + 5.60503i) q^{68} +(1.96914 + 6.06040i) q^{69} +(0.627600 - 6.10485i) q^{70} +(-5.75765 - 4.18318i) q^{71} +(-5.29601 + 7.28933i) q^{72} +(6.58911 + 2.14093i) q^{73} +(-2.70222 - 8.31657i) q^{74} +(-10.9593 - 6.26102i) q^{75} +5.48913 q^{76} +(-10.3106 + 7.49107i) q^{79} +(-0.704576 - 1.21397i) q^{80} +(-2.39320 + 7.36552i) q^{81} +(1.27813 - 1.75919i) q^{82} +(3.89893 - 5.36641i) q^{83} +(-3.70820 + 11.4127i) q^{84} +(-9.76384 + 5.66683i) q^{85} +(-2.22040 + 1.61321i) q^{86} -6.92820i q^{87} +4.37228 q^{89} +(-4.44890 - 3.98751i) q^{90} +(-3.29456 - 1.07047i) q^{92} +(-3.51992 + 4.84475i) q^{93} +(-4.25174 - 3.08907i) q^{94} +(-0.914681 + 8.89738i) q^{95} +(-4.55632 - 14.0229i) q^{96} +(-2.41516 - 3.32418i) q^{97} -3.96143i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{4} + 3 q^{5} + 8 q^{6} + 2 q^{9} + 40 q^{10} - 12 q^{14} - q^{15} - 14 q^{16} - 16 q^{19} + 12 q^{20} - 48 q^{21} + 4 q^{24} - q^{25} - 12 q^{29} - 6 q^{30} - 2 q^{31} + 64 q^{34} + 18 q^{35}+ \cdots + 36 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.465695 0.640974i −0.329296 0.453237i 0.611981 0.790872i \(-0.290373\pi\)
−0.941277 + 0.337636i \(0.890373\pi\)
\(3\) −2.40079 + 0.780063i −1.38610 + 0.450370i −0.904668 0.426116i \(-0.859881\pi\)
−0.481427 + 0.876486i \(0.659881\pi\)
\(4\) 0.424058 1.30512i 0.212029 0.652559i
\(5\) 2.04481 + 0.904839i 0.914469 + 0.404656i
\(6\) 1.61803 + 1.17557i 0.660560 + 0.479925i
\(7\) 3.29456 + 1.07047i 1.24523 + 0.404598i 0.856208 0.516632i \(-0.172814\pi\)
0.389018 + 0.921230i \(0.372814\pi\)
\(8\) −2.54105 + 0.825636i −0.898396 + 0.291906i
\(9\) 2.72823 1.98218i 0.909411 0.660726i
\(10\) −0.372281 1.73205i −0.117726 0.547723i
\(11\) 0 0
\(12\) 3.46410i 1.00000i
\(13\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(14\) −0.848116 2.61023i −0.226669 0.697614i
\(15\) −5.61500 0.577241i −1.44979 0.149043i
\(16\) −0.507835 0.368964i −0.126959 0.0922409i
\(17\) −2.96754 + 4.08446i −0.719733 + 0.990628i 0.279799 + 0.960059i \(0.409732\pi\)
−0.999533 + 0.0305696i \(0.990268\pi\)
\(18\) −2.54105 0.825636i −0.598930 0.194604i
\(19\) 1.23607 + 3.80423i 0.283573 + 0.872749i 0.986823 + 0.161806i \(0.0517318\pi\)
−0.703249 + 0.710943i \(0.748268\pi\)
\(20\) 2.04804 2.28502i 0.457956 0.510946i
\(21\) −8.74456 −1.90822
\(22\) 0 0
\(23\) 2.52434i 0.526361i −0.964747 0.263180i \(-0.915229\pi\)
0.964747 0.263180i \(-0.0847714\pi\)
\(24\) 5.45647 3.96435i 1.11380 0.809220i
\(25\) 3.36253 + 3.70046i 0.672507 + 0.740091i
\(26\) 0 0
\(27\) −0.552379 + 0.760285i −0.106305 + 0.146317i
\(28\) 2.79417 3.84584i 0.528048 0.726796i
\(29\) −0.848116 + 2.61023i −0.157491 + 0.484708i −0.998405 0.0564612i \(-0.982018\pi\)
0.840914 + 0.541170i \(0.182018\pi\)
\(30\) 2.24488 + 3.86788i 0.409857 + 0.706176i
\(31\) 1.91922 1.39439i 0.344701 0.250440i −0.401941 0.915665i \(-0.631664\pi\)
0.746643 + 0.665225i \(0.231664\pi\)
\(32\) 5.84096i 1.03255i
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) 5.76816 + 5.16995i 0.974997 + 0.873881i
\(36\) −1.43004 4.40122i −0.238341 0.733537i
\(37\) 10.4969 + 3.41066i 1.72568 + 0.560708i 0.992815 0.119662i \(-0.0381811\pi\)
0.732868 + 0.680370i \(0.238181\pi\)
\(38\) 1.86278 2.56389i 0.302183 0.415919i
\(39\) 0 0
\(40\) −5.94304 0.610965i −0.939677 0.0966020i
\(41\) 0.848116 + 2.61023i 0.132454 + 0.407650i 0.995185 0.0980119i \(-0.0312483\pi\)
−0.862732 + 0.505662i \(0.831248\pi\)
\(42\) 4.07230 + 5.60503i 0.628369 + 0.864876i
\(43\) 3.46410i 0.528271i −0.964486 0.264135i \(-0.914913\pi\)
0.964486 0.264135i \(-0.0850865\pi\)
\(44\) 0 0
\(45\) 7.37228 1.58457i 1.09899 0.236214i
\(46\) −1.61803 + 1.17557i −0.238566 + 0.173328i
\(47\) 6.30860 2.04979i 0.920203 0.298992i 0.189653 0.981851i \(-0.439264\pi\)
0.730550 + 0.682859i \(0.239264\pi\)
\(48\) 1.50702 + 0.489660i 0.217520 + 0.0706764i
\(49\) 4.04508 + 2.93893i 0.577869 + 0.419847i
\(50\) 0.805980 3.87858i 0.113983 0.548514i
\(51\) 3.93829 12.1208i 0.551470 1.69725i
\(52\) 0 0
\(53\) 1.86278 + 2.56389i 0.255872 + 0.352178i 0.917557 0.397604i \(-0.130158\pi\)
−0.661685 + 0.749782i \(0.730158\pi\)
\(54\) 0.744563 0.101322
\(55\) 0 0
\(56\) −9.25544 −1.23681
\(57\) −5.93507 8.16893i −0.786120 1.08200i
\(58\) 2.06805 0.671952i 0.271549 0.0882316i
\(59\) 0.502993 1.54805i 0.0654841 0.201539i −0.912961 0.408047i \(-0.866210\pi\)
0.978445 + 0.206508i \(0.0662099\pi\)
\(60\) −3.13445 + 7.08345i −0.404656 + 0.914469i
\(61\) 8.69253 + 6.31550i 1.11296 + 0.808616i 0.983128 0.182919i \(-0.0585546\pi\)
0.129837 + 0.991535i \(0.458555\pi\)
\(62\) −1.78754 0.580806i −0.227017 0.0737624i
\(63\) 11.1102 3.60991i 1.39975 0.454806i
\(64\) 2.72823 1.98218i 0.341029 0.247772i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.644810i 0.0787761i 0.999224 + 0.0393880i \(0.0125408\pi\)
−0.999224 + 0.0393880i \(0.987459\pi\)
\(68\) 4.07230 + 5.60503i 0.493838 + 0.679710i
\(69\) 1.96914 + 6.06040i 0.237057 + 0.729586i
\(70\) 0.627600 6.10485i 0.0750126 0.729670i
\(71\) −5.75765 4.18318i −0.683307 0.496452i 0.191146 0.981562i \(-0.438780\pi\)
−0.874453 + 0.485110i \(0.838780\pi\)
\(72\) −5.29601 + 7.28933i −0.624141 + 0.859056i
\(73\) 6.58911 + 2.14093i 0.771197 + 0.250577i 0.668077 0.744092i \(-0.267117\pi\)
0.103120 + 0.994669i \(0.467117\pi\)
\(74\) −2.70222 8.31657i −0.314127 0.966782i
\(75\) −10.9593 6.26102i −1.26547 0.722960i
\(76\) 5.48913 0.629646
\(77\) 0 0
\(78\) 0 0
\(79\) −10.3106 + 7.49107i −1.16003 + 0.842811i −0.989782 0.142591i \(-0.954457\pi\)
−0.170248 + 0.985401i \(0.554457\pi\)
\(80\) −0.704576 1.21397i −0.0787740 0.135726i
\(81\) −2.39320 + 7.36552i −0.265911 + 0.818391i
\(82\) 1.27813 1.75919i 0.141146 0.194270i
\(83\) 3.89893 5.36641i 0.427963 0.589040i −0.539521 0.841972i \(-0.681395\pi\)
0.967484 + 0.252932i \(0.0813948\pi\)
\(84\) −3.70820 + 11.4127i −0.404598 + 1.24523i
\(85\) −9.76384 + 5.66683i −1.05904 + 0.614654i
\(86\) −2.22040 + 1.61321i −0.239432 + 0.173957i
\(87\) 6.92820i 0.742781i
\(88\) 0 0
\(89\) 4.37228 0.463461 0.231730 0.972780i \(-0.425561\pi\)
0.231730 + 0.972780i \(0.425561\pi\)
\(90\) −4.44890 3.98751i −0.468955 0.420321i
\(91\) 0 0
\(92\) −3.29456 1.07047i −0.343481 0.111604i
\(93\) −3.51992 + 4.84475i −0.364998 + 0.502377i
\(94\) −4.25174 3.08907i −0.438533 0.318613i
\(95\) −0.914681 + 8.89738i −0.0938443 + 0.912852i
\(96\) −4.55632 14.0229i −0.465028 1.43121i
\(97\) −2.41516 3.32418i −0.245222 0.337519i 0.668609 0.743614i \(-0.266890\pi\)
−0.913831 + 0.406095i \(0.866890\pi\)
\(98\) 3.96143i 0.400165i
\(99\) 0 0
\(100\) 6.25544 2.81929i 0.625544 0.281929i
\(101\) 4.85410 3.52671i 0.483001 0.350921i −0.319485 0.947591i \(-0.603510\pi\)
0.802486 + 0.596670i \(0.203510\pi\)
\(102\) −9.60315 + 3.12025i −0.950854 + 0.308951i
\(103\) −9.88367 3.21140i −0.973867 0.316429i −0.221491 0.975162i \(-0.571092\pi\)
−0.752376 + 0.658734i \(0.771092\pi\)
\(104\) 0 0
\(105\) −17.8810 7.91242i −1.74501 0.772173i
\(106\) 0.775903 2.38798i 0.0753624 0.231941i
\(107\) −6.30860 + 2.04979i −0.609875 + 0.198160i −0.597640 0.801765i \(-0.703895\pi\)
−0.0122352 + 0.999925i \(0.503895\pi\)
\(108\) 0.758020 + 1.04332i 0.0729405 + 0.100394i
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) −27.8614 −2.64449
\(112\) −1.27813 1.75919i −0.120772 0.166228i
\(113\) −15.2985 + 4.97078i −1.43916 + 0.467612i −0.921636 0.388056i \(-0.873147\pi\)
−0.517526 + 0.855668i \(0.673147\pi\)
\(114\) −2.47214 + 7.60845i −0.231537 + 0.712597i
\(115\) 2.28412 5.16180i 0.212995 0.481341i
\(116\) 3.04701 + 2.21378i 0.282908 + 0.205545i
\(117\) 0 0
\(118\) −1.22650 + 0.398515i −0.112909 + 0.0366862i
\(119\) −14.1490 + 10.2798i −1.29704 + 0.942352i
\(120\) 14.7446 3.16915i 1.34599 0.289302i
\(121\) 0 0
\(122\) 8.51278i 0.770711i
\(123\) −4.07230 5.60503i −0.367187 0.505389i
\(124\) −1.00599 3.09610i −0.0903402 0.278038i
\(125\) 3.52744 + 10.6093i 0.315504 + 0.948924i
\(126\) −7.48781 5.44021i −0.667067 0.484652i
\(127\) 6.86646 9.45088i 0.609300 0.838630i −0.387220 0.921988i \(-0.626564\pi\)
0.996520 + 0.0833579i \(0.0265645\pi\)
\(128\) 8.56912 + 2.78428i 0.757411 + 0.246098i
\(129\) 2.70222 + 8.31657i 0.237917 + 0.732233i
\(130\) 0 0
\(131\) −8.74456 −0.764016 −0.382008 0.924159i \(-0.624767\pi\)
−0.382008 + 0.924159i \(0.624767\pi\)
\(132\) 0 0
\(133\) 13.8564i 1.20150i
\(134\) 0.413306 0.300285i 0.0357042 0.0259406i
\(135\) −1.81745 + 1.05483i −0.156421 + 0.0907851i
\(136\) 4.16837 12.8289i 0.357435 1.10007i
\(137\) 1.31040 1.80361i 0.111955 0.154093i −0.749362 0.662160i \(-0.769640\pi\)
0.861317 + 0.508067i \(0.169640\pi\)
\(138\) 2.96754 4.08446i 0.252614 0.347693i
\(139\) 5.63452 17.3413i 0.477914 1.47087i −0.364074 0.931370i \(-0.618614\pi\)
0.841988 0.539497i \(-0.181386\pi\)
\(140\) 9.19342 5.33576i 0.776986 0.450954i
\(141\) −13.5466 + 9.84221i −1.14083 + 0.828863i
\(142\) 5.63858i 0.473179i
\(143\) 0 0
\(144\) −2.11684 −0.176404
\(145\) −4.09608 + 4.57004i −0.340161 + 0.379521i
\(146\) −1.69623 5.22047i −0.140381 0.432049i
\(147\) −12.0039 3.90032i −0.990068 0.321693i
\(148\) 8.90261 12.2534i 0.731790 1.00722i
\(149\) −9.29490 6.75314i −0.761468 0.553239i 0.137892 0.990447i \(-0.455967\pi\)
−0.899360 + 0.437209i \(0.855967\pi\)
\(150\) 1.09055 + 9.94036i 0.0890428 + 0.811627i
\(151\) −6.87059 21.1455i −0.559120 1.72080i −0.684806 0.728726i \(-0.740113\pi\)
0.125685 0.992070i \(-0.459887\pi\)
\(152\) −6.28181 8.64617i −0.509522 0.701297i
\(153\) 17.0256i 1.37643i
\(154\) 0 0
\(155\) 5.18614 1.11469i 0.416561 0.0895342i
\(156\) 0 0
\(157\) 5.13431 1.66824i 0.409762 0.133140i −0.0968802 0.995296i \(-0.530886\pi\)
0.506643 + 0.862156i \(0.330886\pi\)
\(158\) 9.60315 + 3.12025i 0.763986 + 0.248234i
\(159\) −6.47214 4.70228i −0.513274 0.372915i
\(160\) −5.28513 + 11.9437i −0.417826 + 0.944231i
\(161\) 2.70222 8.31657i 0.212965 0.655438i
\(162\) 5.83560 1.89610i 0.458488 0.148972i
\(163\) 2.03615 + 2.80252i 0.159483 + 0.219510i 0.881279 0.472596i \(-0.156683\pi\)
−0.721796 + 0.692106i \(0.756683\pi\)
\(164\) 3.76631 0.294100
\(165\) 0 0
\(166\) −5.25544 −0.407901
\(167\) 13.1483 + 18.0970i 1.01744 + 1.40039i 0.913980 + 0.405759i \(0.132993\pi\)
0.103464 + 0.994633i \(0.467007\pi\)
\(168\) 22.2203 7.21983i 1.71434 0.557022i
\(169\) 4.01722 12.3637i 0.309017 0.951057i
\(170\) 8.17926 + 3.61936i 0.627320 + 0.277592i
\(171\) 10.9129 + 7.92871i 0.834533 + 0.606324i
\(172\) −4.52106 1.46898i −0.344727 0.112009i
\(173\) −1.78754 + 0.580806i −0.135904 + 0.0441579i −0.376179 0.926547i \(-0.622762\pi\)
0.240275 + 0.970705i \(0.422762\pi\)
\(174\) −4.44080 + 3.22643i −0.336656 + 0.244595i
\(175\) 7.11684 + 15.7908i 0.537983 + 1.19368i
\(176\) 0 0
\(177\) 4.10891i 0.308845i
\(178\) −2.03615 2.80252i −0.152616 0.210058i
\(179\) 4.90144 + 15.0851i 0.366351 + 1.12751i 0.949131 + 0.314883i \(0.101965\pi\)
−0.582780 + 0.812630i \(0.698035\pi\)
\(180\) 1.05822 10.2936i 0.0788752 0.767243i
\(181\) −5.56859 4.04582i −0.413910 0.300723i 0.361273 0.932460i \(-0.382342\pi\)
−0.775183 + 0.631737i \(0.782342\pi\)
\(182\) 0 0
\(183\) −25.7954 8.38144i −1.90685 0.619574i
\(184\) 2.08418 + 6.41446i 0.153648 + 0.472880i
\(185\) 18.3782 + 16.4722i 1.35119 + 1.21106i
\(186\) 4.74456 0.347888
\(187\) 0 0
\(188\) 9.10268i 0.663881i
\(189\) −2.63370 + 1.91350i −0.191574 + 0.139187i
\(190\) 6.12895 3.55717i 0.444641 0.258065i
\(191\) −4.21120 + 12.9607i −0.304711 + 0.937806i 0.675073 + 0.737751i \(0.264112\pi\)
−0.979785 + 0.200055i \(0.935888\pi\)
\(192\) −5.00368 + 6.88698i −0.361110 + 0.497025i
\(193\) −13.7329 + 18.9018i −0.988518 + 1.36058i −0.0564056 + 0.998408i \(0.517964\pi\)
−0.932112 + 0.362170i \(0.882036\pi\)
\(194\) −1.00599 + 3.09610i −0.0722255 + 0.222287i
\(195\) 0 0
\(196\) 5.55099 4.03303i 0.396500 0.288074i
\(197\) 1.87953i 0.133911i 0.997756 + 0.0669554i \(0.0213285\pi\)
−0.997756 + 0.0669554i \(0.978671\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) −11.5996 6.62680i −0.820214 0.468586i
\(201\) −0.502993 1.54805i −0.0354784 0.109191i
\(202\) −4.52106 1.46898i −0.318101 0.103357i
\(203\) −5.58834 + 7.69168i −0.392224 + 0.539850i
\(204\) −14.1490 10.2798i −0.990628 0.719733i
\(205\) −0.627600 + 6.10485i −0.0438335 + 0.426381i
\(206\) 2.54435 + 7.83070i 0.177273 + 0.545591i
\(207\) −5.00368 6.88698i −0.347780 0.478678i
\(208\) 0 0
\(209\) 0 0
\(210\) 3.25544 + 15.1460i 0.224647 + 1.04518i
\(211\) −17.3851 + 12.6310i −1.19684 + 0.869553i −0.993970 0.109653i \(-0.965026\pi\)
−0.202867 + 0.979206i \(0.565026\pi\)
\(212\) 4.13611 1.34390i 0.284069 0.0922997i
\(213\) 17.0860 + 5.55159i 1.17072 + 0.380389i
\(214\) 4.25174 + 3.08907i 0.290643 + 0.211164i
\(215\) 3.13445 7.08345i 0.213768 0.483087i
\(216\) 0.775903 2.38798i 0.0527935 0.162482i
\(217\) 7.81561 2.53945i 0.530558 0.172389i
\(218\) −4.65695 6.40974i −0.315408 0.434122i
\(219\) −17.4891 −1.18181
\(220\) 0 0
\(221\) 0 0
\(222\) 12.9749 + 17.8584i 0.870819 + 1.19858i
\(223\) −7.20236 + 2.34019i −0.482306 + 0.156711i −0.540071 0.841620i \(-0.681603\pi\)
0.0577650 + 0.998330i \(0.481603\pi\)
\(224\) −6.25255 + 19.2434i −0.417766 + 1.28575i
\(225\) 16.5087 + 3.43057i 1.10058 + 0.228704i
\(226\) 10.3106 + 7.49107i 0.685849 + 0.498298i
\(227\) −9.32263 3.02911i −0.618765 0.201049i −0.0171731 0.999853i \(-0.505467\pi\)
−0.601592 + 0.798804i \(0.705467\pi\)
\(228\) −13.1782 + 4.28187i −0.872749 + 0.283573i
\(229\) 16.4815 11.9745i 1.08913 0.791299i 0.109878 0.993945i \(-0.464954\pi\)
0.979252 + 0.202646i \(0.0649541\pi\)
\(230\) −4.37228 + 0.939764i −0.288300 + 0.0619662i
\(231\) 0 0
\(232\) 7.33296i 0.481433i
\(233\) −10.0074 13.7740i −0.655605 0.902362i 0.343721 0.939072i \(-0.388312\pi\)
−0.999326 + 0.0367094i \(0.988312\pi\)
\(234\) 0 0
\(235\) 14.7546 + 1.51683i 0.962486 + 0.0989469i
\(236\) −1.80709 1.31293i −0.117632 0.0854644i
\(237\) 18.9100 26.0274i 1.22834 1.69066i
\(238\) 13.1782 + 4.28187i 0.854217 + 0.277552i
\(239\) −1.00599 3.09610i −0.0650718 0.200270i 0.913234 0.407435i \(-0.133577\pi\)
−0.978306 + 0.207164i \(0.933577\pi\)
\(240\) 2.63851 + 2.36487i 0.170315 + 0.152652i
\(241\) −5.25544 −0.338532 −0.169266 0.985570i \(-0.554140\pi\)
−0.169266 + 0.985570i \(0.554140\pi\)
\(242\) 0 0
\(243\) 22.3692i 1.43498i
\(244\) 11.9286 8.66664i 0.763650 0.554825i
\(245\) 5.61219 + 9.66971i 0.358550 + 0.617775i
\(246\) −1.69623 + 5.22047i −0.108148 + 0.332845i
\(247\) 0 0
\(248\) −3.72556 + 5.12779i −0.236573 + 0.325615i
\(249\) −5.17435 + 15.9250i −0.327911 + 1.00921i
\(250\) 5.15757 7.20169i 0.326193 0.455475i
\(251\) 3.95056 2.87025i 0.249357 0.181168i −0.456085 0.889936i \(-0.650749\pi\)
0.705442 + 0.708768i \(0.250749\pi\)
\(252\) 16.0309i 1.00985i
\(253\) 0 0
\(254\) −9.25544 −0.580738
\(255\) 19.0204 21.2213i 1.19111 1.32893i
\(256\) −4.29013 13.2037i −0.268133 0.825229i
\(257\) −22.7814 7.40212i −1.42106 0.461731i −0.505123 0.863047i \(-0.668553\pi\)
−0.915940 + 0.401316i \(0.868553\pi\)
\(258\) 4.07230 5.60503i 0.253530 0.348954i
\(259\) 30.9317 + 22.4732i 1.92200 + 1.39642i
\(260\) 0 0
\(261\) 2.86009 + 8.80244i 0.177035 + 0.544858i
\(262\) 4.07230 + 5.60503i 0.251587 + 0.346280i
\(263\) 14.1514i 0.872610i −0.899799 0.436305i \(-0.856287\pi\)
0.899799 0.436305i \(-0.143713\pi\)
\(264\) 0 0
\(265\) 1.48913 + 6.92820i 0.0914762 + 0.425596i
\(266\) 8.88159 6.45285i 0.544565 0.395650i
\(267\) −10.4969 + 3.41066i −0.642401 + 0.208729i
\(268\) 0.841553 + 0.273437i 0.0514060 + 0.0167028i
\(269\) 9.29490 + 6.75314i 0.566720 + 0.411746i 0.833912 0.551897i \(-0.186096\pi\)
−0.267192 + 0.963643i \(0.586096\pi\)
\(270\) 1.52249 + 0.673709i 0.0926559 + 0.0410006i
\(271\) 2.93230 9.02469i 0.178125 0.548211i −0.821638 0.570010i \(-0.806939\pi\)
0.999762 + 0.0217988i \(0.00693933\pi\)
\(272\) 3.01404 0.979321i 0.182753 0.0593800i
\(273\) 0 0
\(274\) −1.76631 −0.106707
\(275\) 0 0
\(276\) 8.74456 0.526361
\(277\) −4.83032 6.64836i −0.290226 0.399461i 0.638862 0.769321i \(-0.279406\pi\)
−0.929087 + 0.369860i \(0.879406\pi\)
\(278\) −13.7393 + 4.46416i −0.824026 + 0.267742i
\(279\) 2.47214 7.60845i 0.148003 0.455506i
\(280\) −18.9257 8.37468i −1.13102 0.500483i
\(281\) −19.0031 13.8066i −1.13363 0.823630i −0.147411 0.989075i \(-0.547094\pi\)
−0.986219 + 0.165445i \(0.947094\pi\)
\(282\) 12.6172 + 4.09957i 0.751343 + 0.244126i
\(283\) −4.52106 + 1.46898i −0.268749 + 0.0873218i −0.440292 0.897855i \(-0.645125\pi\)
0.171543 + 0.985177i \(0.445125\pi\)
\(284\) −7.90111 + 5.74049i −0.468845 + 0.340636i
\(285\) −4.74456 22.0742i −0.281044 1.30756i
\(286\) 0 0
\(287\) 9.50744i 0.561207i
\(288\) 11.5778 + 15.9355i 0.682230 + 0.939009i
\(289\) −2.62328 8.07364i −0.154311 0.474920i
\(290\) 4.83680 + 0.497239i 0.284026 + 0.0291989i
\(291\) 8.39135 + 6.09667i 0.491910 + 0.357393i
\(292\) 5.58834 7.69168i 0.327033 0.450122i
\(293\) 9.60315 + 3.12025i 0.561022 + 0.182287i 0.575781 0.817604i \(-0.304698\pi\)
−0.0147589 + 0.999891i \(0.504698\pi\)
\(294\) 3.09017 + 9.51057i 0.180222 + 0.554667i
\(295\) 2.42926 2.71035i 0.141437 0.157803i
\(296\) −29.4891 −1.71402
\(297\) 0 0
\(298\) 9.10268i 0.527304i
\(299\) 0 0
\(300\) −12.8188 + 11.6482i −0.740091 + 0.672507i
\(301\) 3.70820 11.4127i 0.213737 0.657816i
\(302\) −10.3541 + 14.2512i −0.595812 + 0.820065i
\(303\) −8.90261 + 12.2534i −0.511442 + 0.703939i
\(304\) 0.775903 2.38798i 0.0445011 0.136960i
\(305\) 12.0601 + 20.7794i 0.690560 + 1.18982i
\(306\) 10.9129 7.92871i 0.623851 0.453254i
\(307\) 28.1176i 1.60475i −0.596817 0.802377i \(-0.703568\pi\)
0.596817 0.802377i \(-0.296432\pi\)
\(308\) 0 0
\(309\) 26.2337 1.49238
\(310\) −3.12965 2.80507i −0.177752 0.159317i
\(311\) −5.40444 16.6331i −0.306458 0.943179i −0.979129 0.203238i \(-0.934853\pi\)
0.672672 0.739941i \(-0.265147\pi\)
\(312\) 0 0
\(313\) −18.7043 + 25.7443i −1.05723 + 1.45515i −0.174865 + 0.984592i \(0.555949\pi\)
−0.882367 + 0.470562i \(0.844051\pi\)
\(314\) −3.46032 2.51407i −0.195277 0.141877i
\(315\) 25.9846 + 2.67131i 1.46407 + 0.150511i
\(316\) 5.40444 + 16.6331i 0.304023 + 0.935688i
\(317\) −2.06842 2.84693i −0.116174 0.159900i 0.746970 0.664858i \(-0.231508\pi\)
−0.863144 + 0.504958i \(0.831508\pi\)
\(318\) 6.33830i 0.355434i
\(319\) 0 0
\(320\) 7.37228 1.58457i 0.412123 0.0885804i
\(321\) 13.5466 9.84221i 0.756099 0.549338i
\(322\) −6.58911 + 2.14093i −0.367197 + 0.119310i
\(323\) −19.2063 6.24051i −1.06867 0.347231i
\(324\) 8.59801 + 6.24682i 0.477667 + 0.347045i
\(325\) 0 0
\(326\) 0.848116 2.61023i 0.0469728 0.144568i
\(327\) −24.0079 + 7.80063i −1.32764 + 0.431376i
\(328\) −4.31021 5.93249i −0.237991 0.327567i
\(329\) 22.9783 1.26683
\(330\) 0 0
\(331\) 3.11684 0.171317 0.0856586 0.996325i \(-0.472701\pi\)
0.0856586 + 0.996325i \(0.472701\pi\)
\(332\) −5.35042 7.36423i −0.293643 0.404164i
\(333\) 35.3986 11.5017i 1.93983 0.630289i
\(334\) 5.47665 16.8554i 0.299669 0.922286i
\(335\) −0.583449 + 1.31852i −0.0318772 + 0.0720383i
\(336\) 4.44080 + 3.22643i 0.242265 + 0.176016i
\(337\) −11.9517 3.88335i −0.651052 0.211540i −0.0351740 0.999381i \(-0.511199\pi\)
−0.615878 + 0.787842i \(0.711199\pi\)
\(338\) −9.79563 + 3.18279i −0.532812 + 0.173121i
\(339\) 32.8509 23.8676i 1.78422 1.29631i
\(340\) 3.25544 + 15.1460i 0.176551 + 0.821409i
\(341\) 0 0
\(342\) 10.6873i 0.577901i
\(343\) −4.07230 5.60503i −0.219883 0.302643i
\(344\) 2.86009 + 8.80244i 0.154206 + 0.474596i
\(345\) −1.45715 + 14.1742i −0.0784504 + 0.763111i
\(346\) 1.20473 + 0.875286i 0.0647666 + 0.0470557i
\(347\) −17.2206 + 23.7021i −0.924449 + 1.27239i 0.0375371 + 0.999295i \(0.488049\pi\)
−0.961986 + 0.273099i \(0.911951\pi\)
\(348\) −9.04212 2.93796i −0.484708 0.157491i
\(349\) −2.31427 7.12258i −0.123880 0.381263i 0.869815 0.493377i \(-0.164238\pi\)
−0.993695 + 0.112114i \(0.964238\pi\)
\(350\) 6.80723 11.9154i 0.363862 0.636906i
\(351\) 0 0
\(352\) 0 0
\(353\) 21.7244i 1.15627i 0.815941 + 0.578136i \(0.196220\pi\)
−0.815941 + 0.578136i \(0.803780\pi\)
\(354\) 2.63370 1.91350i 0.139980 0.101701i
\(355\) −7.98822 13.7636i −0.423971 0.730494i
\(356\) 1.85410 5.70634i 0.0982672 0.302435i
\(357\) 25.9498 35.7169i 1.37341 1.89034i
\(358\) 7.38657 10.1667i 0.390392 0.537329i
\(359\) 2.01197 6.19221i 0.106188 0.326812i −0.883820 0.467828i \(-0.845037\pi\)
0.990007 + 0.141015i \(0.0450367\pi\)
\(360\) −17.4250 + 10.1133i −0.918380 + 0.533018i
\(361\) 2.42705 1.76336i 0.127740 0.0928082i
\(362\) 5.45343i 0.286626i
\(363\) 0 0
\(364\) 0 0
\(365\) 11.5363 + 10.3399i 0.603838 + 0.541215i
\(366\) 6.64050 + 20.4374i 0.347105 + 1.06828i
\(367\) 22.8336 + 7.41908i 1.19190 + 0.387273i 0.836776 0.547545i \(-0.184437\pi\)
0.355128 + 0.934818i \(0.384437\pi\)
\(368\) −0.931389 + 1.28195i −0.0485520 + 0.0668261i
\(369\) 7.48781 + 5.44021i 0.389800 + 0.283206i
\(370\) 1.99962 19.4509i 0.103955 1.01121i
\(371\) 3.39247 + 10.4409i 0.176128 + 0.542066i
\(372\) 4.83032 + 6.64836i 0.250440 + 0.344701i
\(373\) 8.21782i 0.425503i −0.977106 0.212751i \(-0.931758\pi\)
0.977106 0.212751i \(-0.0682424\pi\)
\(374\) 0 0
\(375\) −16.7446 22.7190i −0.864685 1.17321i
\(376\) −14.3381 + 10.4172i −0.739429 + 0.537226i
\(377\) 0 0
\(378\) 2.45300 + 0.797029i 0.126169 + 0.0409948i
\(379\) −5.15528 3.74553i −0.264809 0.192395i 0.447455 0.894306i \(-0.352330\pi\)
−0.712264 + 0.701911i \(0.752330\pi\)
\(380\) 11.2242 + 4.96677i 0.575792 + 0.254790i
\(381\) −9.11264 + 28.0458i −0.466855 + 1.43683i
\(382\) 10.2686 3.33648i 0.525388 0.170709i
\(383\) −3.34655 4.60613i −0.171001 0.235362i 0.714912 0.699215i \(-0.246467\pi\)
−0.885912 + 0.463852i \(0.846467\pi\)
\(384\) −22.7446 −1.16068
\(385\) 0 0
\(386\) 18.5109 0.942179
\(387\) −6.86646 9.45088i −0.349042 0.480415i
\(388\) −5.36261 + 1.74242i −0.272245 + 0.0884579i
\(389\) 3.04734 9.37876i 0.154506 0.475522i −0.843604 0.536966i \(-0.819571\pi\)
0.998111 + 0.0614438i \(0.0195705\pi\)
\(390\) 0 0
\(391\) 10.3106 + 7.49107i 0.521428 + 0.378839i
\(392\) −12.7052 4.12818i −0.641711 0.208505i
\(393\) 20.9938 6.82131i 1.05900 0.344090i
\(394\) 1.20473 0.875286i 0.0606933 0.0440963i
\(395\) −27.8614 + 5.98844i −1.40186 + 0.301311i
\(396\) 0 0
\(397\) 23.3639i 1.17260i −0.810095 0.586299i \(-0.800584\pi\)
0.810095 0.586299i \(-0.199416\pi\)
\(398\) −3.72556 5.12779i −0.186745 0.257033i
\(399\) −10.8089 33.2663i −0.541121 1.66540i
\(400\) −0.342279 3.11987i −0.0171139 0.155994i
\(401\) −9.29490 6.75314i −0.464165 0.337236i 0.330998 0.943631i \(-0.392615\pi\)
−0.795163 + 0.606396i \(0.792615\pi\)
\(402\) −0.758020 + 1.04332i −0.0378066 + 0.0520363i
\(403\) 0 0
\(404\) −2.54435 7.83070i −0.126586 0.389592i
\(405\) −11.5583 + 12.8957i −0.574334 + 0.640790i
\(406\) 7.53262 0.373838
\(407\) 0 0
\(408\) 34.0511i 1.68578i
\(409\) −3.64937 + 2.65143i −0.180450 + 0.131105i −0.674343 0.738418i \(-0.735573\pi\)
0.493894 + 0.869522i \(0.335573\pi\)
\(410\) 4.20532 2.44072i 0.207686 0.120539i
\(411\) −1.73906 + 5.35228i −0.0857815 + 0.264008i
\(412\) −8.38250 + 11.5375i −0.412976 + 0.568413i
\(413\) 3.31428 4.56171i 0.163085 0.224467i
\(414\) −2.08418 + 6.41446i −0.102432 + 0.315254i
\(415\) 12.8283 7.44542i 0.629717 0.365481i
\(416\) 0 0
\(417\) 46.0280i 2.25400i
\(418\) 0 0
\(419\) −22.9783 −1.12256 −0.561280 0.827626i \(-0.689691\pi\)
−0.561280 + 0.827626i \(0.689691\pi\)
\(420\) −17.9092 + 19.9815i −0.873881 + 0.974997i
\(421\) 9.73067 + 29.9479i 0.474244 + 1.45957i 0.846975 + 0.531634i \(0.178422\pi\)
−0.372730 + 0.927940i \(0.621578\pi\)
\(422\) 16.1923 + 5.26119i 0.788227 + 0.256111i
\(423\) 13.1483 18.0970i 0.639291 0.879909i
\(424\) −6.85025 4.97700i −0.332678 0.241704i
\(425\) −25.0928 + 2.75291i −1.21718 + 0.133536i
\(426\) −4.39845 13.5370i −0.213106 0.655872i
\(427\) 21.8775 + 30.1118i 1.05873 + 1.45721i
\(428\) 9.10268i 0.439995i
\(429\) 0 0
\(430\) −6.00000 + 1.28962i −0.289346 + 0.0621910i
\(431\) 25.6643 18.6462i 1.23621 0.898156i 0.238866 0.971053i \(-0.423224\pi\)
0.997340 + 0.0728966i \(0.0232243\pi\)
\(432\) 0.561035 0.182291i 0.0269928 0.00877050i
\(433\) −19.5390 6.34862i −0.938986 0.305095i −0.200754 0.979642i \(-0.564339\pi\)
−0.738232 + 0.674547i \(0.764339\pi\)
\(434\) −5.26741 3.82700i −0.252844 0.183702i
\(435\) 6.26891 14.1669i 0.300571 0.679250i
\(436\) 4.24058 13.0512i 0.203087 0.625038i
\(437\) 9.60315 3.12025i 0.459381 0.149262i
\(438\) 8.14459 + 11.2101i 0.389164 + 0.535638i
\(439\) −1.48913 −0.0710721 −0.0355360 0.999368i \(-0.511314\pi\)
−0.0355360 + 0.999368i \(0.511314\pi\)
\(440\) 0 0
\(441\) 16.8614 0.802924
\(442\) 0 0
\(443\) 14.3525 4.66341i 0.681908 0.221565i 0.0524777 0.998622i \(-0.483288\pi\)
0.629431 + 0.777057i \(0.283288\pi\)
\(444\) −11.8149 + 36.3624i −0.560708 + 1.72568i
\(445\) 8.94050 + 3.95621i 0.423821 + 0.187542i
\(446\) 4.85410 + 3.52671i 0.229848 + 0.166995i
\(447\) 27.5830 + 8.96224i 1.30463 + 0.423900i
\(448\) 11.1102 3.60991i 0.524906 0.170552i
\(449\) −17.6862 + 12.8498i −0.834666 + 0.606420i −0.920875 0.389857i \(-0.872524\pi\)
0.0862097 + 0.996277i \(0.472524\pi\)
\(450\) −5.48913 12.1793i −0.258760 0.574136i
\(451\) 0 0
\(452\) 22.0742i 1.03828i
\(453\) 32.9896 + 45.4064i 1.54999 + 2.13338i
\(454\) 2.39992 + 7.38620i 0.112634 + 0.346652i
\(455\) 0 0
\(456\) 21.8259 + 15.8574i 1.02209 + 0.742592i
\(457\) −12.2169 + 16.8151i −0.571482 + 0.786577i −0.992729 0.120368i \(-0.961592\pi\)
0.421247 + 0.906946i \(0.361592\pi\)
\(458\) −15.3507 4.98775i −0.717292 0.233062i
\(459\) −1.46615 4.51235i −0.0684340 0.210618i
\(460\) −5.76816 5.16995i −0.268942 0.241050i
\(461\) 32.2337 1.50127 0.750636 0.660716i \(-0.229747\pi\)
0.750636 + 0.660716i \(0.229747\pi\)
\(462\) 0 0
\(463\) 20.1398i 0.935976i −0.883735 0.467988i \(-0.844979\pi\)
0.883735 0.467988i \(-0.155021\pi\)
\(464\) 1.39379 1.01264i 0.0647049 0.0470108i
\(465\) −11.5813 + 6.72166i −0.537070 + 0.311709i
\(466\) −4.16837 + 12.8289i −0.193096 + 0.594288i
\(467\) 2.58853 3.56280i 0.119783 0.164867i −0.744915 0.667159i \(-0.767510\pi\)
0.864698 + 0.502293i \(0.167510\pi\)
\(468\) 0 0
\(469\) −0.690248 + 2.12436i −0.0318727 + 0.0980940i
\(470\) −5.89891 10.1637i −0.272096 0.468817i
\(471\) −11.0251 + 8.01017i −0.508008 + 0.369089i
\(472\) 4.34896i 0.200177i
\(473\) 0 0
\(474\) −25.4891 −1.17075
\(475\) −9.92105 + 17.3659i −0.455209 + 0.796800i
\(476\) 7.41641 + 22.8254i 0.339930 + 1.04620i
\(477\) 10.1642 + 3.30254i 0.465386 + 0.151213i
\(478\) −1.51604 + 2.08665i −0.0693420 + 0.0954411i
\(479\) −14.1490 10.2798i −0.646484 0.469698i 0.215587 0.976485i \(-0.430833\pi\)
−0.862072 + 0.506786i \(0.830833\pi\)
\(480\) 3.37164 32.7970i 0.153894 1.49697i
\(481\) 0 0
\(482\) 2.44743 + 3.36860i 0.111477 + 0.153435i
\(483\) 22.0742i 1.00441i
\(484\) 0 0
\(485\) −1.93070 8.98266i −0.0876687 0.407882i
\(486\) −14.3381 + 10.4172i −0.650387 + 0.472534i
\(487\) 21.6071 7.02057i 0.979111 0.318132i 0.224622 0.974446i \(-0.427885\pi\)
0.754488 + 0.656313i \(0.227885\pi\)
\(488\) −27.3024 8.87110i −1.23592 0.401576i
\(489\) −7.07450 5.13992i −0.319920 0.232435i
\(490\) 3.58446 8.10040i 0.161929 0.365939i
\(491\) −9.11264 + 28.0458i −0.411248 + 1.26569i 0.504317 + 0.863519i \(0.331744\pi\)
−0.915564 + 0.402172i \(0.868256\pi\)
\(492\) −9.04212 + 2.93796i −0.407650 + 0.132454i
\(493\) −8.14459 11.2101i −0.366814 0.504876i
\(494\) 0 0
\(495\) 0 0
\(496\) −1.48913 −0.0668637
\(497\) −14.4909 19.9451i −0.650008 0.894659i
\(498\) 12.6172 4.09957i 0.565390 0.183706i
\(499\) 6.18034 19.0211i 0.276670 0.851503i −0.712103 0.702075i \(-0.752257\pi\)
0.988773 0.149427i \(-0.0477430\pi\)
\(500\) 15.3422 0.104766i 0.686125 0.00468528i
\(501\) −45.6831 33.1907i −2.04097 1.48285i
\(502\) −3.67951 1.19554i −0.164224 0.0533597i
\(503\) 0.280518 0.0911457i 0.0125077 0.00406399i −0.302756 0.953068i \(-0.597907\pi\)
0.315264 + 0.949004i \(0.397907\pi\)
\(504\) −25.2510 + 18.3459i −1.12477 + 0.817192i
\(505\) 13.1168 2.81929i 0.583692 0.125457i
\(506\) 0 0
\(507\) 32.8164i 1.45743i
\(508\) −9.42272 12.9693i −0.418066 0.575418i
\(509\) −8.76752 26.9836i −0.388613 1.19603i −0.933825 0.357730i \(-0.883551\pi\)
0.545212 0.838299i \(-0.316449\pi\)
\(510\) −22.4600 2.30896i −0.994545 0.102243i
\(511\) 19.4164 + 14.1068i 0.858931 + 0.624050i
\(512\) 4.12671 5.67993i 0.182377 0.251020i
\(513\) −3.57507 1.16161i −0.157843 0.0512864i
\(514\) 5.86460 + 18.0494i 0.258677 + 0.796124i
\(515\) −17.3045 15.5098i −0.762526 0.683445i
\(516\) 12.0000 0.528271
\(517\) 0 0
\(518\) 30.2921i 1.33096i
\(519\) 3.83843 2.78878i 0.168488 0.122414i
\(520\) 0 0
\(521\) 5.74956 17.6953i 0.251893 0.775246i −0.742533 0.669809i \(-0.766376\pi\)
0.994426 0.105437i \(-0.0336242\pi\)
\(522\) 4.31021 5.93249i 0.188653 0.259658i
\(523\) −5.35042 + 7.36423i −0.233958 + 0.322015i −0.909812 0.415020i \(-0.863775\pi\)
0.675855 + 0.737035i \(0.263775\pi\)
\(524\) −3.70820 + 11.4127i −0.161994 + 0.498565i
\(525\) −29.4039 32.3589i −1.28329 1.41226i
\(526\) −9.07065 + 6.59021i −0.395499 + 0.287347i
\(527\) 11.9769i 0.521721i
\(528\) 0 0
\(529\) 16.6277 0.722944
\(530\) 3.74732 4.18092i 0.162773 0.181607i
\(531\) −1.69623 5.22047i −0.0736102 0.226549i
\(532\) 18.0842 + 5.87592i 0.784051 + 0.254754i
\(533\) 0 0
\(534\) 7.07450 + 5.13992i 0.306144 + 0.222426i
\(535\) −14.7546 1.51683i −0.637898 0.0655782i
\(536\) −0.532379 1.63849i −0.0229953 0.0707721i
\(537\) −23.5347 32.3927i −1.01560 1.39785i
\(538\) 9.10268i 0.392445i
\(539\) 0 0
\(540\) 0.605969 + 2.81929i 0.0260768 + 0.121323i
\(541\) −0.189058 + 0.137358i −0.00812822 + 0.00590550i −0.591842 0.806054i \(-0.701599\pi\)
0.583714 + 0.811960i \(0.301599\pi\)
\(542\) −7.15015 + 2.32322i −0.307125 + 0.0997910i
\(543\) 16.5250 + 5.36930i 0.709156 + 0.230419i
\(544\) −23.8572 17.3333i −1.02287 0.743158i
\(545\) 20.4481 + 9.04839i 0.875902 + 0.387590i
\(546\) 0 0
\(547\) 8.65717 2.81288i 0.370154 0.120270i −0.118032 0.993010i \(-0.537659\pi\)
0.488186 + 0.872739i \(0.337659\pi\)
\(548\) −1.79824 2.47506i −0.0768168 0.105729i
\(549\) 36.2337 1.54642
\(550\) 0 0
\(551\) −10.9783 −0.467689
\(552\) −10.0074 13.7740i −0.425942 0.586259i
\(553\) −41.9877 + 13.6426i −1.78550 + 0.580143i
\(554\) −2.01197 + 6.19221i −0.0854805 + 0.263082i
\(555\) −56.9714 25.2101i −2.41830 1.07011i
\(556\) −20.2430 14.7074i −0.858495 0.623733i
\(557\) 30.5970 + 9.94157i 1.29644 + 0.421238i 0.874340 0.485314i \(-0.161295\pi\)
0.422096 + 0.906551i \(0.361295\pi\)
\(558\) −6.02808 + 1.95864i −0.255189 + 0.0829159i
\(559\) 0 0
\(560\) −1.02175 4.75372i −0.0431768 0.200881i
\(561\) 0 0
\(562\) 18.6101i 0.785021i
\(563\) −7.21320 9.92812i −0.304000 0.418420i 0.629498 0.777002i \(-0.283261\pi\)
−0.933498 + 0.358582i \(0.883261\pi\)
\(564\) 7.10067 + 21.8536i 0.298992 + 0.920203i
\(565\) −35.7803 3.67834i −1.50529 0.154749i
\(566\) 3.04701 + 2.21378i 0.128075 + 0.0930522i
\(567\) −15.7691 + 21.7043i −0.662239 + 0.911494i
\(568\) 18.0842 + 5.87592i 0.758798 + 0.246548i
\(569\) −11.9727 36.8483i −0.501923 1.54476i −0.805883 0.592075i \(-0.798309\pi\)
0.303960 0.952685i \(-0.401691\pi\)
\(570\) −11.9395 + 13.3210i −0.500090 + 0.557955i
\(571\) 21.4891 0.899292 0.449646 0.893207i \(-0.351550\pi\)
0.449646 + 0.893207i \(0.351550\pi\)
\(572\) 0 0
\(573\) 34.4010i 1.43712i
\(574\) 6.09402 4.42757i 0.254360 0.184803i
\(575\) 9.34120 8.48817i 0.389555 0.353981i
\(576\) 3.51423 10.8157i 0.146426 0.450653i
\(577\) −18.7043 + 25.7443i −0.778672 + 1.07175i 0.216755 + 0.976226i \(0.430453\pi\)
−0.995427 + 0.0955239i \(0.969547\pi\)
\(578\) −3.95334 + 5.44131i −0.164437 + 0.226328i
\(579\) 18.2253 56.0916i 0.757417 2.33109i
\(580\) 4.22746 + 7.28383i 0.175536 + 0.302445i
\(581\) 18.5898 13.5063i 0.771235 0.560335i
\(582\) 8.21782i 0.340640i
\(583\) 0 0
\(584\) −18.5109 −0.765985
\(585\) 0 0
\(586\) −2.47214 7.60845i −0.102123 0.314302i
\(587\) 26.6370 + 8.65488i 1.09943 + 0.357225i 0.801881 0.597483i \(-0.203833\pi\)
0.297544 + 0.954708i \(0.403833\pi\)
\(588\) −10.1807 + 14.0126i −0.419847 + 0.577869i
\(589\) 7.67686 + 5.57757i 0.316320 + 0.229820i
\(590\) −2.86856 0.294898i −0.118097 0.0121408i
\(591\) −1.46615 4.51235i −0.0603094 0.185613i
\(592\) −4.07230 5.60503i −0.167370 0.230365i
\(593\) 43.5586i 1.78874i −0.447333 0.894368i \(-0.647626\pi\)
0.447333 0.894368i \(-0.352374\pi\)
\(594\) 0 0
\(595\) −38.2337 + 8.21782i −1.56743 + 0.336898i
\(596\) −12.7552 + 9.26721i −0.522474 + 0.379600i
\(597\) −19.2063 + 6.24051i −0.786062 + 0.255407i
\(598\) 0 0
\(599\) −28.2980 20.5597i −1.15622 0.840047i −0.166929 0.985969i \(-0.553385\pi\)
−0.989296 + 0.145922i \(0.953385\pi\)
\(600\) 33.0175 + 6.86113i 1.34793 + 0.280105i
\(601\) −9.41494 + 28.9762i −0.384043 + 1.18196i 0.553129 + 0.833096i \(0.313434\pi\)
−0.937172 + 0.348868i \(0.886566\pi\)
\(602\) −9.04212 + 2.93796i −0.368529 + 0.119742i
\(603\) 1.27813 + 1.75919i 0.0520494 + 0.0716398i
\(604\) −30.5109 −1.24147
\(605\) 0 0
\(606\) 12.0000 0.487467
\(607\) −2.03615 2.80252i −0.0826447 0.113751i 0.765693 0.643206i \(-0.222396\pi\)
−0.848338 + 0.529456i \(0.822396\pi\)
\(608\) −22.2203 + 7.21983i −0.901154 + 0.292803i
\(609\) 7.41641 22.8254i 0.300528 0.924930i
\(610\) 7.70269 17.4071i 0.311873 0.704791i
\(611\) 0 0
\(612\) 22.2203 + 7.21983i 0.898204 + 0.291844i
\(613\) −41.9877 + 13.6426i −1.69587 + 0.551020i −0.987882 0.155208i \(-0.950395\pi\)
−0.707985 + 0.706228i \(0.750395\pi\)
\(614\) −18.0226 + 13.0942i −0.727334 + 0.528439i
\(615\) −3.25544 15.1460i −0.131272 0.610747i
\(616\) 0 0
\(617\) 3.75906i 0.151334i 0.997133 + 0.0756669i \(0.0241086\pi\)
−0.997133 + 0.0756669i \(0.975891\pi\)
\(618\) −12.2169 16.8151i −0.491435 0.676403i
\(619\) 0.963158 + 2.96429i 0.0387126 + 0.119145i 0.968545 0.248838i \(-0.0800486\pi\)
−0.929833 + 0.367983i \(0.880049\pi\)
\(620\) 0.744422 7.24122i 0.0298967 0.290814i
\(621\) 1.91922 + 1.39439i 0.0770155 + 0.0559550i
\(622\) −8.14459 + 11.2101i −0.326568 + 0.449483i
\(623\) 14.4047 + 4.68038i 0.577113 + 0.187515i
\(624\) 0 0
\(625\) −2.38674 + 24.8858i −0.0954695 + 0.995432i
\(626\) 25.2119 1.00767
\(627\) 0 0
\(628\) 7.40830i 0.295624i
\(629\) −45.0807 + 32.7530i −1.79749 + 1.30595i
\(630\) −10.3887 17.8995i −0.413894 0.713132i
\(631\) −5.13153 + 15.7932i −0.204283 + 0.628718i 0.795459 + 0.606007i \(0.207230\pi\)
−0.999742 + 0.0227109i \(0.992770\pi\)
\(632\) 20.0147 27.5479i 0.796144 1.09580i
\(633\) 31.8849 43.8858i 1.26731 1.74430i
\(634\) −0.861558 + 2.65160i −0.0342169 + 0.105309i
\(635\) 22.5922 13.1122i 0.896543 0.520344i
\(636\) −8.88159 + 6.45285i −0.352178 + 0.255872i
\(637\) 0 0
\(638\) 0 0
\(639\) −24.0000 −0.949425
\(640\) 15.0029 + 13.4470i 0.593044 + 0.531540i
\(641\) −6.06530 18.6671i −0.239565 0.737305i −0.996483 0.0837952i \(-0.973296\pi\)
0.756918 0.653510i \(-0.226704\pi\)
\(642\) −12.6172 4.09957i −0.497961 0.161797i
\(643\) 23.0145 31.6768i 0.907605 1.24921i −0.0603727 0.998176i \(-0.519229\pi\)
0.967978 0.251035i \(-0.0807711\pi\)
\(644\) −9.70820 7.05342i −0.382557 0.277944i
\(645\) −1.99962 + 19.4509i −0.0787351 + 0.765879i
\(646\) 4.94427 + 15.2169i 0.194530 + 0.598701i
\(647\) 24.1193 + 33.1974i 0.948228 + 1.30512i 0.952310 + 0.305132i \(0.0987006\pi\)
−0.00408232 + 0.999992i \(0.501299\pi\)
\(648\) 20.6920i 0.812860i
\(649\) 0 0
\(650\) 0 0
\(651\) −16.7827 + 12.1933i −0.657766 + 0.477895i
\(652\) 4.52106 1.46898i 0.177058 0.0575297i
\(653\) 24.3406 + 7.90874i 0.952522 + 0.309493i 0.743740 0.668469i \(-0.233050\pi\)
0.208782 + 0.977962i \(0.433050\pi\)
\(654\) 16.1803 + 11.7557i 0.632701 + 0.459684i
\(655\) −17.8810 7.91242i −0.698669 0.309164i
\(656\) 0.532379 1.63849i 0.0207859 0.0639724i
\(657\) 22.2203 7.21983i 0.866898 0.281672i
\(658\) −10.7008 14.7285i −0.417162 0.574175i
\(659\) 32.7446 1.27555 0.637774 0.770224i \(-0.279856\pi\)
0.637774 + 0.770224i \(0.279856\pi\)
\(660\) 0 0
\(661\) 35.3505 1.37498 0.687488 0.726196i \(-0.258713\pi\)
0.687488 + 0.726196i \(0.258713\pi\)
\(662\) −1.45150 1.99781i −0.0564140 0.0776473i
\(663\) 0 0
\(664\) −5.47665 + 16.8554i −0.212535 + 0.654116i
\(665\) −12.5378 + 28.3338i −0.486196 + 1.09874i
\(666\) −23.8572 17.3333i −0.924448 0.671651i
\(667\) 6.58911 + 2.14093i 0.255131 + 0.0828972i
\(668\) 29.1944 9.48584i 1.12957 0.367018i
\(669\) 15.4659 11.2366i 0.597944 0.434432i
\(670\) 1.11684 0.240051i 0.0431474 0.00927397i
\(671\) 0 0
\(672\) 51.0767i 1.97033i
\(673\) −0.758020 1.04332i −0.0292195 0.0402172i 0.794157 0.607712i \(-0.207913\pi\)
−0.823377 + 0.567495i \(0.807913\pi\)
\(674\) 3.07673 + 9.46920i 0.118511 + 0.364740i
\(675\) −4.67079 + 0.512429i −0.179779 + 0.0197234i
\(676\) −14.4326 10.4859i −0.555099 0.403303i
\(677\) 25.5385 35.1508i 0.981526 1.35095i 0.0455220 0.998963i \(-0.485505\pi\)
0.936004 0.351991i \(-0.114495\pi\)
\(678\) −30.5970 9.94157i −1.17507 0.381804i
\(679\) −4.39845 13.5370i −0.168797 0.519504i
\(680\) 20.1316 22.4611i 0.772013 0.861342i
\(681\) 24.7446 0.948214
\(682\) 0 0
\(683\) 44.4434i 1.70058i 0.526314 + 0.850290i \(0.323573\pi\)
−0.526314 + 0.850290i \(0.676427\pi\)
\(684\) 14.9756 10.8804i 0.572607 0.416023i
\(685\) 4.31150 2.50235i 0.164734 0.0956098i
\(686\) −1.69623 + 5.22047i −0.0647625 + 0.199318i
\(687\) −30.2277 + 41.6049i −1.15326 + 1.58733i
\(688\) −1.27813 + 1.75919i −0.0487282 + 0.0670686i
\(689\) 0 0
\(690\) 9.76384 5.66683i 0.371703 0.215733i
\(691\) −13.0564 + 9.48603i −0.496689 + 0.360865i −0.807751 0.589524i \(-0.799315\pi\)
0.311062 + 0.950390i \(0.399315\pi\)
\(692\) 2.57924i 0.0980480i
\(693\) 0 0
\(694\) 23.2119 0.881113
\(695\) 27.2126 30.3613i 1.03223 1.15167i
\(696\) 5.72017 + 17.6049i 0.216823 + 0.667312i
\(697\) −13.1782 4.28187i −0.499161 0.162187i
\(698\) −3.48765 + 4.80033i −0.132009 + 0.181695i
\(699\) 34.7701 + 25.2620i 1.31513 + 0.955496i
\(700\) 23.6268 2.59208i 0.893011 0.0979714i
\(701\) 10.9667 + 33.7522i 0.414208 + 1.27480i 0.912957 + 0.408055i \(0.133793\pi\)
−0.498749 + 0.866746i \(0.666207\pi\)
\(702\) 0 0
\(703\) 44.1485i 1.66509i
\(704\) 0 0
\(705\) −36.6060 + 7.86797i −1.37866 + 0.296325i
\(706\) 13.9248 10.1169i 0.524065 0.380755i
\(707\) 19.7673 6.42280i 0.743427 0.241554i
\(708\) 5.36261 + 1.74242i 0.201539 + 0.0654841i
\(709\) 33.2642 + 24.1679i 1.24926 + 0.907644i 0.998179 0.0603214i \(-0.0192126\pi\)
0.251085 + 0.967965i \(0.419213\pi\)
\(710\) −5.10201 + 11.5299i −0.191475 + 0.432708i
\(711\) −13.2810 + 40.8747i −0.498077 + 1.53292i
\(712\) −11.1102 + 3.60991i −0.416371 + 0.135287i
\(713\) −3.51992 4.84475i −0.131822 0.181437i
\(714\) −34.9783 −1.30903
\(715\) 0 0
\(716\) 21.7663 0.813445
\(717\) 4.83032 + 6.64836i 0.180391 + 0.248288i
\(718\) −4.90601 + 1.59406i −0.183091 + 0.0594897i
\(719\) −6.59768 + 20.3056i −0.246052 + 0.757270i 0.749410 + 0.662106i \(0.230337\pi\)
−0.995462 + 0.0951633i \(0.969663\pi\)
\(720\) −4.32855 1.91540i −0.161316 0.0713828i
\(721\) −29.1246 21.1603i −1.08466 0.788050i
\(722\) −2.26053 0.734490i −0.0841282 0.0273349i
\(723\) 12.6172 4.09957i 0.469238 0.152465i
\(724\) −7.64167 + 5.55200i −0.284001 + 0.206338i
\(725\) −12.5109 + 5.63858i −0.464642 + 0.209412i
\(726\) 0 0
\(727\) 15.7908i 0.585650i 0.956166 + 0.292825i \(0.0945953\pi\)
−0.956166 + 0.292825i \(0.905405\pi\)
\(728\) 0 0
\(729\) 10.2698 + 31.6071i 0.380362 + 1.17063i
\(730\) 1.25520 12.2097i 0.0464570 0.451902i
\(731\) 14.1490 + 10.2798i 0.523320 + 0.380214i
\(732\) −21.8775 + 30.1118i −0.808616 + 1.11296i
\(733\) −28.8095 9.36076i −1.06410 0.345748i −0.275914 0.961182i \(-0.588980\pi\)
−0.788188 + 0.615435i \(0.788980\pi\)
\(734\) −5.87804 18.0908i −0.216963 0.667742i
\(735\) −21.0167 18.8371i −0.775212 0.694815i
\(736\) 14.7446 0.543492
\(737\) 0 0
\(738\) 7.33296i 0.269930i
\(739\) −0.602364 + 0.437643i −0.0221583 + 0.0160990i −0.598809 0.800892i \(-0.704359\pi\)
0.576651 + 0.816991i \(0.304359\pi\)
\(740\) 29.2915 17.0005i 1.07678 0.624950i
\(741\) 0 0
\(742\) 5.11251 7.03677i 0.187686 0.258328i
\(743\) 12.8015 17.6198i 0.469643 0.646408i −0.506831 0.862046i \(-0.669183\pi\)
0.976473 + 0.215638i \(0.0691830\pi\)
\(744\) 4.94427 15.2169i 0.181266 0.557879i
\(745\) −12.8958 22.2193i −0.472467 0.814052i
\(746\) −5.26741 + 3.82700i −0.192854 + 0.140116i
\(747\) 22.3692i 0.818446i
\(748\) 0 0
\(749\) −22.9783 −0.839607
\(750\) −6.76445 + 21.3130i −0.247003 + 0.778239i
\(751\) 6.68333 + 20.5692i 0.243878 + 0.750580i 0.995819 + 0.0913493i \(0.0291180\pi\)
−0.751941 + 0.659231i \(0.770882\pi\)
\(752\) −3.96002 1.28669i −0.144407 0.0469207i
\(753\) −7.24547 + 9.97254i −0.264040 + 0.363420i
\(754\) 0 0
\(755\) 5.08419 49.4554i 0.185032 1.79987i
\(756\) 1.38050 + 4.24873i 0.0502081 + 0.154525i
\(757\) −23.3936 32.1985i −0.850253 1.17027i −0.983807 0.179232i \(-0.942639\pi\)
0.133554 0.991042i \(-0.457361\pi\)
\(758\) 5.04868i 0.183376i
\(759\) 0 0
\(760\) −5.02175 23.3639i −0.182158 0.847496i
\(761\) 17.1960 12.4936i 0.623355 0.452894i −0.230737 0.973016i \(-0.574114\pi\)
0.854092 + 0.520122i \(0.174114\pi\)
\(762\) 22.2203 7.21983i 0.804958 0.261547i
\(763\) 32.9456 + 10.7047i 1.19271 + 0.387535i
\(764\) 15.1295 + 10.9922i 0.547365 + 0.397684i
\(765\) −15.4054 + 34.8141i −0.556983 + 1.25871i
\(766\) −1.39394 + 4.29010i −0.0503650 + 0.155007i
\(767\) 0 0
\(768\) 20.5994 + 28.3526i 0.743316 + 1.02309i
\(769\) −51.2119 −1.84675 −0.923375 0.383900i \(-0.874581\pi\)
−0.923375 + 0.383900i \(0.874581\pi\)
\(770\) 0 0
\(771\) 60.4674 2.17768
\(772\) 18.8454 + 25.9385i 0.678262 + 0.933548i
\(773\) 29.3705 9.54305i 1.05638 0.343240i 0.271213 0.962519i \(-0.412575\pi\)
0.785170 + 0.619280i \(0.212575\pi\)
\(774\) −2.86009 + 8.80244i −0.102804 + 0.316397i
\(775\) 11.6133 + 2.41328i 0.417163 + 0.0866877i
\(776\) 8.88159 + 6.45285i 0.318831 + 0.231644i
\(777\) −91.7910 29.8247i −3.29298 1.06996i
\(778\) −7.43067 + 2.41437i −0.266402 + 0.0865593i
\(779\) −8.88159 + 6.45285i −0.318216 + 0.231197i
\(780\) 0 0
\(781\) 0 0
\(782\) 10.0974i 0.361081i
\(783\) −1.51604 2.08665i −0.0541788 0.0745708i
\(784\) −0.969879 2.98498i −0.0346385 0.106606i
\(785\) 12.0082 + 1.23448i 0.428591 + 0.0440606i
\(786\) −14.1490 10.2798i −0.504678 0.366670i
\(787\) 2.79417 3.84584i 0.0996013 0.137089i −0.756307 0.654216i \(-0.772999\pi\)
0.855909 + 0.517127i \(0.172999\pi\)
\(788\) 2.45300 + 0.797029i 0.0873846 + 0.0283930i
\(789\) 11.0390 + 33.9744i 0.392997 + 1.20952i
\(790\) 16.8133 + 15.0696i 0.598192 + 0.536154i
\(791\) −55.7228 −1.98128
\(792\) 0 0
\(793\) 0 0
\(794\) −14.9756 + 10.8804i −0.531465 + 0.386132i
\(795\) −8.97951 15.4715i −0.318470 0.548719i
\(796\) 3.39247 10.4409i 0.120243 0.370069i
\(797\) 18.3576 25.2671i 0.650260 0.895006i −0.348851 0.937178i \(-0.613428\pi\)
0.999110 + 0.0421727i \(0.0134280\pi\)
\(798\) −16.2892 + 22.4201i −0.576631 + 0.793664i
\(799\) −10.3487 + 31.8501i −0.366111 + 1.12677i
\(800\) −21.6142 + 19.6404i −0.764178 + 0.694394i
\(801\) 11.9286 8.66664i 0.421476 0.306221i
\(802\) 9.10268i 0.321427i
\(803\) 0 0
\(804\) −2.23369 −0.0787761
\(805\) 13.0507 14.5608i 0.459977 0.513200i
\(806\) 0 0
\(807\) −27.5830 8.96224i −0.970966 0.315486i
\(808\) −9.42272 + 12.9693i −0.331490 + 0.456257i
\(809\) 17.1960 + 12.4936i 0.604580 + 0.439253i 0.847501 0.530793i \(-0.178106\pi\)
−0.242922 + 0.970046i \(0.578106\pi\)
\(810\) 13.6484 + 1.40310i 0.479556 + 0.0493000i
\(811\) −10.5788 32.5582i −0.371472 1.14327i −0.945828 0.324667i \(-0.894748\pi\)
0.574357 0.818605i \(-0.305252\pi\)
\(812\) 7.66877 + 10.5552i 0.269121 + 0.370413i
\(813\) 23.9538i 0.840095i
\(814\) 0 0
\(815\) 1.62772 + 7.57301i 0.0570165 + 0.265271i
\(816\) −6.47214 + 4.70228i −0.226570 + 0.164613i
\(817\) 13.1782 4.28187i 0.461048 0.149803i
\(818\) 3.39899 + 1.10440i 0.118843 + 0.0386144i
\(819\) 0 0
\(820\) 7.70141 + 3.40791i 0.268945 + 0.119009i
\(821\) 5.56231 17.1190i 0.194126 0.597458i −0.805860 0.592106i \(-0.798297\pi\)
0.999986 0.00535152i \(-0.00170345\pi\)
\(822\) 4.24054 1.37784i 0.147906 0.0480575i
\(823\) 19.7003 + 27.1151i 0.686708 + 0.945173i 0.999990 0.00448737i \(-0.00142838\pi\)
−0.313282 + 0.949660i \(0.601428\pi\)
\(824\) 27.7663 0.967285
\(825\) 0 0
\(826\) −4.46738 −0.155440
\(827\) 10.5920 + 14.5787i 0.368321 + 0.506950i 0.952443 0.304715i \(-0.0985614\pi\)
−0.584123 + 0.811665i \(0.698561\pi\)
\(828\) −11.1102 + 3.60991i −0.386105 + 0.125453i
\(829\) −9.68785 + 29.8161i −0.336473 + 1.03556i 0.629519 + 0.776985i \(0.283252\pi\)
−0.965992 + 0.258572i \(0.916748\pi\)
\(830\) −10.7464 4.75532i −0.373013 0.165060i
\(831\) 16.7827 + 12.1933i 0.582186 + 0.422983i
\(832\) 0 0
\(833\) −24.0079 + 7.80063i −0.831824 + 0.270276i
\(834\) 29.5027 21.4350i 1.02160 0.742233i
\(835\) 10.5109 + 48.9022i 0.363744 + 1.69233i
\(836\) 0 0
\(837\) 2.22938i 0.0770588i
\(838\) 10.7008 + 14.7285i 0.369655 + 0.508786i
\(839\) −2.19923 6.76852i −0.0759257 0.233675i 0.905890 0.423514i \(-0.139204\pi\)
−0.981815 + 0.189839i \(0.939204\pi\)
\(840\) 51.9693 + 5.34262i 1.79311 + 0.184338i
\(841\) 17.3675 + 12.6182i 0.598878 + 0.435111i
\(842\) 14.6643 20.1837i 0.505366 0.695576i
\(843\) 56.3924 + 18.3230i 1.94226 + 0.631078i
\(844\) 9.11264 + 28.0458i 0.313670 + 0.965377i
\(845\) 19.4017 21.6466i 0.667437 0.744666i
\(846\) −17.7228 −0.609323
\(847\) 0 0
\(848\) 1.98933i 0.0683140i
\(849\) 9.70820 7.05342i 0.333185 0.242073i
\(850\) 13.4501 + 14.8018i 0.461336 + 0.507698i
\(851\) 8.60965 26.4978i 0.295135 0.908332i
\(852\) 14.4909 19.9451i 0.496452 0.683307i
\(853\) 14.4909 19.9451i 0.496161 0.682906i −0.485349 0.874321i \(-0.661307\pi\)
0.981509 + 0.191414i \(0.0613074\pi\)
\(854\) 9.11264 28.0458i 0.311828 0.959708i
\(855\) 15.1407 + 26.0872i 0.517802 + 0.892163i
\(856\) 14.3381 10.4172i 0.490065 0.356053i
\(857\) 10.6873i 0.365070i −0.983199 0.182535i \(-0.941570\pi\)
0.983199 0.182535i \(-0.0584303\pi\)
\(858\) 0 0
\(859\) −11.1168 −0.379302 −0.189651 0.981852i \(-0.560736\pi\)
−0.189651 + 0.981852i \(0.560736\pi\)
\(860\) −7.91554 7.09462i −0.269918 0.241925i
\(861\) −7.41641 22.8254i −0.252751 0.777886i
\(862\) −23.9034 7.76670i −0.814155 0.264535i
\(863\) 13.9063 19.1404i 0.473376 0.651546i −0.503839 0.863797i \(-0.668080\pi\)
0.977215 + 0.212252i \(0.0680796\pi\)
\(864\) −4.44080 3.22643i −0.151079 0.109765i
\(865\) −4.18072 0.429792i −0.142149 0.0146134i
\(866\) 5.02993 + 15.4805i 0.170924 + 0.526050i
\(867\) 12.5959 + 17.3368i 0.427779 + 0.588787i
\(868\) 11.2772i 0.382772i
\(869\) 0 0
\(870\) −12.0000 + 2.57924i −0.406838 + 0.0874444i
\(871\) 0 0
\(872\) −25.4105 + 8.25636i −0.860507 + 0.279596i
\(873\) −13.1782 4.28187i −0.446015 0.144919i
\(874\) −6.47214 4.70228i −0.218923 0.159057i
\(875\) 0.264465 + 38.7289i 0.00894054 + 1.30928i
\(876\) −7.41641 + 22.8254i −0.250577 + 0.771197i
\(877\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(878\) 0.693478 + 0.954490i 0.0234037 + 0.0322125i
\(879\) −25.4891 −0.859727
\(880\) 0 0
\(881\) 21.8614 0.736530 0.368265 0.929721i \(-0.379952\pi\)
0.368265 + 0.929721i \(0.379952\pi\)
\(882\) −7.85227 10.8077i −0.264400 0.363915i
\(883\) −23.0619 + 7.49326i −0.776095 + 0.252168i −0.670172 0.742206i \(-0.733780\pi\)
−0.105923 + 0.994374i \(0.533780\pi\)
\(884\) 0 0
\(885\) −3.71790 + 8.40196i −0.124976 + 0.282429i
\(886\) −9.67301 7.02786i −0.324971 0.236105i
\(887\) −13.4587 4.37301i −0.451900 0.146831i 0.0742192 0.997242i \(-0.476354\pi\)
−0.526120 + 0.850411i \(0.676354\pi\)
\(888\) 70.7971 23.0034i 2.37580 0.771943i
\(889\) 32.7388 23.7861i 1.09802 0.797761i
\(890\) −1.62772 7.57301i −0.0545613 0.253848i
\(891\) 0 0
\(892\) 10.3923i 0.347960i
\(893\) 15.5957 + 21.4656i 0.521890 + 0.718320i
\(894\) −7.10067 21.8536i −0.237482 0.730894i
\(895\) −3.62703 + 35.2812i −0.121238 + 1.17932i
\(896\) 25.2510 + 18.3459i 0.843576 + 0.612894i
\(897\) 0 0
\(898\) 16.4728 + 5.35233i 0.549704 + 0.178610i
\(899\) 2.01197 + 6.19221i 0.0671030 + 0.206522i
\(900\) 11.4780 20.0911i 0.382598 0.669702i
\(901\) −16.0000 −0.533037
\(902\) 0 0
\(903\) 30.2921i 1.00806i
\(904\) 34.7701 25.2620i 1.15644 0.840201i
\(905\) −7.72592 13.3116i −0.256818 0.442493i
\(906\) 13.7412 42.2910i 0.456520 1.40502i
\(907\) −11.6968 + 16.0992i −0.388385 + 0.534566i −0.957782 0.287497i \(-0.907177\pi\)
0.569396 + 0.822063i \(0.307177\pi\)
\(908\) −7.90668 + 10.8826i −0.262392 + 0.361152i
\(909\) 6.25255 19.2434i 0.207384 0.638263i
\(910\) 0 0
\(911\) 24.6838 17.9338i 0.817811 0.594175i −0.0982734 0.995159i \(-0.531332\pi\)
0.916085 + 0.400985i \(0.131332\pi\)
\(912\) 6.33830i 0.209882i
\(913\) 0 0
\(914\) 16.4674 0.544692
\(915\) −45.1630 40.4792i −1.49304 1.33820i
\(916\) −8.63903 26.5882i −0.285442 0.878499i
\(917\) −28.8095 9.36076i −0.951372 0.309120i
\(918\) −2.20952 + 3.04114i −0.0729249 + 0.100373i
\(919\) −5.04316 3.66407i −0.166358 0.120867i 0.501491 0.865163i \(-0.332785\pi\)
−0.667850 + 0.744296i \(0.732785\pi\)
\(920\) −1.54228 + 15.0022i −0.0508475 + 0.494609i
\(921\) 21.9335 + 67.5043i 0.722733 + 2.22434i
\(922\) −15.0111 20.6609i −0.494363 0.680432i
\(923\) 0 0
\(924\) 0 0
\(925\) 22.6753 + 50.3118i 0.745558 + 1.65424i
\(926\) −12.9091 + 9.37900i −0.424219 + 0.308213i
\(927\) −33.3305 + 10.8297i −1.09472 + 0.355695i
\(928\) −15.2463 4.95382i −0.500484 0.162617i
\(929\) −42.8603 31.1398i −1.40620 1.02166i −0.993861 0.110635i \(-0.964712\pi\)
−0.412340 0.911030i \(-0.635288\pi\)
\(930\) 9.70175 + 4.29306i 0.318133 + 0.140775i
\(931\) −6.18034 + 19.0211i −0.202552 + 0.623392i
\(932\) −22.2203 + 7.21983i −0.727852 + 0.236493i
\(933\) 25.9498 + 35.7169i 0.849559 + 1.16932i
\(934\) −3.48913 −0.114168
\(935\) 0 0
\(936\) 0 0
\(937\) 15.2490 + 20.9884i 0.498162 + 0.685661i 0.981867 0.189570i \(-0.0607093\pi\)
−0.483705 + 0.875231i \(0.660709\pi\)
\(938\) 1.68311 0.546874i 0.0549553 0.0178561i
\(939\) 24.8230 76.3972i 0.810067 2.49313i
\(940\) 8.23646 18.6133i 0.268644 0.607099i
\(941\) 8.46828 + 6.15257i 0.276058 + 0.200568i 0.717196 0.696871i \(-0.245425\pi\)
−0.441138 + 0.897439i \(0.645425\pi\)
\(942\) 10.2686 + 3.33648i 0.334570 + 0.108708i
\(943\) 6.58911 2.14093i 0.214571 0.0697184i
\(944\) −0.826613 + 0.600569i −0.0269039 + 0.0195469i
\(945\) −7.11684 + 1.52967i −0.231511 + 0.0497602i
\(946\) 0 0
\(947\) 56.1802i 1.82561i −0.408393 0.912806i \(-0.633911\pi\)
0.408393 0.912806i \(-0.366089\pi\)
\(948\) −25.9498 35.7169i −0.842811 1.16003i
\(949\) 0 0
\(950\) 15.7512 1.72805i 0.511037 0.0560655i
\(951\) 7.18662 + 5.22139i 0.233042 + 0.169315i
\(952\) 27.4659 37.8035i 0.890173 1.22522i
\(953\) 39.6391 + 12.8795i 1.28404 + 0.417209i 0.870000 0.493051i \(-0.164119\pi\)
0.414037 + 0.910260i \(0.364119\pi\)
\(954\) −2.61656 8.05295i −0.0847144 0.260724i
\(955\) −20.3385 + 22.6918i −0.658138 + 0.734291i
\(956\) −4.46738 −0.144485
\(957\) 0 0
\(958\) 13.8564i 0.447680i
\(959\) 6.24789 4.53936i 0.201755 0.146583i
\(960\) −16.4632 + 9.55507i −0.531348 + 0.308389i
\(961\) −7.84047 + 24.1305i −0.252918 + 0.778402i
\(962\) 0 0
\(963\) −13.1483 + 18.0970i −0.423697 + 0.583169i
\(964\) −2.22861 + 6.85896i −0.0717787 + 0.220912i
\(965\) −45.1843 + 26.2245i −1.45453 + 0.844196i
\(966\) 14.1490 10.2798i 0.455237 0.330749i
\(967\) 46.3229i 1.48965i −0.667262 0.744823i \(-0.732534\pi\)
0.667262 0.744823i \(-0.267466\pi\)
\(968\) 0 0
\(969\) 50.9783 1.63766
\(970\) −4.85853 + 5.42071i −0.155998 + 0.174048i
\(971\) 16.7163 + 51.4475i 0.536452 + 1.65103i 0.740491 + 0.672066i \(0.234593\pi\)
−0.204040 + 0.978963i \(0.565407\pi\)
\(972\) −29.1944 9.48584i −0.936411 0.304258i
\(973\) 37.1265 51.1002i 1.19022 1.63820i
\(974\) −14.5623 10.5801i −0.466606 0.339009i
\(975\) 0 0
\(976\) −2.08418 6.41446i −0.0667131 0.205322i
\(977\) −16.0835 22.1371i −0.514558 0.708228i 0.470122 0.882602i \(-0.344210\pi\)
−0.984680 + 0.174373i \(0.944210\pi\)
\(978\) 6.92820i 0.221540i
\(979\) 0 0
\(980\) 15.0000 3.22405i 0.479157 0.102989i
\(981\) 27.2823 19.8218i 0.871058 0.632860i
\(982\) 22.2203 7.21983i 0.709080 0.230394i
\(983\) −7.76340 2.52248i −0.247614 0.0804547i 0.182580 0.983191i \(-0.441555\pi\)
−0.430194 + 0.902736i \(0.641555\pi\)
\(984\) 14.9756 + 10.8804i 0.477405 + 0.346855i
\(985\) −1.70067 + 3.84329i −0.0541878 + 0.122457i
\(986\) −3.39247 + 10.4409i −0.108038 + 0.332507i
\(987\) −55.1659 + 17.9245i −1.75595 + 0.570543i
\(988\) 0 0
\(989\) −8.74456 −0.278061
\(990\) 0 0
\(991\) −26.9783 −0.856992 −0.428496 0.903544i \(-0.640956\pi\)
−0.428496 + 0.903544i \(0.640956\pi\)
\(992\) 8.14459 + 11.2101i 0.258591 + 0.355920i
\(993\) −7.48288 + 2.43134i −0.237462 + 0.0771561i
\(994\) −6.03591 + 18.5766i −0.191448 + 0.589215i
\(995\) 16.3585 + 7.23871i 0.518600 + 0.229483i
\(996\) 18.5898 + 13.5063i 0.589040 + 0.427963i
\(997\) 20.9938 + 6.82131i 0.664882 + 0.216033i 0.621964 0.783046i \(-0.286335\pi\)
0.0429172 + 0.999079i \(0.486335\pi\)
\(998\) −15.0702 + 4.89660i −0.477039 + 0.154999i
\(999\) −8.39135 + 6.09667i −0.265491 + 0.192890i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.j.j.124.2 16
5.4 even 2 inner 605.2.j.j.124.3 16
11.2 odd 10 55.2.b.a.34.2 4
11.3 even 5 inner 605.2.j.j.269.2 16
11.4 even 5 inner 605.2.j.j.444.3 16
11.5 even 5 inner 605.2.j.j.9.3 16
11.6 odd 10 605.2.j.i.9.2 16
11.7 odd 10 605.2.j.i.444.2 16
11.8 odd 10 605.2.j.i.269.3 16
11.9 even 5 605.2.b.c.364.3 4
11.10 odd 2 605.2.j.i.124.3 16
33.2 even 10 495.2.c.a.199.3 4
44.35 even 10 880.2.b.h.529.1 4
55.2 even 20 275.2.a.h.1.3 4
55.4 even 10 inner 605.2.j.j.444.2 16
55.9 even 10 605.2.b.c.364.2 4
55.13 even 20 275.2.a.h.1.2 4
55.14 even 10 inner 605.2.j.j.269.3 16
55.19 odd 10 605.2.j.i.269.2 16
55.24 odd 10 55.2.b.a.34.3 yes 4
55.29 odd 10 605.2.j.i.444.3 16
55.39 odd 10 605.2.j.i.9.3 16
55.42 odd 20 3025.2.a.ba.1.2 4
55.49 even 10 inner 605.2.j.j.9.2 16
55.53 odd 20 3025.2.a.ba.1.3 4
55.54 odd 2 605.2.j.i.124.2 16
165.2 odd 20 2475.2.a.bi.1.2 4
165.68 odd 20 2475.2.a.bi.1.3 4
165.134 even 10 495.2.c.a.199.2 4
220.79 even 10 880.2.b.h.529.4 4
220.123 odd 20 4400.2.a.cc.1.4 4
220.167 odd 20 4400.2.a.cc.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.b.a.34.2 4 11.2 odd 10
55.2.b.a.34.3 yes 4 55.24 odd 10
275.2.a.h.1.2 4 55.13 even 20
275.2.a.h.1.3 4 55.2 even 20
495.2.c.a.199.2 4 165.134 even 10
495.2.c.a.199.3 4 33.2 even 10
605.2.b.c.364.2 4 55.9 even 10
605.2.b.c.364.3 4 11.9 even 5
605.2.j.i.9.2 16 11.6 odd 10
605.2.j.i.9.3 16 55.39 odd 10
605.2.j.i.124.2 16 55.54 odd 2
605.2.j.i.124.3 16 11.10 odd 2
605.2.j.i.269.2 16 55.19 odd 10
605.2.j.i.269.3 16 11.8 odd 10
605.2.j.i.444.2 16 11.7 odd 10
605.2.j.i.444.3 16 55.29 odd 10
605.2.j.j.9.2 16 55.49 even 10 inner
605.2.j.j.9.3 16 11.5 even 5 inner
605.2.j.j.124.2 16 1.1 even 1 trivial
605.2.j.j.124.3 16 5.4 even 2 inner
605.2.j.j.269.2 16 11.3 even 5 inner
605.2.j.j.269.3 16 55.14 even 10 inner
605.2.j.j.444.2 16 55.4 even 10 inner
605.2.j.j.444.3 16 11.4 even 5 inner
880.2.b.h.529.1 4 44.35 even 10
880.2.b.h.529.4 4 220.79 even 10
2475.2.a.bi.1.2 4 165.2 odd 20
2475.2.a.bi.1.3 4 165.68 odd 20
3025.2.a.ba.1.2 4 55.42 odd 20
3025.2.a.ba.1.3 4 55.53 odd 20
4400.2.a.cc.1.1 4 220.167 odd 20
4400.2.a.cc.1.4 4 220.123 odd 20