Properties

Label 605.2.j.j.124.1
Level $605$
Weight $2$
Character 605.124
Analytic conductor $4.831$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(9,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.j (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.343361479062744140625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 3 x^{14} - 8 x^{13} + 8 x^{12} + 7 x^{11} + 6 x^{10} + 56 x^{9} - 137 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 124.1
Root \(-0.217724 - 1.71831i\) of defining polynomial
Character \(\chi\) \(=\) 605.124
Dual form 605.2.j.j.444.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.48377 - 2.04223i) q^{2} +(-0.753510 + 0.244830i) q^{3} +(-1.35111 + 4.15829i) q^{4} +(-1.80602 + 1.31844i) q^{5} +(1.61803 + 1.17557i) q^{6} +(-3.29456 - 1.07047i) q^{7} +(5.69534 - 1.85053i) q^{8} +(-1.91922 + 1.39439i) q^{9} +(5.37228 + 1.73205i) q^{10} -3.46410i q^{12} +(2.70222 + 8.31657i) q^{14} +(1.03806 - 1.43563i) q^{15} +(-5.15528 - 3.74553i) q^{16} +(-0.931389 + 1.28195i) q^{17} +(5.69534 + 1.85053i) q^{18} +(1.23607 + 3.80423i) q^{19} +(-3.04233 - 9.29131i) q^{20} +2.74456 q^{21} -0.792287i q^{23} +(-3.83843 + 2.78878i) q^{24} +(1.52342 - 4.76227i) q^{25} +(2.50184 - 3.44349i) q^{27} +(8.90261 - 12.2534i) q^{28} +(2.70222 - 8.31657i) q^{29} +(-4.47212 + 0.0101793i) q^{30} +(-2.72823 + 1.98218i) q^{31} +4.10891i q^{32} +4.00000 q^{34} +(7.36138 - 2.41040i) q^{35} +(-3.20521 - 9.86463i) q^{36} +(-1.03403 - 0.335976i) q^{37} +(5.93507 - 8.16893i) q^{38} +(-7.84609 + 10.8511i) q^{40} +(-2.70222 - 8.31657i) q^{41} +(-4.07230 - 5.60503i) q^{42} +3.46410i q^{43} +(1.62772 - 5.04868i) q^{45} +(-1.61803 + 1.17557i) q^{46} +(6.30860 - 2.04979i) q^{47} +(4.80158 + 1.56013i) q^{48} +(4.04508 + 2.93893i) q^{49} +(-11.9861 + 3.95492i) q^{50} +(0.387951 - 1.19399i) q^{51} +(5.93507 + 8.16893i) q^{53} -10.7446 q^{54} -20.7446 q^{56} +(-1.86278 - 2.56389i) q^{57} +(-20.9938 + 6.82131i) q^{58} +(2.27816 - 7.01146i) q^{59} +(4.56722 + 6.25624i) q^{60} +(-0.602364 - 0.437643i) q^{61} +(8.09613 + 2.63059i) q^{62} +(7.81561 - 2.53945i) q^{63} +(-1.91922 + 1.39439i) q^{64} +9.30506i q^{67} +(-4.07230 - 5.60503i) q^{68} +(0.193976 + 0.596996i) q^{69} +(-15.8452 - 11.4572i) q^{70} +(8.18470 + 5.94653i) q^{71} +(-8.35023 + 11.4931i) q^{72} +(-6.58911 - 2.14093i) q^{73} +(0.848116 + 2.61023i) q^{74} +(0.0180337 + 3.96139i) q^{75} -17.4891 q^{76} +(-1.01567 + 0.737928i) q^{79} +(14.2488 - 0.0324327i) q^{80} +(1.15713 - 3.56129i) q^{81} +(-12.9749 + 17.8584i) q^{82} +(3.89893 - 5.36641i) q^{83} +(-3.70820 + 11.4127i) q^{84} +(-0.00806494 - 3.54321i) q^{85} +(7.07450 - 5.13992i) q^{86} +6.92820i q^{87} -1.37228 q^{89} +(-12.7257 + 4.16689i) q^{90} +(3.29456 + 1.07047i) q^{92} +(1.57045 - 2.16154i) q^{93} +(-13.5466 - 9.84221i) q^{94} +(-7.24802 - 5.24083i) q^{95} +(-1.00599 - 3.09610i) q^{96} +(-3.43323 - 4.72544i) q^{97} -12.6217i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{4} + 3 q^{5} + 8 q^{6} + 2 q^{9} + 40 q^{10} - 12 q^{14} - q^{15} - 14 q^{16} - 16 q^{19} + 12 q^{20} - 48 q^{21} + 4 q^{24} - q^{25} - 12 q^{29} - 6 q^{30} - 2 q^{31} + 64 q^{34} + 18 q^{35}+ \cdots + 36 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.48377 2.04223i −1.04918 1.44408i −0.889515 0.456905i \(-0.848958\pi\)
−0.159667 0.987171i \(-0.551042\pi\)
\(3\) −0.753510 + 0.244830i −0.435039 + 0.141353i −0.518346 0.855171i \(-0.673452\pi\)
0.0833066 + 0.996524i \(0.473452\pi\)
\(4\) −1.35111 + 4.15829i −0.675555 + 2.07914i
\(5\) −1.80602 + 1.31844i −0.807677 + 0.589625i
\(6\) 1.61803 + 1.17557i 0.660560 + 0.479925i
\(7\) −3.29456 1.07047i −1.24523 0.404598i −0.389018 0.921230i \(-0.627186\pi\)
−0.856208 + 0.516632i \(0.827186\pi\)
\(8\) 5.69534 1.85053i 2.01361 0.654261i
\(9\) −1.91922 + 1.39439i −0.639739 + 0.464797i
\(10\) 5.37228 + 1.73205i 1.69886 + 0.547723i
\(11\) 0 0
\(12\) 3.46410i 1.00000i
\(13\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(14\) 2.70222 + 8.31657i 0.722198 + 2.22270i
\(15\) 1.03806 1.43563i 0.268026 0.370677i
\(16\) −5.15528 3.74553i −1.28882 0.936383i
\(17\) −0.931389 + 1.28195i −0.225895 + 0.310918i −0.906888 0.421372i \(-0.861549\pi\)
0.680993 + 0.732290i \(0.261549\pi\)
\(18\) 5.69534 + 1.85053i 1.34241 + 0.436174i
\(19\) 1.23607 + 3.80423i 0.283573 + 0.872749i 0.986823 + 0.161806i \(0.0517318\pi\)
−0.703249 + 0.710943i \(0.748268\pi\)
\(20\) −3.04233 9.29131i −0.680285 2.07760i
\(21\) 2.74456 0.598913
\(22\) 0 0
\(23\) 0.792287i 0.165203i −0.996583 0.0826016i \(-0.973677\pi\)
0.996583 0.0826016i \(-0.0263229\pi\)
\(24\) −3.83843 + 2.78878i −0.783517 + 0.569258i
\(25\) 1.52342 4.76227i 0.304684 0.952453i
\(26\) 0 0
\(27\) 2.50184 3.44349i 0.481480 0.662700i
\(28\) 8.90261 12.2534i 1.68244 2.31567i
\(29\) 2.70222 8.31657i 0.501789 1.54435i −0.304313 0.952572i \(-0.598427\pi\)
0.806102 0.591777i \(-0.201573\pi\)
\(30\) −4.47212 + 0.0101793i −0.816494 + 0.00185848i
\(31\) −2.72823 + 1.98218i −0.490005 + 0.356010i −0.805186 0.593022i \(-0.797935\pi\)
0.315181 + 0.949032i \(0.397935\pi\)
\(32\) 4.10891i 0.726360i
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) 7.36138 2.41040i 1.24430 0.407432i
\(36\) −3.20521 9.86463i −0.534202 1.64410i
\(37\) −1.03403 0.335976i −0.169993 0.0552341i 0.222784 0.974868i \(-0.428486\pi\)
−0.392777 + 0.919634i \(0.628486\pi\)
\(38\) 5.93507 8.16893i 0.962796 1.32518i
\(39\) 0 0
\(40\) −7.84609 + 10.8511i −1.24058 + 1.71571i
\(41\) −2.70222 8.31657i −0.422016 1.29883i −0.905823 0.423656i \(-0.860747\pi\)
0.483807 0.875174i \(-0.339253\pi\)
\(42\) −4.07230 5.60503i −0.628369 0.864876i
\(43\) 3.46410i 0.528271i 0.964486 + 0.264135i \(0.0850865\pi\)
−0.964486 + 0.264135i \(0.914913\pi\)
\(44\) 0 0
\(45\) 1.62772 5.04868i 0.242646 0.752612i
\(46\) −1.61803 + 1.17557i −0.238566 + 0.173328i
\(47\) 6.30860 2.04979i 0.920203 0.298992i 0.189653 0.981851i \(-0.439264\pi\)
0.730550 + 0.682859i \(0.239264\pi\)
\(48\) 4.80158 + 1.56013i 0.693048 + 0.225185i
\(49\) 4.04508 + 2.93893i 0.577869 + 0.419847i
\(50\) −11.9861 + 3.95492i −1.69508 + 0.559310i
\(51\) 0.387951 1.19399i 0.0543241 0.167192i
\(52\) 0 0
\(53\) 5.93507 + 8.16893i 0.815245 + 1.12209i 0.990493 + 0.137564i \(0.0439274\pi\)
−0.175248 + 0.984524i \(0.556073\pi\)
\(54\) −10.7446 −1.46215
\(55\) 0 0
\(56\) −20.7446 −2.77211
\(57\) −1.86278 2.56389i −0.246731 0.339596i
\(58\) −20.9938 + 6.82131i −2.75663 + 0.895682i
\(59\) 2.27816 7.01146i 0.296591 0.912814i −0.686091 0.727516i \(-0.740675\pi\)
0.982682 0.185298i \(-0.0593251\pi\)
\(60\) 4.56722 + 6.25624i 0.589625 + 0.807677i
\(61\) −0.602364 0.437643i −0.0771248 0.0560344i 0.548555 0.836115i \(-0.315178\pi\)
−0.625680 + 0.780080i \(0.715178\pi\)
\(62\) 8.09613 + 2.63059i 1.02821 + 0.334086i
\(63\) 7.81561 2.53945i 0.984675 0.319940i
\(64\) −1.91922 + 1.39439i −0.239902 + 0.174299i
\(65\) 0 0
\(66\) 0 0
\(67\) 9.30506i 1.13679i 0.822754 + 0.568397i \(0.192436\pi\)
−0.822754 + 0.568397i \(0.807564\pi\)
\(68\) −4.07230 5.60503i −0.493838 0.679710i
\(69\) 0.193976 + 0.596996i 0.0233519 + 0.0718699i
\(70\) −15.8452 11.4572i −1.89386 1.36940i
\(71\) 8.18470 + 5.94653i 0.971345 + 0.705723i 0.955758 0.294155i \(-0.0950382\pi\)
0.0155873 + 0.999879i \(0.495038\pi\)
\(72\) −8.35023 + 11.4931i −0.984084 + 1.35448i
\(73\) −6.58911 2.14093i −0.771197 0.250577i −0.103120 0.994669i \(-0.532883\pi\)
−0.668077 + 0.744092i \(0.732883\pi\)
\(74\) 0.848116 + 2.61023i 0.0985915 + 0.303434i
\(75\) 0.0180337 + 3.96139i 0.00208235 + 0.457422i
\(76\) −17.4891 −2.00614
\(77\) 0 0
\(78\) 0 0
\(79\) −1.01567 + 0.737928i −0.114272 + 0.0830233i −0.643453 0.765485i \(-0.722499\pi\)
0.529182 + 0.848509i \(0.322499\pi\)
\(80\) 14.2488 0.0324327i 1.59307 0.00362609i
\(81\) 1.15713 3.56129i 0.128570 0.395699i
\(82\) −12.9749 + 17.8584i −1.43284 + 1.97213i
\(83\) 3.89893 5.36641i 0.427963 0.589040i −0.539521 0.841972i \(-0.681395\pi\)
0.967484 + 0.252932i \(0.0813948\pi\)
\(84\) −3.70820 + 11.4127i −0.404598 + 1.24523i
\(85\) −0.00806494 3.54321i −0.000874766 0.384315i
\(86\) 7.07450 5.13992i 0.762863 0.554252i
\(87\) 6.92820i 0.742781i
\(88\) 0 0
\(89\) −1.37228 −0.145462 −0.0727308 0.997352i \(-0.523171\pi\)
−0.0727308 + 0.997352i \(0.523171\pi\)
\(90\) −12.7257 + 4.16689i −1.34141 + 0.439228i
\(91\) 0 0
\(92\) 3.29456 + 1.07047i 0.343481 + 0.111604i
\(93\) 1.57045 2.16154i 0.162848 0.224142i
\(94\) −13.5466 9.84221i −1.39723 1.01515i
\(95\) −7.24802 5.24083i −0.743631 0.537698i
\(96\) −1.00599 3.09610i −0.102673 0.315995i
\(97\) −3.43323 4.72544i −0.348592 0.479796i 0.598334 0.801247i \(-0.295829\pi\)
−0.946926 + 0.321451i \(0.895829\pi\)
\(98\) 12.6217i 1.27498i
\(99\) 0 0
\(100\) 17.7446 + 12.7692i 1.77446 + 1.27692i
\(101\) 4.85410 3.52671i 0.483001 0.350921i −0.319485 0.947591i \(-0.603510\pi\)
0.802486 + 0.596670i \(0.203510\pi\)
\(102\) −3.01404 + 0.979321i −0.298434 + 0.0969672i
\(103\) 9.88367 + 3.21140i 0.973867 + 0.316429i 0.752376 0.658734i \(-0.228908\pi\)
0.221491 + 0.975162i \(0.428908\pi\)
\(104\) 0 0
\(105\) −4.95674 + 3.61855i −0.483728 + 0.353134i
\(106\) 7.87657 24.2416i 0.765040 2.35455i
\(107\) −6.30860 + 2.04979i −0.609875 + 0.198160i −0.597640 0.801765i \(-0.703895\pi\)
−0.0122352 + 0.999925i \(0.503895\pi\)
\(108\) 10.9388 + 15.0559i 1.05258 + 1.44876i
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0.861407 0.0817611
\(112\) 12.9749 + 17.8584i 1.22601 + 1.68746i
\(113\) −0.472992 + 0.153684i −0.0444954 + 0.0144574i −0.331180 0.943568i \(-0.607447\pi\)
0.286685 + 0.958025i \(0.407447\pi\)
\(114\) −2.47214 + 7.60845i −0.231537 + 0.712597i
\(115\) 1.04458 + 1.43089i 0.0974080 + 0.133431i
\(116\) 30.9317 + 22.4732i 2.87194 + 2.08658i
\(117\) 0 0
\(118\) −17.6993 + 5.75085i −1.62935 + 0.529408i
\(119\) 4.44080 3.22643i 0.407087 0.295766i
\(120\) 3.25544 10.0974i 0.297179 0.921758i
\(121\) 0 0
\(122\) 1.87953i 0.170164i
\(123\) 4.07230 + 5.60503i 0.367187 + 0.505389i
\(124\) −4.55632 14.0229i −0.409170 1.25929i
\(125\) 3.52744 + 10.6093i 0.315504 + 0.948924i
\(126\) −16.7827 12.1933i −1.49512 1.08627i
\(127\) 4.83032 6.64836i 0.428621 0.589946i −0.539015 0.842296i \(-0.681203\pi\)
0.967636 + 0.252350i \(0.0812034\pi\)
\(128\) 13.5110 + 4.38998i 1.19421 + 0.388023i
\(129\) −0.848116 2.61023i −0.0746725 0.229818i
\(130\) 0 0
\(131\) 2.74456 0.239794 0.119897 0.992786i \(-0.461744\pi\)
0.119897 + 0.992786i \(0.461744\pi\)
\(132\) 0 0
\(133\) 13.8564i 1.20150i
\(134\) 19.0031 13.8066i 1.64162 1.19271i
\(135\) 0.0216636 + 9.51755i 0.00186450 + 0.819140i
\(136\) −2.93230 + 9.02469i −0.251443 + 0.773861i
\(137\) 8.43692 11.6124i 0.720814 0.992116i −0.278682 0.960383i \(-0.589898\pi\)
0.999496 0.0317325i \(-0.0101025\pi\)
\(138\) 0.931389 1.28195i 0.0792851 0.109127i
\(139\) −5.01649 + 15.4392i −0.425493 + 1.30953i 0.477029 + 0.878888i \(0.341714\pi\)
−0.902522 + 0.430644i \(0.858286\pi\)
\(140\) 0.0770881 + 33.8675i 0.00651514 + 2.86232i
\(141\) −4.25174 + 3.08907i −0.358061 + 0.260147i
\(142\) 25.5383i 2.14313i
\(143\) 0 0
\(144\) 15.1168 1.25974
\(145\) 6.08466 + 18.5826i 0.505303 + 1.54320i
\(146\) 5.40444 + 16.6331i 0.447274 + 1.37657i
\(147\) −3.76755 1.22415i −0.310742 0.100966i
\(148\) 2.79417 3.84584i 0.229679 0.316126i
\(149\) 9.29490 + 6.75314i 0.761468 + 0.553239i 0.899360 0.437209i \(-0.144033\pi\)
−0.137892 + 0.990447i \(0.544033\pi\)
\(150\) 8.06333 5.91462i 0.658368 0.482927i
\(151\) 3.78042 + 11.6349i 0.307646 + 0.946837i 0.978677 + 0.205407i \(0.0658519\pi\)
−0.671031 + 0.741430i \(0.734148\pi\)
\(152\) 14.0797 + 19.3790i 1.14201 + 1.57184i
\(153\) 3.75906i 0.303902i
\(154\) 0 0
\(155\) 2.31386 7.17687i 0.185854 0.576460i
\(156\) 0 0
\(157\) 23.2544 7.55580i 1.85590 0.603019i 0.860248 0.509876i \(-0.170309\pi\)
0.995653 0.0931428i \(-0.0296913\pi\)
\(158\) 3.01404 + 0.979321i 0.239784 + 0.0779106i
\(159\) −6.47214 4.70228i −0.513274 0.372915i
\(160\) −5.41736 7.42078i −0.428280 0.586664i
\(161\) −0.848116 + 2.61023i −0.0668409 + 0.205715i
\(162\) −8.98990 + 2.92100i −0.706313 + 0.229495i
\(163\) −2.03615 2.80252i −0.159483 0.219510i 0.721796 0.692106i \(-0.243317\pi\)
−0.881279 + 0.472596i \(0.843317\pi\)
\(164\) 38.2337 2.98555
\(165\) 0 0
\(166\) −16.7446 −1.29963
\(167\) −9.24935 12.7306i −0.715736 0.985126i −0.999655 0.0262779i \(-0.991635\pi\)
0.283918 0.958848i \(-0.408365\pi\)
\(168\) 15.6312 5.07889i 1.20598 0.391845i
\(169\) 4.01722 12.3637i 0.309017 0.951057i
\(170\) −7.22408 + 5.27377i −0.554062 + 0.404480i
\(171\) −7.67686 5.57757i −0.587064 0.426527i
\(172\) −14.4047 4.68038i −1.09835 0.356876i
\(173\) 8.09613 2.63059i 0.615538 0.200000i 0.0153795 0.999882i \(-0.495104\pi\)
0.600158 + 0.799881i \(0.295104\pi\)
\(174\) 14.1490 10.2798i 1.07263 0.779313i
\(175\) −10.1168 + 14.0588i −0.764762 + 1.06274i
\(176\) 0 0
\(177\) 5.84096i 0.439034i
\(178\) 2.03615 + 2.80252i 0.152616 + 0.210058i
\(179\) −3.97439 12.2319i −0.297060 0.914257i −0.982522 0.186148i \(-0.940400\pi\)
0.685462 0.728109i \(-0.259600\pi\)
\(180\) 18.7946 + 13.5898i 1.40087 + 1.01293i
\(181\) −19.5109 14.1755i −1.45024 1.05366i −0.985776 0.168065i \(-0.946248\pi\)
−0.464461 0.885594i \(-0.653752\pi\)
\(182\) 0 0
\(183\) 0.561035 + 0.182291i 0.0414729 + 0.0134754i
\(184\) −1.46615 4.51235i −0.108086 0.332655i
\(185\) 2.31044 0.756526i 0.169867 0.0556209i
\(186\) −6.74456 −0.494535
\(187\) 0 0
\(188\) 29.0024i 2.11522i
\(189\) −11.9286 + 8.66664i −0.867678 + 0.630405i
\(190\) 0.0513921 + 22.5783i 0.00372837 + 1.63800i
\(191\) −5.98636 + 18.4241i −0.433158 + 1.33312i 0.461804 + 0.886982i \(0.347202\pi\)
−0.894962 + 0.446142i \(0.852798\pi\)
\(192\) 1.10476 1.52057i 0.0797291 0.109738i
\(193\) −9.66063 + 13.2967i −0.695387 + 0.957119i 0.304602 + 0.952480i \(0.401477\pi\)
−0.999989 + 0.00463891i \(0.998523\pi\)
\(194\) −4.55632 + 14.0229i −0.327125 + 1.00679i
\(195\) 0 0
\(196\) −17.6862 + 12.8498i −1.26330 + 0.917844i
\(197\) 8.51278i 0.606510i −0.952909 0.303255i \(-0.901927\pi\)
0.952909 0.303255i \(-0.0980734\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) −0.136306 29.9419i −0.00963832 2.11721i
\(201\) −2.27816 7.01146i −0.160689 0.494550i
\(202\) −14.4047 4.68038i −1.01351 0.329310i
\(203\) −17.8052 + 24.5068i −1.24968 + 1.72004i
\(204\) 4.44080 + 3.22643i 0.310918 + 0.225895i
\(205\) 15.8452 + 11.4572i 1.10668 + 0.800205i
\(206\) −8.10666 24.9497i −0.564817 1.73833i
\(207\) 1.10476 + 1.52057i 0.0767860 + 0.105687i
\(208\) 0 0
\(209\) 0 0
\(210\) 14.7446 + 4.75372i 1.01747 + 0.328038i
\(211\) 1.20473 0.875286i 0.0829369 0.0602572i −0.545544 0.838082i \(-0.683677\pi\)
0.628481 + 0.777825i \(0.283677\pi\)
\(212\) −41.9877 + 13.6426i −2.88373 + 0.936979i
\(213\) −7.62314 2.47691i −0.522329 0.169715i
\(214\) 13.5466 + 9.84221i 0.926029 + 0.672799i
\(215\) −4.56722 6.25624i −0.311482 0.426672i
\(216\) 7.87657 24.2416i 0.535933 1.64943i
\(217\) 11.1102 3.60991i 0.754208 0.245057i
\(218\) −14.8377 20.4223i −1.00493 1.38317i
\(219\) 5.48913 0.370921
\(220\) 0 0
\(221\) 0 0
\(222\) −1.27813 1.75919i −0.0857823 0.118069i
\(223\) −2.26053 + 0.734490i −0.151376 + 0.0491851i −0.383725 0.923447i \(-0.625359\pi\)
0.232349 + 0.972633i \(0.425359\pi\)
\(224\) 4.39845 13.5370i 0.293884 0.904482i
\(225\) 3.71669 + 11.2641i 0.247779 + 0.750938i
\(226\) 1.01567 + 0.737928i 0.0675614 + 0.0490862i
\(227\) −15.9117 5.17004i −1.05610 0.343148i −0.271040 0.962568i \(-0.587368\pi\)
−0.785059 + 0.619420i \(0.787368\pi\)
\(228\) 13.1782 4.28187i 0.872749 0.283573i
\(229\) 11.8341 8.59796i 0.782018 0.568169i −0.123566 0.992336i \(-0.539433\pi\)
0.905584 + 0.424167i \(0.139433\pi\)
\(230\) 1.37228 4.25639i 0.0904856 0.280658i
\(231\) 0 0
\(232\) 52.3663i 3.43801i
\(233\) 2.20952 + 3.04114i 0.144750 + 0.199232i 0.875236 0.483697i \(-0.160706\pi\)
−0.730485 + 0.682928i \(0.760706\pi\)
\(234\) 0 0
\(235\) −8.69093 + 12.0195i −0.566934 + 0.784064i
\(236\) 26.0776 + 18.9465i 1.69751 + 1.23331i
\(237\) 0.584650 0.804702i 0.0379771 0.0522710i
\(238\) −13.1782 4.28187i −0.854217 0.277552i
\(239\) −4.55632 14.0229i −0.294724 0.907067i −0.983314 0.181916i \(-0.941770\pi\)
0.688590 0.725151i \(-0.258230\pi\)
\(240\) −10.7287 + 3.51298i −0.692533 + 0.226762i
\(241\) −16.7446 −1.07861 −0.539306 0.842110i \(-0.681313\pi\)
−0.539306 + 0.842110i \(0.681313\pi\)
\(242\) 0 0
\(243\) 15.7359i 1.00946i
\(244\) 2.63370 1.91350i 0.168606 0.122499i
\(245\) −11.1803 + 0.0254483i −0.714284 + 0.00162583i
\(246\) 5.40444 16.6331i 0.344574 1.06049i
\(247\) 0 0
\(248\) −11.8701 + 16.3379i −0.753755 + 1.03745i
\(249\) −1.62402 + 4.99822i −0.102918 + 0.316749i
\(250\) 16.4327 22.9456i 1.03930 1.45121i
\(251\) 17.8929 13.0000i 1.12939 0.820550i 0.143784 0.989609i \(-0.454073\pi\)
0.985606 + 0.169059i \(0.0540729\pi\)
\(252\) 35.9306i 2.26342i
\(253\) 0 0
\(254\) −20.7446 −1.30163
\(255\) 0.873561 + 2.66787i 0.0547045 + 0.167068i
\(256\) −9.61563 29.5939i −0.600977 1.84962i
\(257\) 10.1642 + 3.30254i 0.634025 + 0.206007i 0.608357 0.793663i \(-0.291829\pi\)
0.0256675 + 0.999671i \(0.491829\pi\)
\(258\) −4.07230 + 5.60503i −0.253530 + 0.348954i
\(259\) 3.04701 + 2.21378i 0.189332 + 0.137558i
\(260\) 0 0
\(261\) 6.41042 + 19.7293i 0.396795 + 1.22121i
\(262\) −4.07230 5.60503i −0.251587 0.346280i
\(263\) 27.4179i 1.69066i 0.534246 + 0.845329i \(0.320595\pi\)
−0.534246 + 0.845329i \(0.679405\pi\)
\(264\) 0 0
\(265\) −21.4891 6.92820i −1.32007 0.425596i
\(266\) −28.2980 + 20.5597i −1.73506 + 1.26060i
\(267\) 1.03403 0.335976i 0.0632814 0.0205614i
\(268\) −38.6931 12.5722i −2.36356 0.767967i
\(269\) −9.29490 6.75314i −0.566720 0.411746i 0.267192 0.963643i \(-0.413904\pi\)
−0.833912 + 0.551897i \(0.813904\pi\)
\(270\) 19.4049 14.1661i 1.18094 0.862120i
\(271\) −4.16837 + 12.8289i −0.253210 + 0.779301i 0.740967 + 0.671542i \(0.234368\pi\)
−0.994177 + 0.107760i \(0.965632\pi\)
\(272\) 9.60315 3.12025i 0.582277 0.189193i
\(273\) 0 0
\(274\) −36.2337 −2.18896
\(275\) 0 0
\(276\) −2.74456 −0.165203
\(277\) −6.86646 9.45088i −0.412566 0.567848i 0.551276 0.834323i \(-0.314141\pi\)
−0.963842 + 0.266475i \(0.914141\pi\)
\(278\) 38.9736 12.6633i 2.33748 0.759494i
\(279\) 2.47214 7.60845i 0.148003 0.455506i
\(280\) 37.4651 27.3505i 2.23897 1.63451i
\(281\) −0.413306 0.300285i −0.0246558 0.0179135i 0.575389 0.817880i \(-0.304851\pi\)
−0.600045 + 0.799966i \(0.704851\pi\)
\(282\) 12.6172 + 4.09957i 0.751343 + 0.244126i
\(283\) −14.4047 + 4.68038i −0.856272 + 0.278220i −0.704071 0.710130i \(-0.748636\pi\)
−0.152201 + 0.988350i \(0.548636\pi\)
\(284\) −35.7858 + 25.9999i −2.12350 + 1.54281i
\(285\) 6.74456 + 2.17448i 0.399513 + 0.128805i
\(286\) 0 0
\(287\) 30.2921i 1.78808i
\(288\) −5.72943 7.88589i −0.337610 0.464680i
\(289\) 4.47739 + 13.7800i 0.263376 + 0.810587i
\(290\) 28.9218 39.9986i 1.69835 2.34880i
\(291\) 3.74390 + 2.72010i 0.219471 + 0.159455i
\(292\) 17.8052 24.5068i 1.04197 1.43415i
\(293\) 3.01404 + 0.979321i 0.176082 + 0.0572125i 0.395731 0.918366i \(-0.370491\pi\)
−0.219649 + 0.975579i \(0.570491\pi\)
\(294\) 3.09017 + 9.51057i 0.180222 + 0.554667i
\(295\) 5.12979 + 15.6665i 0.298668 + 0.912136i
\(296\) −6.51087 −0.378437
\(297\) 0 0
\(298\) 29.0024i 1.68007i
\(299\) 0 0
\(300\) −16.4970 5.27729i −0.952453 0.304684i
\(301\) 3.70820 11.4127i 0.213737 0.657816i
\(302\) 18.1520 24.9840i 1.04453 1.43767i
\(303\) −2.79417 + 3.84584i −0.160521 + 0.220938i
\(304\) 7.87657 24.2416i 0.451752 1.39035i
\(305\) 1.66489 0.00378957i 0.0953312 0.000216990i
\(306\) −7.67686 + 5.57757i −0.438857 + 0.318848i
\(307\) 31.5817i 1.80246i −0.433340 0.901231i \(-0.642665\pi\)
0.433340 0.901231i \(-0.357335\pi\)
\(308\) 0 0
\(309\) −8.23369 −0.468398
\(310\) −18.0901 + 5.92338i −1.02745 + 0.336425i
\(311\) 1.69623 + 5.22047i 0.0961845 + 0.296026i 0.987561 0.157239i \(-0.0502593\pi\)
−0.891376 + 0.453265i \(0.850259\pi\)
\(312\) 0 0
\(313\) 12.8560 17.6947i 0.726661 1.00016i −0.272615 0.962123i \(-0.587888\pi\)
0.999276 0.0380403i \(-0.0121115\pi\)
\(314\) −49.9348 36.2798i −2.81798 2.04739i
\(315\) −10.7670 + 14.8907i −0.606654 + 0.838998i
\(316\) −1.69623 5.22047i −0.0954206 0.293674i
\(317\) −19.3757 26.6683i −1.08825 1.49784i −0.850106 0.526612i \(-0.823462\pi\)
−0.238141 0.971231i \(-0.576538\pi\)
\(318\) 20.1947i 1.13246i
\(319\) 0 0
\(320\) 1.62772 5.04868i 0.0909922 0.282230i
\(321\) 4.25174 3.08907i 0.237309 0.172415i
\(322\) 6.58911 2.14093i 0.367197 0.119310i
\(323\) −6.02808 1.95864i −0.335411 0.108982i
\(324\) 13.2455 + 9.62339i 0.735859 + 0.534633i
\(325\) 0 0
\(326\) −2.70222 + 8.31657i −0.149662 + 0.460612i
\(327\) −7.53510 + 2.44830i −0.416692 + 0.135391i
\(328\) −30.7801 42.3652i −1.69955 2.33923i
\(329\) −22.9783 −1.26683
\(330\) 0 0
\(331\) −14.1168 −0.775932 −0.387966 0.921674i \(-0.626822\pi\)
−0.387966 + 0.921674i \(0.626822\pi\)
\(332\) 17.0472 + 23.4635i 0.935587 + 1.28772i
\(333\) 2.45300 0.797029i 0.134424 0.0436769i
\(334\) −12.2750 + 37.7786i −0.671659 + 2.06716i
\(335\) −12.2682 16.8051i −0.670283 0.918163i
\(336\) −14.1490 10.2798i −0.771891 0.560812i
\(337\) 30.8775 + 10.0327i 1.68201 + 0.546517i 0.985299 0.170840i \(-0.0546481\pi\)
0.696706 + 0.717356i \(0.254648\pi\)
\(338\) −31.2102 + 10.1408i −1.69761 + 0.551588i
\(339\) 0.318778 0.231605i 0.0173136 0.0125791i
\(340\) 14.7446 + 4.75372i 0.799636 + 0.257807i
\(341\) 0 0
\(342\) 23.9538i 1.29527i
\(343\) 4.07230 + 5.60503i 0.219883 + 0.302643i
\(344\) 6.41042 + 19.7293i 0.345627 + 1.06373i
\(345\) −1.13743 0.822441i −0.0612371 0.0442787i
\(346\) −17.3851 12.6310i −0.934627 0.679046i
\(347\) 13.3216 18.3357i 0.715143 0.984310i −0.284528 0.958668i \(-0.591837\pi\)
0.999671 0.0256427i \(-0.00816321\pi\)
\(348\) −28.8095 9.36076i −1.54435 0.501789i
\(349\) 4.78640 + 14.7310i 0.256210 + 0.788534i 0.993589 + 0.113054i \(0.0360634\pi\)
−0.737379 + 0.675480i \(0.763937\pi\)
\(350\) 43.7224 0.199040i 2.33706 0.0106391i
\(351\) 0 0
\(352\) 0 0
\(353\) 25.0410i 1.33280i −0.745595 0.666399i \(-0.767835\pi\)
0.745595 0.666399i \(-0.232165\pi\)
\(354\) 11.9286 8.66664i 0.633998 0.460627i
\(355\) −22.6219 + 0.0514913i −1.20065 + 0.00273287i
\(356\) 1.85410 5.70634i 0.0982672 0.302435i
\(357\) −2.55626 + 3.51838i −0.135291 + 0.186213i
\(358\) −19.0834 + 26.2660i −1.00859 + 1.38820i
\(359\) 9.11264 28.0458i 0.480947 1.48020i −0.356820 0.934173i \(-0.616139\pi\)
0.837766 0.546029i \(-0.183861\pi\)
\(360\) −0.0723050 31.7661i −0.00381081 1.67422i
\(361\) 2.42705 1.76336i 0.127740 0.0928082i
\(362\) 60.8791i 3.19973i
\(363\) 0 0
\(364\) 0 0
\(365\) 14.7228 4.82079i 0.770625 0.252332i
\(366\) −0.460165 1.41624i −0.0240532 0.0740282i
\(367\) 24.4809 + 7.95432i 1.27789 + 0.415212i 0.867837 0.496849i \(-0.165510\pi\)
0.410054 + 0.912061i \(0.365510\pi\)
\(368\) −2.96754 + 4.08446i −0.154694 + 0.212917i
\(369\) 16.7827 + 12.1933i 0.873673 + 0.634760i
\(370\) −4.97316 3.59594i −0.258542 0.186944i
\(371\) −10.8089 33.2663i −0.561169 1.72710i
\(372\) 6.86646 + 9.45088i 0.356010 + 0.490005i
\(373\) 11.6819i 0.604867i −0.953170 0.302434i \(-0.902201\pi\)
0.953170 0.302434i \(-0.0977990\pi\)
\(374\) 0 0
\(375\) −5.25544 7.13058i −0.271390 0.368222i
\(376\) 32.1364 23.3485i 1.65731 1.20411i
\(377\) 0 0
\(378\) 35.3986 + 11.5017i 1.82071 + 0.591583i
\(379\) −0.507835 0.368964i −0.0260857 0.0189524i 0.574666 0.818388i \(-0.305132\pi\)
−0.600752 + 0.799436i \(0.705132\pi\)
\(380\) 31.5857 23.0584i 1.62031 1.18287i
\(381\) −2.01197 + 6.19221i −0.103076 + 0.317237i
\(382\) 46.5087 15.1116i 2.37959 0.773177i
\(383\) −6.40077 8.80990i −0.327064 0.450165i 0.613544 0.789661i \(-0.289744\pi\)
−0.940608 + 0.339496i \(0.889744\pi\)
\(384\) −11.2554 −0.574377
\(385\) 0 0
\(386\) 41.4891 2.11174
\(387\) −4.83032 6.64836i −0.245539 0.337955i
\(388\) 24.2884 7.89178i 1.23306 0.400644i
\(389\) −5.82850 + 17.9383i −0.295516 + 0.909506i 0.687531 + 0.726155i \(0.258695\pi\)
−0.983047 + 0.183351i \(0.941305\pi\)
\(390\) 0 0
\(391\) 1.01567 + 0.737928i 0.0513646 + 0.0373186i
\(392\) 28.4767 + 9.25265i 1.43829 + 0.467329i
\(393\) −2.06805 + 0.671952i −0.104320 + 0.0338955i
\(394\) −17.3851 + 12.6310i −0.875847 + 0.636340i
\(395\) 0.861407 2.67181i 0.0433421 0.134434i
\(396\) 0 0
\(397\) 16.4356i 0.824881i −0.910984 0.412441i \(-0.864676\pi\)
0.910984 0.412441i \(-0.135324\pi\)
\(398\) −11.8701 16.3379i −0.594997 0.818943i
\(399\) 3.39247 + 10.4409i 0.169836 + 0.522701i
\(400\) −25.6909 + 18.8448i −1.28454 + 0.942241i
\(401\) 9.29490 + 6.75314i 0.464165 + 0.337236i 0.795163 0.606396i \(-0.207385\pi\)
−0.330998 + 0.943631i \(0.607385\pi\)
\(402\) −10.9388 + 15.0559i −0.545576 + 0.750921i
\(403\) 0 0
\(404\) 8.10666 + 24.9497i 0.403321 + 1.24129i
\(405\) 2.60555 + 7.95738i 0.129471 + 0.395405i
\(406\) 76.4674 3.79501
\(407\) 0 0
\(408\) 7.51811i 0.372202i
\(409\) −22.2392 + 16.1577i −1.09966 + 0.798947i −0.981004 0.193989i \(-0.937857\pi\)
−0.118652 + 0.992936i \(0.537857\pi\)
\(410\) −0.112350 49.3594i −0.00554859 2.43768i
\(411\) −3.51423 + 10.8157i −0.173344 + 0.533498i
\(412\) −26.7078 + 36.7602i −1.31580 + 1.81104i
\(413\) −15.0111 + 20.6609i −0.738646 + 1.01666i
\(414\) 1.46615 4.51235i 0.0720574 0.221770i
\(415\) 0.0337610 + 14.8324i 0.00165726 + 0.728092i
\(416\) 0 0
\(417\) 12.8617i 0.629842i
\(418\) 0 0
\(419\) 22.9783 1.12256 0.561280 0.827626i \(-0.310309\pi\)
0.561280 + 0.827626i \(0.310309\pi\)
\(420\) −8.34986 25.5006i −0.407432 1.24430i
\(421\) 2.63000 + 8.09432i 0.128179 + 0.394493i 0.994467 0.105051i \(-0.0335007\pi\)
−0.866288 + 0.499545i \(0.833501\pi\)
\(422\) −3.57507 1.16161i −0.174032 0.0565464i
\(423\) −9.24935 + 12.7306i −0.449719 + 0.618985i
\(424\) 48.9191 + 35.5418i 2.37572 + 1.72606i
\(425\) 4.68608 + 6.38847i 0.227308 + 0.309886i
\(426\) 6.25255 + 19.2434i 0.302937 + 0.932345i
\(427\) 1.51604 + 2.08665i 0.0733663 + 0.100980i
\(428\) 29.0024i 1.40189i
\(429\) 0 0
\(430\) −6.00000 + 18.6101i −0.289346 + 0.897460i
\(431\) −20.8102 + 15.1195i −1.00239 + 0.728280i −0.962600 0.270928i \(-0.912670\pi\)
−0.0397920 + 0.999208i \(0.512670\pi\)
\(432\) −25.7954 + 8.38144i −1.24108 + 0.403252i
\(433\) −27.7754 9.02478i −1.33480 0.433703i −0.447249 0.894409i \(-0.647596\pi\)
−0.887553 + 0.460706i \(0.847596\pi\)
\(434\) −23.8572 17.3333i −1.14518 0.832024i
\(435\) −9.13443 12.5125i −0.437963 0.599927i
\(436\) −13.5111 + 41.5829i −0.647064 + 1.99146i
\(437\) 3.01404 0.979321i 0.144181 0.0468473i
\(438\) −8.14459 11.2101i −0.389164 0.535638i
\(439\) 21.4891 1.02562 0.512810 0.858502i \(-0.328605\pi\)
0.512810 + 0.858502i \(0.328605\pi\)
\(440\) 0 0
\(441\) −11.8614 −0.564829
\(442\) 0 0
\(443\) −30.1240 + 9.78788i −1.43123 + 0.465036i −0.919153 0.393901i \(-0.871125\pi\)
−0.512081 + 0.858937i \(0.671125\pi\)
\(444\) −1.16385 + 3.58198i −0.0552341 + 0.169993i
\(445\) 2.47837 1.80927i 0.117486 0.0857678i
\(446\) 4.85410 + 3.52671i 0.229848 + 0.166995i
\(447\) −8.65717 2.81288i −0.409470 0.133045i
\(448\) 7.81561 2.53945i 0.369253 0.119978i
\(449\) 5.55099 4.03303i 0.261968 0.190331i −0.449046 0.893508i \(-0.648236\pi\)
0.711014 + 0.703178i \(0.248236\pi\)
\(450\) 17.4891 24.3036i 0.824445 1.14568i
\(451\) 0 0
\(452\) 2.17448i 0.102279i
\(453\) −5.69716 7.84147i −0.267676 0.368424i
\(454\) 13.0509 + 40.1666i 0.612510 + 1.88511i
\(455\) 0 0
\(456\) −15.3537 11.1551i −0.719004 0.522387i
\(457\) 12.2169 16.8151i 0.571482 0.786577i −0.421247 0.906946i \(-0.638408\pi\)
0.992729 + 0.120368i \(0.0384076\pi\)
\(458\) −35.1181 11.4105i −1.64096 0.533180i
\(459\) 2.08418 + 6.41446i 0.0972814 + 0.299401i
\(460\) −7.36138 + 2.41040i −0.343226 + 0.112385i
\(461\) −2.23369 −0.104033 −0.0520166 0.998646i \(-0.516565\pi\)
−0.0520166 + 0.998646i \(0.516565\pi\)
\(462\) 0 0
\(463\) 30.0897i 1.39839i 0.714933 + 0.699193i \(0.246457\pi\)
−0.714933 + 0.699193i \(0.753543\pi\)
\(464\) −45.0807 + 32.7530i −2.09282 + 1.52052i
\(465\) 0.0135986 + 5.97434i 0.000630621 + 0.277054i
\(466\) 2.93230 9.02469i 0.135836 0.418061i
\(467\) −4.53799 + 6.24601i −0.209993 + 0.289031i −0.901001 0.433816i \(-0.857167\pi\)
0.691008 + 0.722847i \(0.257167\pi\)
\(468\) 0 0
\(469\) 9.96076 30.6561i 0.459945 1.41557i
\(470\) 37.4419 0.0852241i 1.72707 0.00393110i
\(471\) −15.6725 + 11.3867i −0.722151 + 0.524673i
\(472\) 44.1485i 2.03210i
\(473\) 0 0
\(474\) −2.51087 −0.115328
\(475\) 19.9998 0.0910464i 0.917653 0.00417749i
\(476\) 7.41641 + 22.8254i 0.339930 + 1.04620i
\(477\) −22.7814 7.40212i −1.04309 0.338920i
\(478\) −21.8775 + 30.1118i −1.00065 + 1.37728i
\(479\) 4.44080 + 3.22643i 0.202905 + 0.147419i 0.684598 0.728921i \(-0.259978\pi\)
−0.481693 + 0.876340i \(0.659978\pi\)
\(480\) 5.89887 + 4.26530i 0.269245 + 0.194683i
\(481\) 0 0
\(482\) 24.8451 + 34.1963i 1.13166 + 1.55760i
\(483\) 2.17448i 0.0989423i
\(484\) 0 0
\(485\) 12.4307 + 4.00772i 0.564449 + 0.181981i
\(486\) 32.1364 23.3485i 1.45774 1.05911i
\(487\) 6.78159 2.20347i 0.307303 0.0998488i −0.151306 0.988487i \(-0.548348\pi\)
0.458609 + 0.888638i \(0.348348\pi\)
\(488\) −4.24054 1.37784i −0.191960 0.0623717i
\(489\) 2.22040 + 1.61321i 0.100410 + 0.0729520i
\(490\) 16.6410 + 22.7950i 0.751762 + 1.02977i
\(491\) −2.01197 + 6.19221i −0.0907990 + 0.279451i −0.986136 0.165939i \(-0.946935\pi\)
0.895337 + 0.445389i \(0.146935\pi\)
\(492\) −28.8095 + 9.36076i −1.29883 + 0.422016i
\(493\) 8.14459 + 11.2101i 0.366814 + 0.504876i
\(494\) 0 0
\(495\) 0 0
\(496\) 21.4891 0.964890
\(497\) −20.5994 28.3526i −0.924009 1.27179i
\(498\) 12.6172 4.09957i 0.565390 0.183706i
\(499\) 6.18034 19.0211i 0.276670 0.851503i −0.712103 0.702075i \(-0.752257\pi\)
0.988773 0.149427i \(-0.0477430\pi\)
\(500\) −48.8825 + 0.333799i −2.18609 + 0.0149279i
\(501\) 10.0863 + 7.32814i 0.450623 + 0.327397i
\(502\) −53.0979 17.2525i −2.36987 0.770018i
\(503\) −12.8977 + 4.19072i −0.575080 + 0.186855i −0.582095 0.813120i \(-0.697767\pi\)
0.00701509 + 0.999975i \(0.497767\pi\)
\(504\) 39.8133 28.9261i 1.77343 1.28847i
\(505\) −4.11684 + 12.7692i −0.183197 + 0.568220i
\(506\) 0 0
\(507\) 10.2997i 0.457427i
\(508\) 21.1195 + 29.0685i 0.937026 + 1.28971i
\(509\) −6.99235 21.5202i −0.309930 0.953868i −0.977791 0.209582i \(-0.932790\pi\)
0.667861 0.744286i \(-0.267210\pi\)
\(510\) 4.15224 5.74251i 0.183864 0.254283i
\(511\) 19.4164 + 14.1068i 0.858931 + 0.624050i
\(512\) −29.4697 + 40.5616i −1.30239 + 1.79259i
\(513\) 16.1923 + 5.26119i 0.714906 + 0.232287i
\(514\) −8.33674 25.6578i −0.367718 1.13172i
\(515\) −22.0842 + 7.23119i −0.973144 + 0.318644i
\(516\) 12.0000 0.528271
\(517\) 0 0
\(518\) 9.50744i 0.417733i
\(519\) −5.45647 + 3.96435i −0.239512 + 0.174016i
\(520\) 0 0
\(521\) −6.67661 + 20.5485i −0.292508 + 0.900246i 0.691540 + 0.722339i \(0.256933\pi\)
−0.984047 + 0.177907i \(0.943067\pi\)
\(522\) 30.7801 42.3652i 1.34721 1.85428i
\(523\) 17.0472 23.4635i 0.745422 1.02599i −0.252866 0.967501i \(-0.581373\pi\)
0.998288 0.0584843i \(-0.0186268\pi\)
\(524\) −3.70820 + 11.4127i −0.161994 + 0.498565i
\(525\) 4.18113 13.0703i 0.182479 0.570436i
\(526\) 55.9936 40.6818i 2.44144 1.77381i
\(527\) 5.34363i 0.232772i
\(528\) 0 0
\(529\) 22.3723 0.972708
\(530\) 17.7359 + 54.1656i 0.770398 + 2.35280i
\(531\) 5.40444 + 16.6331i 0.234533 + 0.721817i
\(532\) 57.6189 + 18.7215i 2.49810 + 0.811681i
\(533\) 0 0
\(534\) −2.22040 1.61321i −0.0960860 0.0698106i
\(535\) 8.69093 12.0195i 0.375742 0.519647i
\(536\) 17.2193 + 52.9955i 0.743760 + 2.28906i
\(537\) 5.98949 + 8.24382i 0.258465 + 0.355747i
\(538\) 29.0024i 1.25038i
\(539\) 0 0
\(540\) −39.6060 12.7692i −1.70437 0.549497i
\(541\) 27.6956 20.1221i 1.19073 0.865115i 0.197387 0.980326i \(-0.436754\pi\)
0.993341 + 0.115211i \(0.0367544\pi\)
\(542\) 32.3845 10.5224i 1.39103 0.451975i
\(543\) 18.1723 + 5.90453i 0.779847 + 0.253388i
\(544\) −5.26741 3.82700i −0.225838 0.164081i
\(545\) −18.0602 + 13.1844i −0.773614 + 0.564759i
\(546\) 0 0
\(547\) −27.5830 + 8.96224i −1.17936 + 0.383198i −0.832130 0.554581i \(-0.812878\pi\)
−0.347232 + 0.937779i \(0.612878\pi\)
\(548\) 36.8886 + 50.7728i 1.57580 + 2.16891i
\(549\) 1.76631 0.0753844
\(550\) 0 0
\(551\) 34.9783 1.49012
\(552\) 2.20952 + 3.04114i 0.0940433 + 0.129439i
\(553\) 4.13611 1.34390i 0.175885 0.0571486i
\(554\) −9.11264 + 28.0458i −0.387159 + 1.19155i
\(555\) −1.55572 + 1.13571i −0.0660366 + 0.0482084i
\(556\) −57.4226 41.7200i −2.43526 1.76932i
\(557\) 0.945984 + 0.307369i 0.0400826 + 0.0130236i 0.328990 0.944334i \(-0.393292\pi\)
−0.288907 + 0.957357i \(0.593292\pi\)
\(558\) −19.2063 + 6.24051i −0.813068 + 0.264182i
\(559\) 0 0
\(560\) −46.9783 15.1460i −1.98519 0.640036i
\(561\) 0 0
\(562\) 1.28962i 0.0543994i
\(563\) 11.1121 + 15.2945i 0.468320 + 0.644588i 0.976208 0.216836i \(-0.0695735\pi\)
−0.507888 + 0.861423i \(0.669574\pi\)
\(564\) −7.10067 21.8536i −0.298992 0.920203i
\(565\) 0.651610 0.901170i 0.0274134 0.0379125i
\(566\) 30.9317 + 22.4732i 1.30016 + 0.944619i
\(567\) −7.62448 + 10.4942i −0.320198 + 0.440715i
\(568\) 57.6189 + 18.7215i 2.41764 + 0.785537i
\(569\) −8.42239 25.9215i −0.353085 1.08668i −0.957111 0.289720i \(-0.906438\pi\)
0.604026 0.796964i \(-0.293562\pi\)
\(570\) −5.56657 17.0004i −0.233158 0.712068i
\(571\) −1.48913 −0.0623180 −0.0311590 0.999514i \(-0.509920\pi\)
−0.0311590 + 0.999514i \(0.509920\pi\)
\(572\) 0 0
\(573\) 15.3484i 0.641189i
\(574\) 61.8634 44.9464i 2.58213 1.87603i
\(575\) −3.77308 1.20699i −0.157348 0.0503348i
\(576\) 1.73906 5.35228i 0.0724609 0.223012i
\(577\) 12.8560 17.6947i 0.535200 0.736640i −0.452712 0.891657i \(-0.649543\pi\)
0.987912 + 0.155017i \(0.0495433\pi\)
\(578\) 21.4985 29.5902i 0.894220 1.23079i
\(579\) 4.02394 12.3844i 0.167229 0.514679i
\(580\) −85.4929 + 0.194596i −3.54990 + 0.00808018i
\(581\) −18.5898 + 13.5063i −0.771235 + 0.560335i
\(582\) 11.6819i 0.484231i
\(583\) 0 0
\(584\) −41.4891 −1.71683
\(585\) 0 0
\(586\) −2.47214 7.60845i −0.102123 0.314302i
\(587\) −39.2542 12.7544i −1.62019 0.526432i −0.648205 0.761466i \(-0.724480\pi\)
−0.971987 + 0.235033i \(0.924480\pi\)
\(588\) 10.1807 14.0126i 0.419847 0.577869i
\(589\) −10.9129 7.92871i −0.449660 0.326697i
\(590\) 24.3831 33.7216i 1.00384 1.38830i
\(591\) 2.08418 + 6.41446i 0.0857319 + 0.263856i
\(592\) 4.07230 + 5.60503i 0.167370 + 0.230365i
\(593\) 22.7739i 0.935214i −0.883937 0.467607i \(-0.845116\pi\)
0.883937 0.467607i \(-0.154884\pi\)
\(594\) 0 0
\(595\) −3.76631 + 11.6819i −0.154404 + 0.478912i
\(596\) −40.6399 + 29.5266i −1.66468 + 1.20946i
\(597\) −6.02808 + 1.95864i −0.246713 + 0.0801618i
\(598\) 0 0
\(599\) 8.88159 + 6.45285i 0.362892 + 0.263656i 0.754257 0.656579i \(-0.227997\pi\)
−0.391365 + 0.920235i \(0.627997\pi\)
\(600\) 7.43338 + 22.5281i 0.303467 + 0.919707i
\(601\) 11.8871 36.5846i 0.484884 1.49232i −0.347265 0.937767i \(-0.612890\pi\)
0.832149 0.554552i \(-0.187110\pi\)
\(602\) −28.8095 + 9.36076i −1.17419 + 0.381516i
\(603\) −12.9749 17.8584i −0.528379 0.727251i
\(604\) −53.4891 −2.17644
\(605\) 0 0
\(606\) 12.0000 0.487467
\(607\) 2.03615 + 2.80252i 0.0826447 + 0.113751i 0.848338 0.529456i \(-0.177604\pi\)
−0.765693 + 0.643206i \(0.777604\pi\)
\(608\) −15.6312 + 5.07889i −0.633930 + 0.205976i
\(609\) 7.41641 22.8254i 0.300528 0.924930i
\(610\) −2.47805 3.39447i −0.100333 0.137438i
\(611\) 0 0
\(612\) 15.6312 + 5.07889i 0.631855 + 0.205302i
\(613\) 4.13611 1.34390i 0.167056 0.0542797i −0.224295 0.974521i \(-0.572008\pi\)
0.391351 + 0.920242i \(0.372008\pi\)
\(614\) −64.4971 + 46.8599i −2.60289 + 1.89111i
\(615\) −14.7446 4.75372i −0.594558 0.191689i
\(616\) 0 0
\(617\) 17.0256i 0.685423i −0.939441 0.342712i \(-0.888655\pi\)
0.939441 0.342712i \(-0.111345\pi\)
\(618\) 12.2169 + 16.8151i 0.491435 + 0.676403i
\(619\) −4.36234 13.4259i −0.175337 0.539633i 0.824311 0.566137i \(-0.191563\pi\)
−0.999649 + 0.0265037i \(0.991563\pi\)
\(620\) 26.7172 + 19.3184i 1.07299 + 0.775847i
\(621\) −2.72823 1.98218i −0.109480 0.0795420i
\(622\) 8.14459 11.2101i 0.326568 0.449483i
\(623\) 4.52106 + 1.46898i 0.181132 + 0.0588535i
\(624\) 0 0
\(625\) −20.3584 14.5099i −0.814335 0.580395i
\(626\) −55.2119 −2.20671
\(627\) 0 0
\(628\) 106.907i 4.26606i
\(629\) 1.39379 1.01264i 0.0555739 0.0403768i
\(630\) 46.3861 0.105583i 1.84807 0.00420652i
\(631\) 7.29465 22.4506i 0.290395 0.893745i −0.694334 0.719653i \(-0.744301\pi\)
0.984729 0.174092i \(-0.0556990\pi\)
\(632\) −4.41903 + 6.08228i −0.175780 + 0.241940i
\(633\) −0.693478 + 0.954490i −0.0275633 + 0.0379376i
\(634\) −25.7139 + 79.1393i −1.02123 + 3.14302i
\(635\) 0.0418259 + 18.3756i 0.00165981 + 0.729212i
\(636\) 28.2980 20.5597i 1.12209 0.815245i
\(637\) 0 0
\(638\) 0 0
\(639\) −24.0000 −0.949425
\(640\) −30.1890 + 9.88503i −1.19333 + 0.390740i
\(641\) −7.84047 24.1305i −0.309680 0.953096i −0.977889 0.209123i \(-0.932939\pi\)
0.668210 0.743973i \(-0.267061\pi\)
\(642\) −12.6172 4.09957i −0.497961 0.161797i
\(643\) 17.9242 24.6705i 0.706861 0.972910i −0.292998 0.956113i \(-0.594653\pi\)
0.999859 0.0167972i \(-0.00534696\pi\)
\(644\) −9.70820 7.05342i −0.382557 0.277944i
\(645\) 4.97316 + 3.59594i 0.195818 + 0.141590i
\(646\) 4.94427 + 15.2169i 0.194530 + 0.598701i
\(647\) 12.9205 + 17.7835i 0.507957 + 0.699143i 0.983573 0.180510i \(-0.0577749\pi\)
−0.475616 + 0.879653i \(0.657775\pi\)
\(648\) 22.4241i 0.880901i
\(649\) 0 0
\(650\) 0 0
\(651\) −7.48781 + 5.44021i −0.293470 + 0.213219i
\(652\) 14.4047 4.68038i 0.564133 0.183298i
\(653\) 29.2824 + 9.51444i 1.14591 + 0.372329i 0.819601 0.572934i \(-0.194195\pi\)
0.326309 + 0.945263i \(0.394195\pi\)
\(654\) 16.1803 + 11.7557i 0.632701 + 0.459684i
\(655\) −4.95674 + 3.61855i −0.193676 + 0.141388i
\(656\) −17.2193 + 52.9955i −0.672301 + 2.06913i
\(657\) 15.6312 5.07889i 0.609832 0.198147i
\(658\) 34.0944 + 46.9269i 1.32914 + 1.82940i
\(659\) 21.2554 0.827994 0.413997 0.910278i \(-0.364132\pi\)
0.413997 + 0.910278i \(0.364132\pi\)
\(660\) 0 0
\(661\) −16.3505 −0.635962 −0.317981 0.948097i \(-0.603005\pi\)
−0.317981 + 0.948097i \(0.603005\pi\)
\(662\) 20.9461 + 28.8299i 0.814094 + 1.12050i
\(663\) 0 0
\(664\) 12.2750 37.7786i 0.476363 1.46610i
\(665\) 18.2689 + 25.0250i 0.708436 + 0.970426i
\(666\) −5.26741 3.82700i −0.204108 0.148293i
\(667\) −6.58911 2.14093i −0.255131 0.0828972i
\(668\) 65.4345 21.2610i 2.53174 0.822611i
\(669\) 1.52351 1.10689i 0.0589021 0.0427949i
\(670\) −16.1168 + 49.9894i −0.622648 + 1.93126i
\(671\) 0 0
\(672\) 11.2772i 0.435026i
\(673\) −10.9388 15.0559i −0.421658 0.580363i 0.544355 0.838855i \(-0.316774\pi\)
−0.966013 + 0.258492i \(0.916774\pi\)
\(674\) −25.3260 77.9453i −0.975519 3.00234i
\(675\) −12.5875 17.1603i −0.484492 0.660501i
\(676\) 45.9842 + 33.4095i 1.76862 + 1.28498i
\(677\) −29.4375 + 40.5172i −1.13137 + 1.55720i −0.345939 + 0.938257i \(0.612440\pi\)
−0.785434 + 0.618945i \(0.787560\pi\)
\(678\) −0.945984 0.307369i −0.0363303 0.0118044i
\(679\) 6.25255 + 19.2434i 0.239951 + 0.738493i
\(680\) −6.60274 20.1649i −0.253204 0.773287i
\(681\) 13.2554 0.507949
\(682\) 0 0
\(683\) 17.9104i 0.685323i −0.939459 0.342661i \(-0.888672\pi\)
0.939459 0.342661i \(-0.111328\pi\)
\(684\) 33.5654 24.3867i 1.28341 0.932449i
\(685\) 0.0730557 + 32.0959i 0.00279131 + 1.22632i
\(686\) 5.40444 16.6331i 0.206342 0.635056i
\(687\) −6.81205 + 9.37598i −0.259896 + 0.357716i
\(688\) 12.9749 17.8584i 0.494664 0.680846i
\(689\) 0 0
\(690\) 0.00806494 + 3.54321i 0.000307027 + 0.134888i
\(691\) −36.2936 + 26.3689i −1.38068 + 1.00312i −0.383858 + 0.923392i \(0.625405\pi\)
−0.996817 + 0.0797273i \(0.974595\pi\)
\(692\) 37.2203i 1.41490i
\(693\) 0 0
\(694\) −57.2119 −2.17174
\(695\) −11.2958 34.4974i −0.428472 1.30856i
\(696\) 12.8208 + 39.4585i 0.485973 + 1.49567i
\(697\) 13.1782 + 4.28187i 0.499161 + 0.162187i
\(698\) 22.9823 31.6324i 0.869892 1.19730i
\(699\) −2.40946 1.75057i −0.0911340 0.0662127i
\(700\) −44.7915 61.0637i −1.69296 2.30799i
\(701\) 3.86607 + 11.8985i 0.146020 + 0.449402i 0.997141 0.0755673i \(-0.0240768\pi\)
−0.851121 + 0.524969i \(0.824077\pi\)
\(702\) 0 0
\(703\) 4.34896i 0.164024i
\(704\) 0 0
\(705\) 3.60597 11.1846i 0.135809 0.421236i
\(706\) −51.1395 + 37.1550i −1.92466 + 1.39835i
\(707\) −19.7673 + 6.42280i −0.743427 + 0.241554i
\(708\) −24.2884 7.89178i −0.912814 0.296591i
\(709\) 19.3219 + 14.0382i 0.725648 + 0.527214i 0.888184 0.459488i \(-0.151967\pi\)
−0.162535 + 0.986703i \(0.551967\pi\)
\(710\) 33.6708 + 46.1228i 1.26364 + 1.73096i
\(711\) 0.920330 2.83248i 0.0345151 0.106226i
\(712\) −7.81561 + 2.53945i −0.292903 + 0.0951698i
\(713\) 1.57045 + 2.16154i 0.0588139 + 0.0809504i
\(714\) 10.9783 0.410851
\(715\) 0 0
\(716\) 56.2337 2.10155
\(717\) 6.86646 + 9.45088i 0.256433 + 0.352949i
\(718\) −70.7971 + 23.0034i −2.64213 + 0.858479i
\(719\) 9.37883 28.8651i 0.349771 1.07649i −0.609208 0.793010i \(-0.708513\pi\)
0.958980 0.283475i \(-0.0914874\pi\)
\(720\) −27.3013 + 19.9307i −1.01746 + 0.742773i
\(721\) −29.1246 21.1603i −1.08466 0.788050i
\(722\) −7.20236 2.34019i −0.268044 0.0870928i
\(723\) 12.6172 4.09957i 0.469238 0.152465i
\(724\) 85.3073 61.9794i 3.17042 2.30345i
\(725\) −35.4891 25.5383i −1.31803 0.948470i
\(726\) 0 0
\(727\) 14.0588i 0.521412i 0.965418 + 0.260706i \(0.0839552\pi\)
−0.965418 + 0.260706i \(0.916045\pi\)
\(728\) 0 0
\(729\) −0.381231 1.17331i −0.0141196 0.0434558i
\(730\) −31.6904 22.9144i −1.17291 0.848099i
\(731\) −4.44080 3.22643i −0.164249 0.119334i
\(732\) −1.51604 + 2.08665i −0.0560344 + 0.0771248i
\(733\) −9.04212 2.93796i −0.333978 0.108516i 0.137227 0.990540i \(-0.456181\pi\)
−0.471205 + 0.882024i \(0.656181\pi\)
\(734\) −20.0794 61.7980i −0.741144 2.28101i
\(735\) 8.41824 2.75645i 0.310512 0.101673i
\(736\) 3.25544 0.119997
\(737\) 0 0
\(738\) 52.3663i 1.92763i
\(739\) 8.69253 6.31550i 0.319760 0.232319i −0.416313 0.909221i \(-0.636678\pi\)
0.736073 + 0.676902i \(0.236678\pi\)
\(740\) 0.0241948 + 10.6296i 0.000889420 + 0.390753i
\(741\) 0 0
\(742\) −51.8996 + 71.4337i −1.90530 + 2.62241i
\(743\) 6.69309 9.21225i 0.245546 0.337965i −0.668399 0.743803i \(-0.733020\pi\)
0.913945 + 0.405838i \(0.133020\pi\)
\(744\) 4.94427 15.2169i 0.181266 0.557879i
\(745\) −25.6904 + 0.0584757i −0.941223 + 0.00214239i
\(746\) −23.8572 + 17.3333i −0.873474 + 0.634616i
\(747\) 15.7359i 0.575748i
\(748\) 0 0
\(749\) 22.9783 0.839607
\(750\) −6.76445 + 21.3130i −0.247003 + 0.778239i
\(751\) 8.45850 + 26.0326i 0.308655 + 0.949943i 0.978288 + 0.207250i \(0.0664515\pi\)
−0.669633 + 0.742692i \(0.733549\pi\)
\(752\) −40.2001 13.0618i −1.46595 0.476316i
\(753\) −10.2997 + 14.1763i −0.375342 + 0.516614i
\(754\) 0 0
\(755\) −22.1675 16.0287i −0.806758 0.583343i
\(756\) −19.9215 61.3121i −0.724538 2.22990i
\(757\) −23.3936 32.1985i −0.850253 1.17027i −0.983807 0.179232i \(-0.942639\pi\)
0.133554 0.991042i \(-0.457361\pi\)
\(758\) 1.58457i 0.0575543i
\(759\) 0 0
\(760\) −50.9783 16.4356i −1.84918 0.596184i
\(761\) 26.4909 19.2468i 0.960295 0.697695i 0.00707549 0.999975i \(-0.497748\pi\)
0.953219 + 0.302280i \(0.0977478\pi\)
\(762\) 15.6312 5.07889i 0.566260 0.183989i
\(763\) −32.9456 10.7047i −1.19271 0.387535i
\(764\) −68.5246 49.7860i −2.47913 1.80120i
\(765\) 4.95610 + 6.78893i 0.179188 + 0.245454i
\(766\) −8.49461 + 26.1437i −0.306923 + 0.944611i
\(767\) 0 0
\(768\) 14.4909 + 19.9451i 0.522897 + 0.719706i
\(769\) 29.2119 1.05341 0.526705 0.850048i \(-0.323427\pi\)
0.526705 + 0.850048i \(0.323427\pi\)
\(770\) 0 0
\(771\) −8.46738 −0.304945
\(772\) −42.2390 58.1370i −1.52021 2.09240i
\(773\) −16.7533 + 5.44348i −0.602574 + 0.195788i −0.594388 0.804178i \(-0.702606\pi\)
−0.00818608 + 0.999966i \(0.502606\pi\)
\(774\) −6.41042 + 19.7293i −0.230418 + 0.709153i
\(775\) 5.28341 + 16.0123i 0.189786 + 0.575178i
\(776\) −28.2980 20.5597i −1.01584 0.738050i
\(777\) −2.83795 0.922107i −0.101811 0.0330804i
\(778\) 45.2822 14.7131i 1.62345 0.527490i
\(779\) 28.2980 20.5597i 1.01388 0.736628i
\(780\) 0 0
\(781\) 0 0
\(782\) 3.16915i 0.113328i
\(783\) −21.8775 30.1118i −0.781839 1.07611i
\(784\) −9.84572 30.3020i −0.351633 1.08221i
\(785\) −32.0360 + 44.3055i −1.14341 + 1.58133i
\(786\) 4.44080 + 3.22643i 0.158398 + 0.115083i
\(787\) 8.90261 12.2534i 0.317344 0.436786i −0.620310 0.784357i \(-0.712993\pi\)
0.937654 + 0.347570i \(0.112993\pi\)
\(788\) 35.3986 + 11.5017i 1.26102 + 0.409731i
\(789\) −6.71272 20.6596i −0.238979 0.735502i
\(790\) −6.73459 + 2.20516i −0.239606 + 0.0784561i
\(791\) 1.72281 0.0612562
\(792\) 0 0
\(793\) 0 0
\(794\) −33.5654 + 24.3867i −1.19119 + 0.865451i
\(795\) 17.8885 0.0407173i 0.634440 0.00144409i
\(796\) −10.8089 + 33.2663i −0.383110 + 1.17909i
\(797\) 3.08649 4.24819i 0.109329 0.150479i −0.750846 0.660477i \(-0.770354\pi\)
0.860175 + 0.509998i \(0.170354\pi\)
\(798\) 16.2892 22.4201i 0.576631 0.793664i
\(799\) −3.24804 + 9.99644i −0.114907 + 0.353648i
\(800\) 19.5677 + 6.25960i 0.691824 + 0.221310i
\(801\) 2.63370 1.91350i 0.0930574 0.0676101i
\(802\) 29.0024i 1.02411i
\(803\) 0 0
\(804\) 32.2337 1.13679
\(805\) −1.90973 5.83233i −0.0673090 0.205563i
\(806\) 0 0
\(807\) 8.65717 + 2.81288i 0.304747 + 0.0990182i
\(808\) 21.1195 29.0685i 0.742981 1.02263i
\(809\) 26.4909 + 19.2468i 0.931371 + 0.676680i 0.946328 0.323208i \(-0.104761\pi\)
−0.0149573 + 0.999888i \(0.504761\pi\)
\(810\) 12.3848 17.1280i 0.435157 0.601818i
\(811\) 0.0722135 + 0.222250i 0.00253576 + 0.00780427i 0.952316 0.305112i \(-0.0986940\pi\)
−0.949781 + 0.312917i \(0.898694\pi\)
\(812\) −77.8494 107.151i −2.73198 3.76025i
\(813\) 10.6873i 0.374819i
\(814\) 0 0
\(815\) 7.37228 + 2.37686i 0.258240 + 0.0832578i
\(816\) −6.47214 + 4.70228i −0.226570 + 0.164613i
\(817\) −13.1782 + 4.28187i −0.461048 + 0.149803i
\(818\) 65.9956 + 21.4433i 2.30748 + 0.749746i
\(819\) 0 0
\(820\) −69.0508 + 50.4089i −2.41136 + 1.76036i
\(821\) 5.56231 17.1190i 0.194126 0.597458i −0.805860 0.592106i \(-0.798297\pi\)
0.999986 0.00535152i \(-0.00170345\pi\)
\(822\) 27.3024 8.87110i 0.952282 0.309415i
\(823\) 32.9352 + 45.3315i 1.14805 + 1.58016i 0.748053 + 0.663639i \(0.230989\pi\)
0.399997 + 0.916516i \(0.369011\pi\)
\(824\) 62.2337 2.16801
\(825\) 0 0
\(826\) 64.4674 2.24311
\(827\) 16.7005 + 22.9862i 0.580732 + 0.799309i 0.993775 0.111402i \(-0.0355342\pi\)
−0.413043 + 0.910711i \(0.635534\pi\)
\(828\) −7.81561 + 2.53945i −0.271611 + 0.0882519i
\(829\) 6.28866 19.3545i 0.218414 0.672210i −0.780479 0.625182i \(-0.785025\pi\)
0.998894 0.0470282i \(-0.0149751\pi\)
\(830\) 30.2410 22.0767i 1.04968 0.766295i
\(831\) 7.48781 + 5.44021i 0.259749 + 0.188719i
\(832\) 0 0
\(833\) −7.53510 + 2.44830i −0.261076 + 0.0848286i
\(834\) −26.2667 + 19.0838i −0.909540 + 0.660819i
\(835\) 33.4891 + 10.7971i 1.15894 + 0.373648i
\(836\) 0 0
\(837\) 14.3537i 0.496138i
\(838\) −34.0944 46.9269i −1.17777 1.62106i
\(839\) 3.12628 + 9.62169i 0.107931 + 0.332178i 0.990407 0.138180i \(-0.0441251\pi\)
−0.882476 + 0.470357i \(0.844125\pi\)
\(840\) −21.5341 + 29.7815i −0.742997 + 1.02756i
\(841\) −38.4019 27.9006i −1.32420 0.962090i
\(842\) 12.6282 17.3812i 0.435195 0.598995i
\(843\) 0.384949 + 0.125078i 0.0132583 + 0.00430790i
\(844\) 2.01197 + 6.19221i 0.0692549 + 0.213145i
\(845\) 9.04568 + 27.6256i 0.311181 + 0.950351i
\(846\) 39.7228 1.36570
\(847\) 0 0
\(848\) 64.3432i 2.20955i
\(849\) 9.70820 7.05342i 0.333185 0.242073i
\(850\) 6.09369 19.0491i 0.209012 0.653378i
\(851\) −0.266189 + 0.819246i −0.00912485 + 0.0280834i
\(852\) 20.5994 28.3526i 0.705723 0.971345i
\(853\) 20.5994 28.3526i 0.705310 0.970775i −0.294576 0.955628i \(-0.595178\pi\)
0.999885 0.0151473i \(-0.00482172\pi\)
\(854\) 2.01197 6.19221i 0.0688482 0.211893i
\(855\) 21.2183 0.0482964i 0.725650 0.00165170i
\(856\) −32.1364 + 23.3485i −1.09840 + 0.798035i
\(857\) 23.9538i 0.818245i 0.912480 + 0.409122i \(0.134165\pi\)
−0.912480 + 0.409122i \(0.865835\pi\)
\(858\) 0 0
\(859\) 6.11684 0.208704 0.104352 0.994540i \(-0.466723\pi\)
0.104352 + 0.994540i \(0.466723\pi\)
\(860\) 32.1860 10.5389i 1.09754 0.359375i
\(861\) −7.41641 22.8254i −0.252751 0.777886i
\(862\) 61.7550 + 20.0654i 2.10338 + 0.683431i
\(863\) 1.68941 2.32527i 0.0575082 0.0791532i −0.779294 0.626658i \(-0.784422\pi\)
0.836802 + 0.547505i \(0.184422\pi\)
\(864\) 14.1490 + 10.2798i 0.481359 + 0.349728i
\(865\) −11.1535 + 15.4252i −0.379230 + 0.524472i
\(866\) 22.7816 + 70.1146i 0.774150 + 2.38259i
\(867\) −6.74751 9.28715i −0.229157 0.315408i
\(868\) 51.0767i 1.73365i
\(869\) 0 0
\(870\) −12.0000 + 37.2203i −0.406838 + 1.26188i
\(871\) 0 0
\(872\) 56.9534 18.5053i 1.92869 0.626668i
\(873\) 13.1782 + 4.28187i 0.446015 + 0.144919i
\(874\) −6.47214 4.70228i −0.218923 0.159057i
\(875\) −0.264465 38.7289i −0.00894054 1.30928i
\(876\) −7.41641 + 22.8254i −0.250577 + 0.771197i
\(877\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(878\) −31.8849 43.8858i −1.07606 1.48107i
\(879\) −2.51087 −0.0846897
\(880\) 0 0
\(881\) −6.86141 −0.231167 −0.115583 0.993298i \(-0.536874\pi\)
−0.115583 + 0.993298i \(0.536874\pi\)
\(882\) 17.5996 + 24.2237i 0.592609 + 0.815656i
\(883\) 23.0619 7.49326i 0.776095 0.252168i 0.105923 0.994374i \(-0.466220\pi\)
0.670172 + 0.742206i \(0.266220\pi\)
\(884\) 0 0
\(885\) −7.70097 10.5489i −0.258865 0.354597i
\(886\) 64.6862 + 46.9973i 2.17317 + 1.57890i
\(887\) 26.0759 + 8.47258i 0.875544 + 0.284482i 0.712106 0.702072i \(-0.247742\pi\)
0.163438 + 0.986554i \(0.447742\pi\)
\(888\) 4.90601 1.59406i 0.164635 0.0534931i
\(889\) −23.0306 + 16.7327i −0.772421 + 0.561197i
\(890\) −7.37228 2.37686i −0.247119 0.0796726i
\(891\) 0 0
\(892\) 10.3923i 0.347960i
\(893\) 15.5957 + 21.4656i 0.521890 + 0.718320i
\(894\) 7.10067 + 21.8536i 0.237482 + 0.730894i
\(895\) 23.3049 + 16.8511i 0.778998 + 0.563270i
\(896\) −39.8133 28.9261i −1.33007 0.966352i
\(897\) 0 0
\(898\) −16.4728 5.35233i −0.549704 0.178610i
\(899\) 9.11264 + 28.0458i 0.303924 + 0.935381i
\(900\) −51.8609 + 0.236090i −1.72870 + 0.00786965i
\(901\) −16.0000 −0.533037
\(902\) 0 0
\(903\) 9.50744i 0.316388i
\(904\) −2.40946 + 1.75057i −0.0801373 + 0.0582232i
\(905\) 53.9268 0.122747i 1.79259 0.00408023i
\(906\) −7.56083 + 23.2699i −0.251192 + 0.773089i
\(907\) −11.6968 + 16.0992i −0.388385 + 0.534566i −0.957782 0.287497i \(-0.907177\pi\)
0.569396 + 0.822063i \(0.307177\pi\)
\(908\) 42.9970 59.1803i 1.42691 1.96397i
\(909\) −4.39845 + 13.5370i −0.145887 + 0.448995i
\(910\) 0 0
\(911\) 43.2736 31.4401i 1.43372 1.04166i 0.444410 0.895824i \(-0.353413\pi\)
0.989309 0.145834i \(-0.0465865\pi\)
\(912\) 20.1947i 0.668713i
\(913\) 0 0
\(914\) −52.4674 −1.73547
\(915\) −1.25358 + 0.410470i −0.0414421 + 0.0135697i
\(916\) 19.7636 + 60.8262i 0.653009 + 2.00976i
\(917\) −9.04212 2.93796i −0.298597 0.0970200i
\(918\) 10.0074 13.7740i 0.330292 0.454609i
\(919\) 22.8415 + 16.5953i 0.753473 + 0.547430i 0.896901 0.442231i \(-0.145813\pi\)
−0.143429 + 0.989661i \(0.545813\pi\)
\(920\) 8.59717 + 6.21636i 0.283440 + 0.204947i
\(921\) 7.73215 + 23.7971i 0.254783 + 0.784141i
\(922\) 3.31428 + 4.56171i 0.109150 + 0.150232i
\(923\) 0 0
\(924\) 0 0
\(925\) −3.17527 + 4.41248i −0.104402 + 0.145081i
\(926\) 61.4501 44.6461i 2.01938 1.46716i
\(927\) −23.4468 + 7.61834i −0.770095 + 0.250219i
\(928\) 34.1721 + 11.1032i 1.12175 + 0.364480i
\(929\) −5.68071 4.12728i −0.186378 0.135412i 0.490684 0.871338i \(-0.336747\pi\)
−0.677062 + 0.735926i \(0.736747\pi\)
\(930\) 12.1808 8.89231i 0.399425 0.291590i
\(931\) −6.18034 + 19.0211i −0.202552 + 0.623392i
\(932\) −15.6312 + 5.07889i −0.512018 + 0.166365i
\(933\) −2.55626 3.51838i −0.0836881 0.115187i
\(934\) 19.4891 0.637704
\(935\) 0 0
\(936\) 0 0
\(937\) 31.5381 + 43.4085i 1.03031 + 1.41810i 0.904717 + 0.426013i \(0.140082\pi\)
0.125589 + 0.992082i \(0.459918\pi\)
\(938\) −77.3862 + 25.1443i −2.52675 + 0.820991i
\(939\) −5.35489 + 16.4807i −0.174750 + 0.537826i
\(940\) −38.2380 52.3790i −1.24719 1.70841i
\(941\) −47.3011 34.3663i −1.54197 1.12031i −0.949084 0.315023i \(-0.897988\pi\)
−0.592888 0.805285i \(-0.702012\pi\)
\(942\) 46.5087 + 15.1116i 1.51534 + 0.492363i
\(943\) −6.58911 + 2.14093i −0.214571 + 0.0697184i
\(944\) −38.0062 + 27.6131i −1.23700 + 0.898731i
\(945\) 10.1168 31.3793i 0.329101 1.02077i
\(946\) 0 0
\(947\) 26.7354i 0.868783i −0.900724 0.434392i \(-0.856963\pi\)
0.900724 0.434392i \(-0.143037\pi\)
\(948\) 2.55626 + 3.51838i 0.0830233 + 0.114272i
\(949\) 0 0
\(950\) −29.8610 40.7091i −0.968819 1.32078i
\(951\) 21.1290 + 15.3511i 0.685154 + 0.497793i
\(952\) 19.3213 26.5934i 0.626206 0.861898i
\(953\) 29.7554 + 9.66813i 0.963873 + 0.313181i 0.748340 0.663315i \(-0.230851\pi\)
0.215533 + 0.976497i \(0.430851\pi\)
\(954\) 18.6854 + 57.5079i 0.604964 + 1.86189i
\(955\) −13.4797 41.1670i −0.436191 1.33213i
\(956\) 64.4674 2.08502
\(957\) 0 0
\(958\) 13.8564i 0.447680i
\(959\) −40.2266 + 29.2263i −1.29898 + 0.943768i
\(960\) 0.00956616 + 4.20274i 0.000308746 + 0.135643i
\(961\) −6.06530 + 18.6671i −0.195655 + 0.602164i
\(962\) 0 0
\(963\) 9.24935 12.7306i 0.298056 0.410239i
\(964\) 22.6237 69.6287i 0.728661 2.24259i
\(965\) −0.0836519 36.7511i −0.00269285 1.18306i
\(966\) −4.44080 + 3.22643i −0.142880 + 0.103809i
\(967\) 26.4232i 0.849713i 0.905261 + 0.424856i \(0.139675\pi\)
−0.905261 + 0.424856i \(0.860325\pi\)
\(968\) 0 0
\(969\) 5.02175 0.161322
\(970\) −10.2596 31.3329i −0.329416 1.00604i
\(971\) −2.81054 8.64995i −0.0901945 0.277590i 0.895777 0.444504i \(-0.146620\pi\)
−0.985972 + 0.166914i \(0.946620\pi\)
\(972\) −65.4345 21.2610i −2.09881 0.681946i
\(973\) 33.0542 45.4952i 1.05967 1.45851i
\(974\) −14.5623 10.5801i −0.466606 0.339009i
\(975\) 0 0
\(976\) 1.46615 + 4.51235i 0.0469303 + 0.144437i
\(977\) 29.7298 + 40.9195i 0.951140 + 1.30913i 0.951019 + 0.309132i \(0.100038\pi\)
0.000120920 1.00000i \(0.499962\pi\)
\(978\) 6.92820i 0.221540i
\(979\) 0 0
\(980\) 15.0000 46.5253i 0.479157 1.48620i
\(981\) −19.1922 + 13.9439i −0.612758 + 0.445195i
\(982\) 15.6312 5.07889i 0.498813 0.162074i
\(983\) 23.5349 + 7.64695i 0.750646 + 0.243900i 0.659259 0.751916i \(-0.270870\pi\)
0.0913870 + 0.995815i \(0.470870\pi\)
\(984\) 33.5654 + 24.3867i 1.07003 + 0.777419i
\(985\) 11.2236 + 15.3743i 0.357614 + 0.489864i
\(986\) 10.8089 33.2663i 0.344225 1.05941i
\(987\) 17.3143 5.62577i 0.551121 0.179070i
\(988\) 0 0
\(989\) 2.74456 0.0872720
\(990\) 0 0
\(991\) 18.9783 0.602864 0.301432 0.953488i \(-0.402535\pi\)
0.301432 + 0.953488i \(0.402535\pi\)
\(992\) −8.14459 11.2101i −0.258591 0.355920i
\(993\) 10.6372 3.45623i 0.337561 0.109680i
\(994\) −27.3379 + 84.1375i −0.867106 + 2.66868i
\(995\) −14.4482 + 10.5475i −0.458038 + 0.334379i
\(996\) −18.5898 13.5063i −0.589040 0.427963i
\(997\) −2.06805 0.671952i −0.0654959 0.0212809i 0.276086 0.961133i \(-0.410963\pi\)
−0.341582 + 0.939852i \(0.610963\pi\)
\(998\) −48.0158 + 15.6013i −1.51991 + 0.493849i
\(999\) −3.74390 + 2.72010i −0.118452 + 0.0860603i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.j.j.124.1 16
5.4 even 2 inner 605.2.j.j.124.4 16
11.2 odd 10 55.2.b.a.34.1 4
11.3 even 5 inner 605.2.j.j.269.1 16
11.4 even 5 inner 605.2.j.j.444.4 16
11.5 even 5 inner 605.2.j.j.9.4 16
11.6 odd 10 605.2.j.i.9.1 16
11.7 odd 10 605.2.j.i.444.1 16
11.8 odd 10 605.2.j.i.269.4 16
11.9 even 5 605.2.b.c.364.4 4
11.10 odd 2 605.2.j.i.124.4 16
33.2 even 10 495.2.c.a.199.4 4
44.35 even 10 880.2.b.h.529.2 4
55.2 even 20 275.2.a.h.1.4 4
55.4 even 10 inner 605.2.j.j.444.1 16
55.9 even 10 605.2.b.c.364.1 4
55.13 even 20 275.2.a.h.1.1 4
55.14 even 10 inner 605.2.j.j.269.4 16
55.19 odd 10 605.2.j.i.269.1 16
55.24 odd 10 55.2.b.a.34.4 yes 4
55.29 odd 10 605.2.j.i.444.4 16
55.39 odd 10 605.2.j.i.9.4 16
55.42 odd 20 3025.2.a.ba.1.1 4
55.49 even 10 inner 605.2.j.j.9.1 16
55.53 odd 20 3025.2.a.ba.1.4 4
55.54 odd 2 605.2.j.i.124.1 16
165.2 odd 20 2475.2.a.bi.1.1 4
165.68 odd 20 2475.2.a.bi.1.4 4
165.134 even 10 495.2.c.a.199.1 4
220.79 even 10 880.2.b.h.529.3 4
220.123 odd 20 4400.2.a.cc.1.3 4
220.167 odd 20 4400.2.a.cc.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.b.a.34.1 4 11.2 odd 10
55.2.b.a.34.4 yes 4 55.24 odd 10
275.2.a.h.1.1 4 55.13 even 20
275.2.a.h.1.4 4 55.2 even 20
495.2.c.a.199.1 4 165.134 even 10
495.2.c.a.199.4 4 33.2 even 10
605.2.b.c.364.1 4 55.9 even 10
605.2.b.c.364.4 4 11.9 even 5
605.2.j.i.9.1 16 11.6 odd 10
605.2.j.i.9.4 16 55.39 odd 10
605.2.j.i.124.1 16 55.54 odd 2
605.2.j.i.124.4 16 11.10 odd 2
605.2.j.i.269.1 16 55.19 odd 10
605.2.j.i.269.4 16 11.8 odd 10
605.2.j.i.444.1 16 11.7 odd 10
605.2.j.i.444.4 16 55.29 odd 10
605.2.j.j.9.1 16 55.49 even 10 inner
605.2.j.j.9.4 16 11.5 even 5 inner
605.2.j.j.124.1 16 1.1 even 1 trivial
605.2.j.j.124.4 16 5.4 even 2 inner
605.2.j.j.269.1 16 11.3 even 5 inner
605.2.j.j.269.4 16 55.14 even 10 inner
605.2.j.j.444.1 16 55.4 even 10 inner
605.2.j.j.444.4 16 11.4 even 5 inner
880.2.b.h.529.2 4 44.35 even 10
880.2.b.h.529.3 4 220.79 even 10
2475.2.a.bi.1.1 4 165.2 odd 20
2475.2.a.bi.1.4 4 165.68 odd 20
3025.2.a.ba.1.1 4 55.42 odd 20
3025.2.a.ba.1.4 4 55.53 odd 20
4400.2.a.cc.1.2 4 220.167 odd 20
4400.2.a.cc.1.3 4 220.123 odd 20