Properties

Label 605.2.j.i.444.2
Level $605$
Weight $2$
Character 605.444
Analytic conductor $4.831$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(9,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.j (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.343361479062744140625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 3 x^{14} - 8 x^{13} + 8 x^{12} + 7 x^{11} + 6 x^{10} + 56 x^{9} - 137 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 444.2
Root \(1.59696 - 0.670602i\) of defining polynomial
Character \(\chi\) \(=\) 605.444
Dual form 605.2.j.i.124.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.465695 + 0.640974i) q^{2} +(2.40079 + 0.780063i) q^{3} +(0.424058 + 1.30512i) q^{4} +(1.49244 - 1.66512i) q^{5} +(-1.61803 + 1.17557i) q^{6} +(3.29456 - 1.07047i) q^{7} +(-2.54105 - 0.825636i) q^{8} +(2.72823 + 1.98218i) q^{9} +(0.372281 + 1.73205i) q^{10} +3.46410i q^{12} +(-0.848116 + 2.61023i) q^{14} +(4.88192 - 2.83341i) q^{15} +(-0.507835 + 0.368964i) q^{16} +(-2.96754 - 4.08446i) q^{17} +(-2.54105 + 0.825636i) q^{18} +(-1.23607 + 3.80423i) q^{19} +(2.80606 + 1.24169i) q^{20} +8.74456 q^{21} -2.52434i q^{23} +(-5.45647 - 3.96435i) q^{24} +(-0.545274 - 4.97018i) q^{25} +(0.552379 + 0.760285i) q^{27} +(2.79417 + 3.84584i) q^{28} +(0.848116 + 2.61023i) q^{29} +(-0.457341 + 4.44869i) q^{30} +(1.91922 + 1.39439i) q^{31} -5.84096i q^{32} +4.00000 q^{34} +(3.13445 - 7.08345i) q^{35} +(-1.43004 + 4.40122i) q^{36} +(-10.4969 + 3.41066i) q^{37} +(-1.86278 - 2.56389i) q^{38} +(-5.16713 + 2.99895i) q^{40} +(-0.848116 + 2.61023i) q^{41} +(-4.07230 + 5.60503i) q^{42} +3.46410i q^{43} +(7.37228 - 1.58457i) q^{45} +(1.61803 + 1.17557i) q^{46} +(-6.30860 - 2.04979i) q^{47} +(-1.50702 + 0.489660i) q^{48} +(4.04508 - 2.93893i) q^{49} +(3.43968 + 1.96508i) q^{50} +(-3.93829 - 12.1208i) q^{51} +(-1.86278 + 2.56389i) q^{53} -0.744563 q^{54} -9.25544 q^{56} +(-5.93507 + 8.16893i) q^{57} +(-2.06805 - 0.671952i) q^{58} +(0.502993 + 1.54805i) q^{59} +(5.76816 + 5.16995i) q^{60} +(-8.69253 + 6.31550i) q^{61} +(-1.78754 + 0.580806i) q^{62} +(11.1102 + 3.60991i) q^{63} +(2.72823 + 1.98218i) q^{64} +0.644810i q^{67} +(4.07230 - 5.60503i) q^{68} +(1.96914 - 6.06040i) q^{69} +(3.08060 + 5.30782i) q^{70} +(-5.75765 + 4.18318i) q^{71} +(-5.29601 - 7.28933i) q^{72} +(6.58911 - 2.14093i) q^{73} +(2.70222 - 8.31657i) q^{74} +(2.56797 - 12.3577i) q^{75} -5.48913 q^{76} +(10.3106 + 7.49107i) q^{79} +(-0.143541 + 1.39626i) q^{80} +(-2.39320 - 7.36552i) q^{81} +(-1.27813 - 1.75919i) q^{82} +(3.89893 + 5.36641i) q^{83} +(3.70820 + 11.4127i) q^{84} +(-11.2300 - 1.15448i) q^{85} +(-2.22040 - 1.61321i) q^{86} +6.92820i q^{87} +4.37228 q^{89} +(-2.41756 + 5.46337i) q^{90} +(3.29456 - 1.07047i) q^{92} +(3.51992 + 4.84475i) q^{93} +(4.25174 - 3.08907i) q^{94} +(4.48976 + 7.73577i) q^{95} +(4.55632 - 14.0229i) q^{96} +(2.41516 - 3.32418i) q^{97} +3.96143i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{4} + 3 q^{5} - 8 q^{6} + 2 q^{9} - 40 q^{10} - 12 q^{14} - q^{15} - 14 q^{16} + 16 q^{19} + 12 q^{20} + 48 q^{21} - 4 q^{24} - q^{25} + 12 q^{29} + 6 q^{30} - 2 q^{31} + 64 q^{34} - 18 q^{35}+ \cdots - 36 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.465695 + 0.640974i −0.329296 + 0.453237i −0.941277 0.337636i \(-0.890373\pi\)
0.611981 + 0.790872i \(0.290373\pi\)
\(3\) 2.40079 + 0.780063i 1.38610 + 0.450370i 0.904668 0.426116i \(-0.140119\pi\)
0.481427 + 0.876486i \(0.340119\pi\)
\(4\) 0.424058 + 1.30512i 0.212029 + 0.652559i
\(5\) 1.49244 1.66512i 0.667437 0.744666i
\(6\) −1.61803 + 1.17557i −0.660560 + 0.479925i
\(7\) 3.29456 1.07047i 1.24523 0.404598i 0.389018 0.921230i \(-0.372814\pi\)
0.856208 + 0.516632i \(0.172814\pi\)
\(8\) −2.54105 0.825636i −0.898396 0.291906i
\(9\) 2.72823 + 1.98218i 0.909411 + 0.660726i
\(10\) 0.372281 + 1.73205i 0.117726 + 0.547723i
\(11\) 0 0
\(12\) 3.46410i 1.00000i
\(13\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(14\) −0.848116 + 2.61023i −0.226669 + 0.697614i
\(15\) 4.88192 2.83341i 1.26051 0.731585i
\(16\) −0.507835 + 0.368964i −0.126959 + 0.0922409i
\(17\) −2.96754 4.08446i −0.719733 0.990628i −0.999533 0.0305696i \(-0.990268\pi\)
0.279799 0.960059i \(-0.409732\pi\)
\(18\) −2.54105 + 0.825636i −0.598930 + 0.194604i
\(19\) −1.23607 + 3.80423i −0.283573 + 0.872749i 0.703249 + 0.710943i \(0.251732\pi\)
−0.986823 + 0.161806i \(0.948268\pi\)
\(20\) 2.80606 + 1.24169i 0.627454 + 0.277651i
\(21\) 8.74456 1.90822
\(22\) 0 0
\(23\) 2.52434i 0.526361i −0.964747 0.263180i \(-0.915229\pi\)
0.964747 0.263180i \(-0.0847714\pi\)
\(24\) −5.45647 3.96435i −1.11380 0.809220i
\(25\) −0.545274 4.97018i −0.109055 0.994036i
\(26\) 0 0
\(27\) 0.552379 + 0.760285i 0.106305 + 0.146317i
\(28\) 2.79417 + 3.84584i 0.528048 + 0.726796i
\(29\) 0.848116 + 2.61023i 0.157491 + 0.484708i 0.998405 0.0564612i \(-0.0179817\pi\)
−0.840914 + 0.541170i \(0.817982\pi\)
\(30\) −0.457341 + 4.44869i −0.0834986 + 0.812216i
\(31\) 1.91922 + 1.39439i 0.344701 + 0.250440i 0.746643 0.665225i \(-0.231664\pi\)
−0.401941 + 0.915665i \(0.631664\pi\)
\(32\) 5.84096i 1.03255i
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) 3.13445 7.08345i 0.529819 1.19732i
\(36\) −1.43004 + 4.40122i −0.238341 + 0.733537i
\(37\) −10.4969 + 3.41066i −1.72568 + 0.560708i −0.992815 0.119662i \(-0.961819\pi\)
−0.732868 + 0.680370i \(0.761819\pi\)
\(38\) −1.86278 2.56389i −0.302183 0.415919i
\(39\) 0 0
\(40\) −5.16713 + 2.99895i −0.816996 + 0.474175i
\(41\) −0.848116 + 2.61023i −0.132454 + 0.407650i −0.995185 0.0980119i \(-0.968752\pi\)
0.862732 + 0.505662i \(0.168752\pi\)
\(42\) −4.07230 + 5.60503i −0.628369 + 0.864876i
\(43\) 3.46410i 0.528271i 0.964486 + 0.264135i \(0.0850865\pi\)
−0.964486 + 0.264135i \(0.914913\pi\)
\(44\) 0 0
\(45\) 7.37228 1.58457i 1.09899 0.236214i
\(46\) 1.61803 + 1.17557i 0.238566 + 0.173328i
\(47\) −6.30860 2.04979i −0.920203 0.298992i −0.189653 0.981851i \(-0.560736\pi\)
−0.730550 + 0.682859i \(0.760736\pi\)
\(48\) −1.50702 + 0.489660i −0.217520 + 0.0706764i
\(49\) 4.04508 2.93893i 0.577869 0.419847i
\(50\) 3.43968 + 1.96508i 0.486445 + 0.277904i
\(51\) −3.93829 12.1208i −0.551470 1.69725i
\(52\) 0 0
\(53\) −1.86278 + 2.56389i −0.255872 + 0.352178i −0.917557 0.397604i \(-0.869842\pi\)
0.661685 + 0.749782i \(0.269842\pi\)
\(54\) −0.744563 −0.101322
\(55\) 0 0
\(56\) −9.25544 −1.23681
\(57\) −5.93507 + 8.16893i −0.786120 + 1.08200i
\(58\) −2.06805 0.671952i −0.271549 0.0882316i
\(59\) 0.502993 + 1.54805i 0.0654841 + 0.201539i 0.978445 0.206508i \(-0.0662099\pi\)
−0.912961 + 0.408047i \(0.866210\pi\)
\(60\) 5.76816 + 5.16995i 0.744666 + 0.667437i
\(61\) −8.69253 + 6.31550i −1.11296 + 0.808616i −0.983128 0.182919i \(-0.941445\pi\)
−0.129837 + 0.991535i \(0.541445\pi\)
\(62\) −1.78754 + 0.580806i −0.227017 + 0.0737624i
\(63\) 11.1102 + 3.60991i 1.39975 + 0.454806i
\(64\) 2.72823 + 1.98218i 0.341029 + 0.247772i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.644810i 0.0787761i 0.999224 + 0.0393880i \(0.0125408\pi\)
−0.999224 + 0.0393880i \(0.987459\pi\)
\(68\) 4.07230 5.60503i 0.493838 0.679710i
\(69\) 1.96914 6.06040i 0.237057 0.729586i
\(70\) 3.08060 + 5.30782i 0.368203 + 0.634406i
\(71\) −5.75765 + 4.18318i −0.683307 + 0.496452i −0.874453 0.485110i \(-0.838780\pi\)
0.191146 + 0.981562i \(0.438780\pi\)
\(72\) −5.29601 7.28933i −0.624141 0.859056i
\(73\) 6.58911 2.14093i 0.771197 0.250577i 0.103120 0.994669i \(-0.467117\pi\)
0.668077 + 0.744092i \(0.267117\pi\)
\(74\) 2.70222 8.31657i 0.314127 0.966782i
\(75\) 2.56797 12.3577i 0.296523 1.42694i
\(76\) −5.48913 −0.629646
\(77\) 0 0
\(78\) 0 0
\(79\) 10.3106 + 7.49107i 1.16003 + 0.842811i 0.989782 0.142591i \(-0.0455432\pi\)
0.170248 + 0.985401i \(0.445543\pi\)
\(80\) −0.143541 + 1.39626i −0.0160483 + 0.156107i
\(81\) −2.39320 7.36552i −0.265911 0.818391i
\(82\) −1.27813 1.75919i −0.141146 0.194270i
\(83\) 3.89893 + 5.36641i 0.427963 + 0.589040i 0.967484 0.252932i \(-0.0813948\pi\)
−0.539521 + 0.841972i \(0.681395\pi\)
\(84\) 3.70820 + 11.4127i 0.404598 + 1.24523i
\(85\) −11.2300 1.15448i −1.21806 0.125221i
\(86\) −2.22040 1.61321i −0.239432 0.173957i
\(87\) 6.92820i 0.742781i
\(88\) 0 0
\(89\) 4.37228 0.463461 0.231730 0.972780i \(-0.425561\pi\)
0.231730 + 0.972780i \(0.425561\pi\)
\(90\) −2.41756 + 5.46337i −0.254833 + 0.575889i
\(91\) 0 0
\(92\) 3.29456 1.07047i 0.343481 0.111604i
\(93\) 3.51992 + 4.84475i 0.364998 + 0.502377i
\(94\) 4.25174 3.08907i 0.438533 0.318613i
\(95\) 4.48976 + 7.73577i 0.460639 + 0.793673i
\(96\) 4.55632 14.0229i 0.465028 1.43121i
\(97\) 2.41516 3.32418i 0.245222 0.337519i −0.668609 0.743614i \(-0.733110\pi\)
0.913831 + 0.406095i \(0.133110\pi\)
\(98\) 3.96143i 0.400165i
\(99\) 0 0
\(100\) 6.25544 2.81929i 0.625544 0.281929i
\(101\) −4.85410 3.52671i −0.483001 0.350921i 0.319485 0.947591i \(-0.396490\pi\)
−0.802486 + 0.596670i \(0.796490\pi\)
\(102\) 9.60315 + 3.12025i 0.950854 + 0.308951i
\(103\) 9.88367 3.21140i 0.973867 0.316429i 0.221491 0.975162i \(-0.428908\pi\)
0.752376 + 0.658734i \(0.228908\pi\)
\(104\) 0 0
\(105\) 13.0507 14.5608i 1.27362 1.42099i
\(106\) −0.775903 2.38798i −0.0753624 0.231941i
\(107\) −6.30860 2.04979i −0.609875 0.198160i −0.0122352 0.999925i \(-0.503895\pi\)
−0.597640 + 0.801765i \(0.703895\pi\)
\(108\) −0.758020 + 1.04332i −0.0729405 + 0.100394i
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) −27.8614 −2.64449
\(112\) −1.27813 + 1.75919i −0.120772 + 0.166228i
\(113\) 15.2985 + 4.97078i 1.43916 + 0.467612i 0.921636 0.388056i \(-0.126853\pi\)
0.517526 + 0.855668i \(0.326853\pi\)
\(114\) −2.47214 7.60845i −0.231537 0.712597i
\(115\) −4.20333 3.76741i −0.391963 0.351313i
\(116\) −3.04701 + 2.21378i −0.282908 + 0.205545i
\(117\) 0 0
\(118\) −1.22650 0.398515i −0.112909 0.0366862i
\(119\) −14.1490 10.2798i −1.29704 0.942352i
\(120\) −14.7446 + 3.16915i −1.34599 + 0.289302i
\(121\) 0 0
\(122\) 8.51278i 0.770711i
\(123\) −4.07230 + 5.60503i −0.367187 + 0.505389i
\(124\) −1.00599 + 3.09610i −0.0903402 + 0.278038i
\(125\) −9.08975 6.50972i −0.813012 0.582247i
\(126\) −7.48781 + 5.44021i −0.667067 + 0.484652i
\(127\) 6.86646 + 9.45088i 0.609300 + 0.838630i 0.996520 0.0833579i \(-0.0265645\pi\)
−0.387220 + 0.921988i \(0.626564\pi\)
\(128\) 8.56912 2.78428i 0.757411 0.246098i
\(129\) −2.70222 + 8.31657i −0.237917 + 0.732233i
\(130\) 0 0
\(131\) 8.74456 0.764016 0.382008 0.924159i \(-0.375233\pi\)
0.382008 + 0.924159i \(0.375233\pi\)
\(132\) 0 0
\(133\) 13.8564i 1.20150i
\(134\) −0.413306 0.300285i −0.0357042 0.0259406i
\(135\) 2.09036 + 0.214896i 0.179909 + 0.0184953i
\(136\) 4.16837 + 12.8289i 0.357435 + 1.10007i
\(137\) −1.31040 1.80361i −0.111955 0.154093i 0.749362 0.662160i \(-0.230360\pi\)
−0.861317 + 0.508067i \(0.830360\pi\)
\(138\) 2.96754 + 4.08446i 0.252614 + 0.347693i
\(139\) −5.63452 17.3413i −0.477914 1.47087i −0.841988 0.539497i \(-0.818614\pi\)
0.364074 0.931370i \(-0.381386\pi\)
\(140\) 10.5739 + 1.08704i 0.893659 + 0.0918713i
\(141\) −13.5466 9.84221i −1.14083 0.828863i
\(142\) 5.63858i 0.473179i
\(143\) 0 0
\(144\) −2.11684 −0.176404
\(145\) 5.61212 + 2.48339i 0.466061 + 0.206234i
\(146\) −1.69623 + 5.22047i −0.140381 + 0.432049i
\(147\) 12.0039 3.90032i 0.990068 0.321693i
\(148\) −8.90261 12.2534i −0.731790 1.00722i
\(149\) 9.29490 6.75314i 0.761468 0.553239i −0.137892 0.990447i \(-0.544033\pi\)
0.899360 + 0.437209i \(0.144033\pi\)
\(150\) 6.72507 + 7.40091i 0.549099 + 0.604282i
\(151\) 6.87059 21.1455i 0.559120 1.72080i −0.125685 0.992070i \(-0.540113\pi\)
0.684806 0.728726i \(-0.259887\pi\)
\(152\) 6.28181 8.64617i 0.509522 0.701297i
\(153\) 17.0256i 1.37643i
\(154\) 0 0
\(155\) 5.18614 1.11469i 0.416561 0.0895342i
\(156\) 0 0
\(157\) −5.13431 1.66824i −0.409762 0.133140i 0.0968802 0.995296i \(-0.469114\pi\)
−0.506643 + 0.862156i \(0.669114\pi\)
\(158\) −9.60315 + 3.12025i −0.763986 + 0.248234i
\(159\) −6.47214 + 4.70228i −0.513274 + 0.372915i
\(160\) −9.72593 8.71726i −0.768902 0.689160i
\(161\) −2.70222 8.31657i −0.212965 0.655438i
\(162\) 5.83560 + 1.89610i 0.458488 + 0.148972i
\(163\) −2.03615 + 2.80252i −0.159483 + 0.219510i −0.881279 0.472596i \(-0.843317\pi\)
0.721796 + 0.692106i \(0.243317\pi\)
\(164\) −3.76631 −0.294100
\(165\) 0 0
\(166\) −5.25544 −0.407901
\(167\) 13.1483 18.0970i 1.01744 1.40039i 0.103464 0.994633i \(-0.467007\pi\)
0.913980 0.405759i \(-0.132993\pi\)
\(168\) −22.2203 7.21983i −1.71434 0.557022i
\(169\) 4.01722 + 12.3637i 0.309017 + 0.951057i
\(170\) 5.96974 6.66049i 0.457858 0.510837i
\(171\) −10.9129 + 7.92871i −0.834533 + 0.606324i
\(172\) −4.52106 + 1.46898i −0.344727 + 0.112009i
\(173\) −1.78754 0.580806i −0.135904 0.0441579i 0.240275 0.970705i \(-0.422762\pi\)
−0.376179 + 0.926547i \(0.622762\pi\)
\(174\) −4.44080 3.22643i −0.336656 0.244595i
\(175\) −7.11684 15.7908i −0.537983 1.19368i
\(176\) 0 0
\(177\) 4.10891i 0.308845i
\(178\) −2.03615 + 2.80252i −0.152616 + 0.210058i
\(179\) 4.90144 15.0851i 0.366351 1.12751i −0.582780 0.812630i \(-0.698035\pi\)
0.949131 0.314883i \(-0.101965\pi\)
\(180\) 5.19433 + 8.94974i 0.387163 + 0.667074i
\(181\) −5.56859 + 4.04582i −0.413910 + 0.300723i −0.775183 0.631737i \(-0.782342\pi\)
0.361273 + 0.932460i \(0.382342\pi\)
\(182\) 0 0
\(183\) −25.7954 + 8.38144i −1.90685 + 0.619574i
\(184\) −2.08418 + 6.41446i −0.153648 + 0.472880i
\(185\) −9.98681 + 22.5689i −0.734245 + 1.65930i
\(186\) −4.74456 −0.347888
\(187\) 0 0
\(188\) 9.10268i 0.663881i
\(189\) 2.63370 + 1.91350i 0.191574 + 0.139187i
\(190\) −7.04928 0.724690i −0.511408 0.0525746i
\(191\) −4.21120 12.9607i −0.304711 0.937806i −0.979785 0.200055i \(-0.935888\pi\)
0.675073 0.737751i \(-0.264112\pi\)
\(192\) 5.00368 + 6.88698i 0.361110 + 0.497025i
\(193\) −13.7329 18.9018i −0.988518 1.36058i −0.932112 0.362170i \(-0.882036\pi\)
−0.0564056 0.998408i \(-0.517964\pi\)
\(194\) 1.00599 + 3.09610i 0.0722255 + 0.222287i
\(195\) 0 0
\(196\) 5.55099 + 4.03303i 0.396500 + 0.288074i
\(197\) 1.87953i 0.133911i −0.997756 0.0669554i \(-0.978671\pi\)
0.997756 0.0669554i \(-0.0213285\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) −2.71799 + 13.0797i −0.192191 + 0.924871i
\(201\) −0.502993 + 1.54805i −0.0354784 + 0.109191i
\(202\) 4.52106 1.46898i 0.318101 0.103357i
\(203\) 5.58834 + 7.69168i 0.392224 + 0.539850i
\(204\) 14.1490 10.2798i 0.990628 0.719733i
\(205\) 3.08060 + 5.30782i 0.215159 + 0.370715i
\(206\) −2.54435 + 7.83070i −0.177273 + 0.545591i
\(207\) 5.00368 6.88698i 0.347780 0.478678i
\(208\) 0 0
\(209\) 0 0
\(210\) 3.25544 + 15.1460i 0.224647 + 1.04518i
\(211\) 17.3851 + 12.6310i 1.19684 + 0.869553i 0.993970 0.109653i \(-0.0349739\pi\)
0.202867 + 0.979206i \(0.434974\pi\)
\(212\) −4.13611 1.34390i −0.284069 0.0922997i
\(213\) −17.0860 + 5.55159i −1.17072 + 0.380389i
\(214\) 4.25174 3.08907i 0.290643 0.211164i
\(215\) 5.76816 + 5.16995i 0.393385 + 0.352587i
\(216\) −0.775903 2.38798i −0.0527935 0.162482i
\(217\) 7.81561 + 2.53945i 0.530558 + 0.172389i
\(218\) 4.65695 6.40974i 0.315408 0.434122i
\(219\) 17.4891 1.18181
\(220\) 0 0
\(221\) 0 0
\(222\) 12.9749 17.8584i 0.870819 1.19858i
\(223\) 7.20236 + 2.34019i 0.482306 + 0.156711i 0.540071 0.841620i \(-0.318397\pi\)
−0.0577650 + 0.998330i \(0.518397\pi\)
\(224\) −6.25255 19.2434i −0.417766 1.28575i
\(225\) 8.36414 14.6406i 0.557609 0.976042i
\(226\) −10.3106 + 7.49107i −0.685849 + 0.498298i
\(227\) −9.32263 + 3.02911i −0.618765 + 0.201049i −0.601592 0.798804i \(-0.705467\pi\)
−0.0171731 + 0.999853i \(0.505467\pi\)
\(228\) −13.1782 4.28187i −0.872749 0.283573i
\(229\) 16.4815 + 11.9745i 1.08913 + 0.791299i 0.979252 0.202646i \(-0.0649541\pi\)
0.109878 + 0.993945i \(0.464954\pi\)
\(230\) 4.37228 0.939764i 0.288300 0.0619662i
\(231\) 0 0
\(232\) 7.33296i 0.481433i
\(233\) −10.0074 + 13.7740i −0.655605 + 0.902362i −0.999326 0.0367094i \(-0.988312\pi\)
0.343721 + 0.939072i \(0.388312\pi\)
\(234\) 0 0
\(235\) −12.8283 + 7.44542i −0.836827 + 0.485685i
\(236\) −1.80709 + 1.31293i −0.117632 + 0.0854644i
\(237\) 18.9100 + 26.0274i 1.22834 + 1.69066i
\(238\) 13.1782 4.28187i 0.854217 0.277552i
\(239\) 1.00599 3.09610i 0.0650718 0.200270i −0.913234 0.407435i \(-0.866423\pi\)
0.978306 + 0.207164i \(0.0664234\pi\)
\(240\) −1.43378 + 3.24016i −0.0925504 + 0.209151i
\(241\) 5.25544 0.338532 0.169266 0.985570i \(-0.445860\pi\)
0.169266 + 0.985570i \(0.445860\pi\)
\(242\) 0 0
\(243\) 22.3692i 1.43498i
\(244\) −11.9286 8.66664i −0.763650 0.554825i
\(245\) 1.14335 11.1217i 0.0730461 0.710541i
\(246\) −1.69623 5.22047i −0.108148 0.332845i
\(247\) 0 0
\(248\) −3.72556 5.12779i −0.236573 0.325615i
\(249\) 5.17435 + 15.9250i 0.327911 + 1.00921i
\(250\) 8.40561 2.79475i 0.531617 0.176755i
\(251\) 3.95056 + 2.87025i 0.249357 + 0.181168i 0.705442 0.708768i \(-0.250749\pi\)
−0.456085 + 0.889936i \(0.650749\pi\)
\(252\) 16.0309i 1.00985i
\(253\) 0 0
\(254\) −9.25544 −0.580738
\(255\) −26.0603 11.5318i −1.63196 0.722148i
\(256\) −4.29013 + 13.2037i −0.268133 + 0.825229i
\(257\) 22.7814 7.40212i 1.42106 0.461731i 0.505123 0.863047i \(-0.331447\pi\)
0.915940 + 0.401316i \(0.131447\pi\)
\(258\) −4.07230 5.60503i −0.253530 0.348954i
\(259\) −30.9317 + 22.4732i −1.92200 + 1.39642i
\(260\) 0 0
\(261\) −2.86009 + 8.80244i −0.177035 + 0.544858i
\(262\) −4.07230 + 5.60503i −0.251587 + 0.346280i
\(263\) 14.1514i 0.872610i 0.899799 + 0.436305i \(0.143713\pi\)
−0.899799 + 0.436305i \(0.856287\pi\)
\(264\) 0 0
\(265\) 1.48913 + 6.92820i 0.0914762 + 0.425596i
\(266\) −8.88159 6.45285i −0.544565 0.395650i
\(267\) 10.4969 + 3.41066i 0.642401 + 0.208729i
\(268\) −0.841553 + 0.273437i −0.0514060 + 0.0167028i
\(269\) 9.29490 6.75314i 0.566720 0.411746i −0.267192 0.963643i \(-0.586096\pi\)
0.833912 + 0.551897i \(0.186096\pi\)
\(270\) −1.11121 + 1.23979i −0.0676262 + 0.0754511i
\(271\) −2.93230 9.02469i −0.178125 0.548211i 0.821638 0.570010i \(-0.193061\pi\)
−0.999762 + 0.0217988i \(0.993061\pi\)
\(272\) 3.01404 + 0.979321i 0.182753 + 0.0593800i
\(273\) 0 0
\(274\) 1.76631 0.106707
\(275\) 0 0
\(276\) 8.74456 0.526361
\(277\) −4.83032 + 6.64836i −0.290226 + 0.399461i −0.929087 0.369860i \(-0.879406\pi\)
0.638862 + 0.769321i \(0.279406\pi\)
\(278\) 13.7393 + 4.46416i 0.824026 + 0.267742i
\(279\) 2.47214 + 7.60845i 0.148003 + 0.455506i
\(280\) −13.8131 + 15.4114i −0.825493 + 0.921010i
\(281\) 19.0031 13.8066i 1.13363 0.823630i 0.147411 0.989075i \(-0.452906\pi\)
0.986219 + 0.165445i \(0.0529060\pi\)
\(282\) 12.6172 4.09957i 0.751343 0.244126i
\(283\) −4.52106 1.46898i −0.268749 0.0873218i 0.171543 0.985177i \(-0.445125\pi\)
−0.440292 + 0.897855i \(0.645125\pi\)
\(284\) −7.90111 5.74049i −0.468845 0.340636i
\(285\) 4.74456 + 22.0742i 0.281044 + 1.30756i
\(286\) 0 0
\(287\) 9.50744i 0.561207i
\(288\) 11.5778 15.9355i 0.682230 0.939009i
\(289\) −2.62328 + 8.07364i −0.154311 + 0.474920i
\(290\) −4.20532 + 2.44072i −0.246945 + 0.143324i
\(291\) 8.39135 6.09667i 0.491910 0.357393i
\(292\) 5.58834 + 7.69168i 0.327033 + 0.450122i
\(293\) 9.60315 3.12025i 0.561022 0.182287i −0.0147589 0.999891i \(-0.504698\pi\)
0.575781 + 0.817604i \(0.304698\pi\)
\(294\) −3.09017 + 9.51057i −0.180222 + 0.554667i
\(295\) 3.32838 + 1.47282i 0.193786 + 0.0857511i
\(296\) 29.4891 1.71402
\(297\) 0 0
\(298\) 9.10268i 0.527304i
\(299\) 0 0
\(300\) 17.2172 1.88888i 0.994036 0.109055i
\(301\) 3.70820 + 11.4127i 0.213737 + 0.657816i
\(302\) 10.3541 + 14.2512i 0.595812 + 0.820065i
\(303\) −8.90261 12.2534i −0.511442 0.703939i
\(304\) −0.775903 2.38798i −0.0445011 0.136960i
\(305\) −2.45696 + 23.8996i −0.140685 + 1.36849i
\(306\) 10.9129 + 7.92871i 0.623851 + 0.453254i
\(307\) 28.1176i 1.60475i 0.596817 + 0.802377i \(0.296432\pi\)
−0.596817 + 0.802377i \(0.703568\pi\)
\(308\) 0 0
\(309\) 26.2337 1.49238
\(310\) −1.70067 + 3.84329i −0.0965915 + 0.218284i
\(311\) −5.40444 + 16.6331i −0.306458 + 0.943179i 0.672672 + 0.739941i \(0.265147\pi\)
−0.979129 + 0.203238i \(0.934853\pi\)
\(312\) 0 0
\(313\) 18.7043 + 25.7443i 1.05723 + 1.45515i 0.882367 + 0.470562i \(0.155949\pi\)
0.174865 + 0.984592i \(0.444051\pi\)
\(314\) 3.46032 2.51407i 0.195277 0.141877i
\(315\) 22.5922 13.1122i 1.27292 0.738791i
\(316\) −5.40444 + 16.6331i −0.304023 + 0.935688i
\(317\) 2.06842 2.84693i 0.116174 0.159900i −0.746970 0.664858i \(-0.768492\pi\)
0.863144 + 0.504958i \(0.168492\pi\)
\(318\) 6.33830i 0.355434i
\(319\) 0 0
\(320\) 7.37228 1.58457i 0.412123 0.0885804i
\(321\) −13.5466 9.84221i −0.756099 0.549338i
\(322\) 6.58911 + 2.14093i 0.367197 + 0.119310i
\(323\) 19.2063 6.24051i 1.06867 0.347231i
\(324\) 8.59801 6.24682i 0.477667 0.347045i
\(325\) 0 0
\(326\) −0.848116 2.61023i −0.0469728 0.144568i
\(327\) −24.0079 7.80063i −1.32764 0.431376i
\(328\) 4.31021 5.93249i 0.237991 0.327567i
\(329\) −22.9783 −1.26683
\(330\) 0 0
\(331\) 3.11684 0.171317 0.0856586 0.996325i \(-0.472701\pi\)
0.0856586 + 0.996325i \(0.472701\pi\)
\(332\) −5.35042 + 7.36423i −0.293643 + 0.404164i
\(333\) −35.3986 11.5017i −1.93983 0.630289i
\(334\) 5.47665 + 16.8554i 0.299669 + 0.922286i
\(335\) 1.07369 + 0.962337i 0.0586619 + 0.0525781i
\(336\) −4.44080 + 3.22643i −0.242265 + 0.176016i
\(337\) −11.9517 + 3.88335i −0.651052 + 0.211540i −0.615878 0.787842i \(-0.711199\pi\)
−0.0351740 + 0.999381i \(0.511199\pi\)
\(338\) −9.79563 3.18279i −0.532812 0.173121i
\(339\) 32.8509 + 23.8676i 1.78422 + 1.29631i
\(340\) −3.25544 15.1460i −0.176551 0.821409i
\(341\) 0 0
\(342\) 10.6873i 0.577901i
\(343\) −4.07230 + 5.60503i −0.219883 + 0.302643i
\(344\) 2.86009 8.80244i 0.154206 0.474596i
\(345\) −7.15250 12.3236i −0.385077 0.663481i
\(346\) 1.20473 0.875286i 0.0647666 0.0470557i
\(347\) −17.2206 23.7021i −0.924449 1.27239i −0.961986 0.273099i \(-0.911951\pi\)
0.0375371 0.999295i \(-0.488049\pi\)
\(348\) −9.04212 + 2.93796i −0.484708 + 0.157491i
\(349\) 2.31427 7.12258i 0.123880 0.381263i −0.869815 0.493377i \(-0.835762\pi\)
0.993695 + 0.112114i \(0.0357622\pi\)
\(350\) 13.4358 + 2.79200i 0.718173 + 0.149239i
\(351\) 0 0
\(352\) 0 0
\(353\) 21.7244i 1.15627i 0.815941 + 0.578136i \(0.196220\pi\)
−0.815941 + 0.578136i \(0.803780\pi\)
\(354\) −2.63370 1.91350i −0.139980 0.101701i
\(355\) −1.62741 + 15.8303i −0.0863740 + 0.840186i
\(356\) 1.85410 + 5.70634i 0.0982672 + 0.302435i
\(357\) −25.9498 35.7169i −1.37341 1.89034i
\(358\) 7.38657 + 10.1667i 0.390392 + 0.537329i
\(359\) −2.01197 6.19221i −0.106188 0.326812i 0.883820 0.467828i \(-0.154963\pi\)
−0.990007 + 0.141015i \(0.954963\pi\)
\(360\) −20.0416 2.06035i −1.05628 0.108590i
\(361\) 2.42705 + 1.76336i 0.127740 + 0.0928082i
\(362\) 5.45343i 0.286626i
\(363\) 0 0
\(364\) 0 0
\(365\) 6.26891 14.1669i 0.328130 0.741529i
\(366\) 6.64050 20.4374i 0.347105 1.06828i
\(367\) −22.8336 + 7.41908i −1.19190 + 0.387273i −0.836776 0.547545i \(-0.815563\pi\)
−0.355128 + 0.934818i \(0.615563\pi\)
\(368\) 0.931389 + 1.28195i 0.0485520 + 0.0668261i
\(369\) −7.48781 + 5.44021i −0.389800 + 0.283206i
\(370\) −9.81524 16.9115i −0.510270 0.879186i
\(371\) −3.39247 + 10.4409i −0.176128 + 0.542066i
\(372\) −4.83032 + 6.64836i −0.250440 + 0.344701i
\(373\) 8.21782i 0.425503i 0.977106 + 0.212751i \(0.0682424\pi\)
−0.977106 + 0.212751i \(0.931758\pi\)
\(374\) 0 0
\(375\) −16.7446 22.7190i −0.864685 1.17321i
\(376\) 14.3381 + 10.4172i 0.739429 + 0.537226i
\(377\) 0 0
\(378\) −2.45300 + 0.797029i −0.126169 + 0.0409948i
\(379\) −5.15528 + 3.74553i −0.264809 + 0.192395i −0.712264 0.701911i \(-0.752330\pi\)
0.447455 + 0.894306i \(0.352330\pi\)
\(380\) −8.19216 + 9.14007i −0.420249 + 0.468876i
\(381\) 9.11264 + 28.0458i 0.466855 + 1.43683i
\(382\) 10.2686 + 3.33648i 0.525388 + 0.170709i
\(383\) 3.34655 4.60613i 0.171001 0.235362i −0.714912 0.699215i \(-0.753533\pi\)
0.885912 + 0.463852i \(0.153533\pi\)
\(384\) 22.7446 1.16068
\(385\) 0 0
\(386\) 18.5109 0.942179
\(387\) −6.86646 + 9.45088i −0.349042 + 0.480415i
\(388\) 5.36261 + 1.74242i 0.272245 + 0.0884579i
\(389\) 3.04734 + 9.37876i 0.154506 + 0.475522i 0.998111 0.0614438i \(-0.0195705\pi\)
−0.843604 + 0.536966i \(0.819571\pi\)
\(390\) 0 0
\(391\) −10.3106 + 7.49107i −0.521428 + 0.378839i
\(392\) −12.7052 + 4.12818i −0.641711 + 0.208505i
\(393\) 20.9938 + 6.82131i 1.05900 + 0.344090i
\(394\) 1.20473 + 0.875286i 0.0606933 + 0.0440963i
\(395\) 27.8614 5.98844i 1.40186 0.301311i
\(396\) 0 0
\(397\) 23.3639i 1.17260i −0.810095 0.586299i \(-0.800584\pi\)
0.810095 0.586299i \(-0.199416\pi\)
\(398\) −3.72556 + 5.12779i −0.186745 + 0.257033i
\(399\) −10.8089 + 33.2663i −0.541121 + 1.66540i
\(400\) 2.11073 + 2.32284i 0.105536 + 0.116142i
\(401\) −9.29490 + 6.75314i −0.464165 + 0.337236i −0.795163 0.606396i \(-0.792615\pi\)
0.330998 + 0.943631i \(0.392615\pi\)
\(402\) −0.758020 1.04332i −0.0378066 0.0520363i
\(403\) 0 0
\(404\) 2.54435 7.83070i 0.126586 0.389592i
\(405\) −15.8362 7.00758i −0.786907 0.348209i
\(406\) −7.53262 −0.373838
\(407\) 0 0
\(408\) 34.0511i 1.68578i
\(409\) 3.64937 + 2.65143i 0.180450 + 0.131105i 0.674343 0.738418i \(-0.264427\pi\)
−0.493894 + 0.869522i \(0.664427\pi\)
\(410\) −4.83680 0.497239i −0.238872 0.0245569i
\(411\) −1.73906 5.35228i −0.0857815 0.264008i
\(412\) 8.38250 + 11.5375i 0.412976 + 0.568413i
\(413\) 3.31428 + 4.56171i 0.163085 + 0.224467i
\(414\) 2.08418 + 6.41446i 0.102432 + 0.315254i
\(415\) 14.7546 + 1.51683i 0.724277 + 0.0744581i
\(416\) 0 0
\(417\) 46.0280i 2.25400i
\(418\) 0 0
\(419\) −22.9783 −1.12256 −0.561280 0.827626i \(-0.689691\pi\)
−0.561280 + 0.827626i \(0.689691\pi\)
\(420\) 24.5378 + 10.8581i 1.19732 + 0.529819i
\(421\) 9.73067 29.9479i 0.474244 1.45957i −0.372730 0.927940i \(-0.621578\pi\)
0.846975 0.531634i \(-0.178422\pi\)
\(422\) −16.1923 + 5.26119i −0.788227 + 0.256111i
\(423\) −13.1483 18.0970i −0.639291 0.879909i
\(424\) 6.85025 4.97700i 0.332678 0.241704i
\(425\) −18.6824 + 16.9763i −0.906229 + 0.823473i
\(426\) 4.39845 13.5370i 0.213106 0.655872i
\(427\) −21.8775 + 30.1118i −1.05873 + 1.45721i
\(428\) 9.10268i 0.439995i
\(429\) 0 0
\(430\) −6.00000 + 1.28962i −0.289346 + 0.0621910i
\(431\) −25.6643 18.6462i −1.23621 0.898156i −0.238866 0.971053i \(-0.576776\pi\)
−0.997340 + 0.0728966i \(0.976776\pi\)
\(432\) −0.561035 0.182291i −0.0269928 0.00877050i
\(433\) 19.5390 6.34862i 0.938986 0.305095i 0.200754 0.979642i \(-0.435661\pi\)
0.738232 + 0.674547i \(0.235661\pi\)
\(434\) −5.26741 + 3.82700i −0.252844 + 0.183702i
\(435\) 11.5363 + 10.3399i 0.553124 + 0.495760i
\(436\) −4.24058 13.0512i −0.203087 0.625038i
\(437\) 9.60315 + 3.12025i 0.459381 + 0.149262i
\(438\) −8.14459 + 11.2101i −0.389164 + 0.535638i
\(439\) 1.48913 0.0710721 0.0355360 0.999368i \(-0.488686\pi\)
0.0355360 + 0.999368i \(0.488686\pi\)
\(440\) 0 0
\(441\) 16.8614 0.802924
\(442\) 0 0
\(443\) −14.3525 4.66341i −0.681908 0.221565i −0.0524777 0.998622i \(-0.516712\pi\)
−0.629431 + 0.777057i \(0.716712\pi\)
\(444\) −11.8149 36.3624i −0.560708 1.72568i
\(445\) 6.52535 7.28039i 0.309331 0.345124i
\(446\) −4.85410 + 3.52671i −0.229848 + 0.166995i
\(447\) 27.5830 8.96224i 1.30463 0.423900i
\(448\) 11.1102 + 3.60991i 0.524906 + 0.170552i
\(449\) −17.6862 12.8498i −0.834666 0.606420i 0.0862097 0.996277i \(-0.472524\pi\)
−0.920875 + 0.389857i \(0.872524\pi\)
\(450\) 5.48913 + 12.1793i 0.258760 + 0.574136i
\(451\) 0 0
\(452\) 22.0742i 1.03828i
\(453\) 32.9896 45.4064i 1.54999 2.13338i
\(454\) 2.39992 7.38620i 0.112634 0.346652i
\(455\) 0 0
\(456\) 21.8259 15.8574i 1.02209 0.742592i
\(457\) −12.2169 16.8151i −0.571482 0.786577i 0.421247 0.906946i \(-0.361592\pi\)
−0.992729 + 0.120368i \(0.961592\pi\)
\(458\) −15.3507 + 4.98775i −0.717292 + 0.233062i
\(459\) 1.46615 4.51235i 0.0684340 0.210618i
\(460\) 3.13445 7.08345i 0.146145 0.330267i
\(461\) −32.2337 −1.50127 −0.750636 0.660716i \(-0.770253\pi\)
−0.750636 + 0.660716i \(0.770253\pi\)
\(462\) 0 0
\(463\) 20.1398i 0.935976i −0.883735 0.467988i \(-0.844979\pi\)
0.883735 0.467988i \(-0.155021\pi\)
\(464\) −1.39379 1.01264i −0.0647049 0.0470108i
\(465\) 13.3204 + 1.36938i 0.617717 + 0.0635034i
\(466\) −4.16837 12.8289i −0.193096 0.594288i
\(467\) −2.58853 3.56280i −0.119783 0.164867i 0.744915 0.667159i \(-0.232490\pi\)
−0.864698 + 0.502293i \(0.832490\pi\)
\(468\) 0 0
\(469\) 0.690248 + 2.12436i 0.0318727 + 0.0980940i
\(470\) 1.20176 11.6899i 0.0554332 0.539215i
\(471\) −11.0251 8.01017i −0.508008 0.369089i
\(472\) 4.34896i 0.200177i
\(473\) 0 0
\(474\) −25.4891 −1.17075
\(475\) 19.5817 + 4.06913i 0.898469 + 0.186705i
\(476\) 7.41641 22.8254i 0.339930 1.04620i
\(477\) −10.1642 + 3.30254i −0.465386 + 0.151213i
\(478\) 1.51604 + 2.08665i 0.0693420 + 0.0954411i
\(479\) 14.1490 10.2798i 0.646484 0.469698i −0.215587 0.976485i \(-0.569167\pi\)
0.862072 + 0.506786i \(0.169167\pi\)
\(480\) −16.5499 28.5151i −0.755395 1.30153i
\(481\) 0 0
\(482\) −2.44743 + 3.36860i −0.111477 + 0.153435i
\(483\) 22.0742i 1.00441i
\(484\) 0 0
\(485\) −1.93070 8.98266i −0.0876687 0.407882i
\(486\) 14.3381 + 10.4172i 0.650387 + 0.472534i
\(487\) −21.6071 7.02057i −0.979111 0.318132i −0.224622 0.974446i \(-0.572115\pi\)
−0.754488 + 0.656313i \(0.772115\pi\)
\(488\) 27.3024 8.87110i 1.23592 0.401576i
\(489\) −7.07450 + 5.13992i −0.319920 + 0.232435i
\(490\) 6.59628 + 5.91219i 0.297990 + 0.267085i
\(491\) 9.11264 + 28.0458i 0.411248 + 1.26569i 0.915564 + 0.402172i \(0.131744\pi\)
−0.504317 + 0.863519i \(0.668256\pi\)
\(492\) −9.04212 2.93796i −0.407650 0.132454i
\(493\) 8.14459 11.2101i 0.366814 0.504876i
\(494\) 0 0
\(495\) 0 0
\(496\) −1.48913 −0.0668637
\(497\) −14.4909 + 19.9451i −0.650008 + 0.894659i
\(498\) −12.6172 4.09957i −0.565390 0.183706i
\(499\) 6.18034 + 19.0211i 0.276670 + 0.851503i 0.988773 + 0.149427i \(0.0477430\pi\)
−0.712103 + 0.702075i \(0.752257\pi\)
\(500\) 4.64137 14.6237i 0.207568 0.653991i
\(501\) 45.6831 33.1907i 2.04097 1.48285i
\(502\) −3.67951 + 1.19554i −0.164224 + 0.0533597i
\(503\) 0.280518 + 0.0911457i 0.0125077 + 0.00406399i 0.315264 0.949004i \(-0.397907\pi\)
−0.302756 + 0.953068i \(0.597907\pi\)
\(504\) −25.2510 18.3459i −1.12477 0.817192i
\(505\) −13.1168 + 2.81929i −0.583692 + 0.125457i
\(506\) 0 0
\(507\) 32.8164i 1.45743i
\(508\) −9.42272 + 12.9693i −0.418066 + 0.575418i
\(509\) −8.76752 + 26.9836i −0.388613 + 1.19603i 0.545212 + 0.838299i \(0.316449\pi\)
−0.933825 + 0.357730i \(0.883551\pi\)
\(510\) 19.5277 11.3337i 0.864701 0.501863i
\(511\) 19.4164 14.1068i 0.858931 0.624050i
\(512\) 4.12671 + 5.67993i 0.182377 + 0.251020i
\(513\) −3.57507 + 1.16161i −0.157843 + 0.0512864i
\(514\) −5.86460 + 18.0494i −0.258677 + 0.796124i
\(515\) 9.40336 21.2503i 0.414362 0.936402i
\(516\) −12.0000 −0.528271
\(517\) 0 0
\(518\) 30.2921i 1.33096i
\(519\) −3.83843 2.78878i −0.168488 0.122414i
\(520\) 0 0
\(521\) 5.74956 + 17.6953i 0.251893 + 0.775246i 0.994426 + 0.105437i \(0.0336242\pi\)
−0.742533 + 0.669809i \(0.766376\pi\)
\(522\) −4.31021 5.93249i −0.188653 0.259658i
\(523\) −5.35042 7.36423i −0.233958 0.322015i 0.675855 0.737035i \(-0.263775\pi\)
−0.909812 + 0.415020i \(0.863775\pi\)
\(524\) 3.70820 + 11.4127i 0.161994 + 0.498565i
\(525\) −4.76818 43.4620i −0.208100 1.89684i
\(526\) −9.07065 6.59021i −0.395499 0.287347i
\(527\) 11.9769i 0.521721i
\(528\) 0 0
\(529\) 16.6277 0.722944
\(530\) −5.13427 2.27194i −0.223019 0.0986866i
\(531\) −1.69623 + 5.22047i −0.0736102 + 0.226549i
\(532\) −18.0842 + 5.87592i −0.784051 + 0.254754i
\(533\) 0 0
\(534\) −7.07450 + 5.13992i −0.306144 + 0.222426i
\(535\) −12.8283 + 7.44542i −0.554617 + 0.321893i
\(536\) 0.532379 1.63849i 0.0229953 0.0707721i
\(537\) 23.5347 32.3927i 1.01560 1.39785i
\(538\) 9.10268i 0.392445i
\(539\) 0 0
\(540\) 0.605969 + 2.81929i 0.0260768 + 0.121323i
\(541\) 0.189058 + 0.137358i 0.00812822 + 0.00590550i 0.591842 0.806054i \(-0.298401\pi\)
−0.583714 + 0.811960i \(0.698401\pi\)
\(542\) 7.15015 + 2.32322i 0.307125 + 0.0997910i
\(543\) −16.5250 + 5.36930i −0.709156 + 0.230419i
\(544\) −23.8572 + 17.3333i −1.02287 + 0.743158i
\(545\) −14.9244 + 16.6512i −0.639289 + 0.713261i
\(546\) 0 0
\(547\) 8.65717 + 2.81288i 0.370154 + 0.120270i 0.488186 0.872739i \(-0.337659\pi\)
−0.118032 + 0.993010i \(0.537659\pi\)
\(548\) 1.79824 2.47506i 0.0768168 0.105729i
\(549\) −36.2337 −1.54642
\(550\) 0 0
\(551\) −10.9783 −0.467689
\(552\) −10.0074 + 13.7740i −0.425942 + 0.586259i
\(553\) 41.9877 + 13.6426i 1.78550 + 0.580143i
\(554\) −2.01197 6.19221i −0.0854805 0.263082i
\(555\) −41.5813 + 46.3927i −1.76503 + 1.96926i
\(556\) 20.2430 14.7074i 0.858495 0.623733i
\(557\) 30.5970 9.94157i 1.29644 0.421238i 0.422096 0.906551i \(-0.361295\pi\)
0.874340 + 0.485314i \(0.161295\pi\)
\(558\) −6.02808 1.95864i −0.255189 0.0829159i
\(559\) 0 0
\(560\) 1.02175 + 4.75372i 0.0431768 + 0.200881i
\(561\) 0 0
\(562\) 18.6101i 0.785021i
\(563\) −7.21320 + 9.92812i −0.304000 + 0.418420i −0.933498 0.358582i \(-0.883261\pi\)
0.629498 + 0.777002i \(0.283261\pi\)
\(564\) 7.10067 21.8536i 0.298992 0.920203i
\(565\) 31.1090 18.0553i 1.30876 0.759593i
\(566\) 3.04701 2.21378i 0.128075 0.0930522i
\(567\) −15.7691 21.7043i −0.662239 0.911494i
\(568\) 18.0842 5.87592i 0.758798 0.246548i
\(569\) 11.9727 36.8483i 0.501923 1.54476i −0.303960 0.952685i \(-0.598309\pi\)
0.805883 0.592075i \(-0.201691\pi\)
\(570\) −16.3585 7.23871i −0.685183 0.303196i
\(571\) −21.4891 −0.899292 −0.449646 0.893207i \(-0.648450\pi\)
−0.449646 + 0.893207i \(0.648450\pi\)
\(572\) 0 0
\(573\) 34.4010i 1.43712i
\(574\) −6.09402 4.42757i −0.254360 0.184803i
\(575\) −12.5464 + 1.37646i −0.523221 + 0.0574022i
\(576\) 3.51423 + 10.8157i 0.146426 + 0.450653i
\(577\) 18.7043 + 25.7443i 0.778672 + 1.07175i 0.995427 + 0.0955239i \(0.0304526\pi\)
−0.216755 + 0.976226i \(0.569547\pi\)
\(578\) −3.95334 5.44131i −0.164437 0.226328i
\(579\) −18.2253 56.0916i −0.757417 2.33109i
\(580\) −0.861244 + 8.37758i −0.0357612 + 0.347860i
\(581\) 18.5898 + 13.5063i 0.771235 + 0.560335i
\(582\) 8.21782i 0.340640i
\(583\) 0 0
\(584\) −18.5109 −0.765985
\(585\) 0 0
\(586\) −2.47214 + 7.60845i −0.102123 + 0.314302i
\(587\) −26.6370 + 8.65488i −1.09943 + 0.357225i −0.801881 0.597483i \(-0.796167\pi\)
−0.297544 + 0.954708i \(0.596167\pi\)
\(588\) 10.1807 + 14.0126i 0.419847 + 0.577869i
\(589\) −7.67686 + 5.57757i −0.316320 + 0.229820i
\(590\) −2.49405 + 1.44752i −0.102678 + 0.0595935i
\(591\) 1.46615 4.51235i 0.0603094 0.185613i
\(592\) 4.07230 5.60503i 0.167370 0.230365i
\(593\) 43.5586i 1.78874i 0.447333 + 0.894368i \(0.352374\pi\)
−0.447333 + 0.894368i \(0.647626\pi\)
\(594\) 0 0
\(595\) −38.2337 + 8.21782i −1.56743 + 0.336898i
\(596\) 12.7552 + 9.26721i 0.522474 + 0.379600i
\(597\) 19.2063 + 6.24051i 0.786062 + 0.255407i
\(598\) 0 0
\(599\) −28.2980 + 20.5597i −1.15622 + 0.840047i −0.989296 0.145922i \(-0.953385\pi\)
−0.166929 + 0.985969i \(0.553385\pi\)
\(600\) −16.7283 + 29.2813i −0.682929 + 1.19540i
\(601\) 9.41494 + 28.9762i 0.384043 + 1.18196i 0.937172 + 0.348868i \(0.113434\pi\)
−0.553129 + 0.833096i \(0.686566\pi\)
\(602\) −9.04212 2.93796i −0.368529 0.119742i
\(603\) −1.27813 + 1.75919i −0.0520494 + 0.0716398i
\(604\) 30.5109 1.24147
\(605\) 0 0
\(606\) 12.0000 0.487467
\(607\) −2.03615 + 2.80252i −0.0826447 + 0.113751i −0.848338 0.529456i \(-0.822396\pi\)
0.765693 + 0.643206i \(0.222396\pi\)
\(608\) 22.2203 + 7.21983i 0.901154 + 0.292803i
\(609\) 7.41641 + 22.8254i 0.300528 + 0.924930i
\(610\) −14.1748 12.7048i −0.573922 0.514401i
\(611\) 0 0
\(612\) 22.2203 7.21983i 0.898204 0.291844i
\(613\) −41.9877 13.6426i −1.69587 0.551020i −0.707985 0.706228i \(-0.750395\pi\)
−0.987882 + 0.155208i \(0.950395\pi\)
\(614\) −18.0226 13.0942i −0.727334 0.528439i
\(615\) 3.25544 + 15.1460i 0.131272 + 0.610747i
\(616\) 0 0
\(617\) 3.75906i 0.151334i 0.997133 + 0.0756669i \(0.0241086\pi\)
−0.997133 + 0.0756669i \(0.975891\pi\)
\(618\) −12.2169 + 16.8151i −0.491435 + 0.676403i
\(619\) 0.963158 2.96429i 0.0387126 0.119145i −0.929833 0.367983i \(-0.880049\pi\)
0.968545 + 0.248838i \(0.0800486\pi\)
\(620\) 3.65403 + 6.29583i 0.146749 + 0.252846i
\(621\) 1.91922 1.39439i 0.0770155 0.0559550i
\(622\) −8.14459 11.2101i −0.326568 0.449483i
\(623\) 14.4047 4.68038i 0.577113 0.187515i
\(624\) 0 0
\(625\) −24.4054 + 5.42022i −0.976214 + 0.216809i
\(626\) −25.2119 −1.00767
\(627\) 0 0
\(628\) 7.40830i 0.295624i
\(629\) 45.0807 + 32.7530i 1.79749 + 1.30595i
\(630\) −2.11644 + 20.5873i −0.0843212 + 0.820217i
\(631\) −5.13153 15.7932i −0.204283 0.628718i −0.999742 0.0227109i \(-0.992770\pi\)
0.795459 0.606007i \(-0.207230\pi\)
\(632\) −20.0147 27.5479i −0.796144 1.09580i
\(633\) 31.8849 + 43.8858i 1.26731 + 1.74430i
\(634\) 0.861558 + 2.65160i 0.0342169 + 0.105309i
\(635\) 25.9846 + 2.67131i 1.03117 + 0.106008i
\(636\) −8.88159 6.45285i −0.352178 0.255872i
\(637\) 0 0
\(638\) 0 0
\(639\) −24.0000 −0.949425
\(640\) 8.15270 18.4240i 0.322264 0.728273i
\(641\) −6.06530 + 18.6671i −0.239565 + 0.737305i 0.756918 + 0.653510i \(0.226704\pi\)
−0.996483 + 0.0837952i \(0.973296\pi\)
\(642\) 12.6172 4.09957i 0.497961 0.161797i
\(643\) −23.0145 31.6768i −0.907605 1.24921i −0.967978 0.251035i \(-0.919229\pi\)
0.0603727 0.998176i \(-0.480771\pi\)
\(644\) 9.70820 7.05342i 0.382557 0.277944i
\(645\) 9.81524 + 16.9115i 0.386475 + 0.665889i
\(646\) −4.94427 + 15.2169i −0.194530 + 0.598701i
\(647\) −24.1193 + 33.1974i −0.948228 + 1.30512i 0.00408232 + 0.999992i \(0.498701\pi\)
−0.952310 + 0.305132i \(0.901299\pi\)
\(648\) 20.6920i 0.812860i
\(649\) 0 0
\(650\) 0 0
\(651\) 16.7827 + 12.1933i 0.657766 + 0.477895i
\(652\) −4.52106 1.46898i −0.177058 0.0575297i
\(653\) −24.3406 + 7.90874i −0.952522 + 0.309493i −0.743740 0.668469i \(-0.766950\pi\)
−0.208782 + 0.977962i \(0.566950\pi\)
\(654\) 16.1803 11.7557i 0.632701 0.459684i
\(655\) 13.0507 14.5608i 0.509933 0.568937i
\(656\) −0.532379 1.63849i −0.0207859 0.0639724i
\(657\) 22.2203 + 7.21983i 0.866898 + 0.281672i
\(658\) 10.7008 14.7285i 0.417162 0.574175i
\(659\) −32.7446 −1.27555 −0.637774 0.770224i \(-0.720144\pi\)
−0.637774 + 0.770224i \(0.720144\pi\)
\(660\) 0 0
\(661\) 35.3505 1.37498 0.687488 0.726196i \(-0.258713\pi\)
0.687488 + 0.726196i \(0.258713\pi\)
\(662\) −1.45150 + 1.99781i −0.0564140 + 0.0776473i
\(663\) 0 0
\(664\) −5.47665 16.8554i −0.212535 0.654116i
\(665\) 23.0726 + 20.6798i 0.894718 + 0.801928i
\(666\) 23.8572 17.3333i 0.924448 0.671651i
\(667\) 6.58911 2.14093i 0.255131 0.0828972i
\(668\) 29.1944 + 9.48584i 1.12957 + 0.367018i
\(669\) 15.4659 + 11.2366i 0.597944 + 0.434432i
\(670\) −1.11684 + 0.240051i −0.0431474 + 0.00927397i
\(671\) 0 0
\(672\) 51.0767i 1.97033i
\(673\) −0.758020 + 1.04332i −0.0292195 + 0.0402172i −0.823377 0.567495i \(-0.807913\pi\)
0.794157 + 0.607712i \(0.207913\pi\)
\(674\) 3.07673 9.46920i 0.118511 0.364740i
\(675\) 3.47755 3.15999i 0.133851 0.121628i
\(676\) −14.4326 + 10.4859i −0.555099 + 0.403303i
\(677\) 25.5385 + 35.1508i 0.981526 + 1.35095i 0.936004 + 0.351991i \(0.114495\pi\)
0.0455220 + 0.998963i \(0.485505\pi\)
\(678\) −30.5970 + 9.94157i −1.17507 + 0.381804i
\(679\) 4.39845 13.5370i 0.168797 0.519504i
\(680\) 27.5828 + 12.2055i 1.05775 + 0.468059i
\(681\) −24.7446 −0.948214
\(682\) 0 0
\(683\) 44.4434i 1.70058i 0.526314 + 0.850290i \(0.323573\pi\)
−0.526314 + 0.850290i \(0.676427\pi\)
\(684\) −14.9756 10.8804i −0.572607 0.416023i
\(685\) −4.95892 0.509794i −0.189471 0.0194782i
\(686\) −1.69623 5.22047i −0.0647625 0.199318i
\(687\) 30.2277 + 41.6049i 1.15326 + 1.58733i
\(688\) −1.27813 1.75919i −0.0487282 0.0670686i
\(689\) 0 0
\(690\) 11.2300 + 1.15448i 0.427519 + 0.0439504i
\(691\) −13.0564 9.48603i −0.496689 0.360865i 0.311062 0.950390i \(-0.399315\pi\)
−0.807751 + 0.589524i \(0.799315\pi\)
\(692\) 2.57924i 0.0980480i
\(693\) 0 0
\(694\) 23.2119 0.881113
\(695\) −37.2845 16.4985i −1.41428 0.625826i
\(696\) 5.72017 17.6049i 0.216823 0.667312i
\(697\) 13.1782 4.28187i 0.499161 0.162187i
\(698\) 3.48765 + 4.80033i 0.132009 + 0.181695i
\(699\) −34.7701 + 25.2620i −1.31513 + 0.955496i
\(700\) 17.5909 15.9845i 0.664875 0.604159i
\(701\) −10.9667 + 33.7522i −0.414208 + 1.27480i 0.498749 + 0.866746i \(0.333793\pi\)
−0.912957 + 0.408055i \(0.866207\pi\)
\(702\) 0 0
\(703\) 44.1485i 1.66509i
\(704\) 0 0
\(705\) −36.6060 + 7.86797i −1.37866 + 0.296325i
\(706\) −13.9248 10.1169i −0.524065 0.380755i
\(707\) −19.7673 6.42280i −0.743427 0.241554i
\(708\) −5.36261 + 1.74242i −0.201539 + 0.0654841i
\(709\) 33.2642 24.1679i 1.24926 0.907644i 0.251085 0.967965i \(-0.419213\pi\)
0.998179 + 0.0603214i \(0.0192126\pi\)
\(710\) −9.38894 8.41522i −0.352361 0.315818i
\(711\) 13.2810 + 40.8747i 0.498077 + 1.53292i
\(712\) −11.1102 3.60991i −0.416371 0.135287i
\(713\) 3.51992 4.84475i 0.131822 0.181437i
\(714\) 34.9783 1.30903
\(715\) 0 0
\(716\) 21.7663 0.813445
\(717\) 4.83032 6.64836i 0.180391 0.248288i
\(718\) 4.90601 + 1.59406i 0.183091 + 0.0594897i
\(719\) −6.59768 20.3056i −0.246052 0.757270i −0.995462 0.0951633i \(-0.969663\pi\)
0.749410 0.662106i \(-0.230337\pi\)
\(720\) −3.15925 + 3.52481i −0.117738 + 0.131362i
\(721\) 29.1246 21.1603i 1.08466 0.788050i
\(722\) −2.26053 + 0.734490i −0.0841282 + 0.0273349i
\(723\) 12.6172 + 4.09957i 0.469238 + 0.152465i
\(724\) −7.64167 5.55200i −0.284001 0.206338i
\(725\) 12.5109 5.63858i 0.464642 0.209412i
\(726\) 0 0
\(727\) 15.7908i 0.585650i 0.956166 + 0.292825i \(0.0945953\pi\)
−0.956166 + 0.292825i \(0.905405\pi\)
\(728\) 0 0
\(729\) 10.2698 31.6071i 0.380362 1.17063i
\(730\) 6.16121 + 10.6156i 0.228037 + 0.392903i
\(731\) 14.1490 10.2798i 0.523320 0.380214i
\(732\) −21.8775 30.1118i −0.808616 1.11296i
\(733\) −28.8095 + 9.36076i −1.06410 + 0.345748i −0.788188 0.615435i \(-0.788980\pi\)
−0.275914 + 0.961182i \(0.588980\pi\)
\(734\) 5.87804 18.0908i 0.216963 0.667742i
\(735\) 11.4206 25.8090i 0.421255 0.951980i
\(736\) −14.7446 −0.543492
\(737\) 0 0
\(738\) 7.33296i 0.269930i
\(739\) 0.602364 + 0.437643i 0.0221583 + 0.0160990i 0.598809 0.800892i \(-0.295641\pi\)
−0.576651 + 0.816991i \(0.695641\pi\)
\(740\) −33.6900 3.46345i −1.23847 0.127319i
\(741\) 0 0
\(742\) −5.11251 7.03677i −0.187686 0.258328i
\(743\) 12.8015 + 17.6198i 0.469643 + 0.646408i 0.976473 0.215638i \(-0.0691830\pi\)
−0.506831 + 0.862046i \(0.669183\pi\)
\(744\) −4.94427 15.2169i −0.181266 0.557879i
\(745\) 2.62722 25.5558i 0.0962540 0.936291i
\(746\) −5.26741 3.82700i −0.192854 0.140116i
\(747\) 22.3692i 0.818446i
\(748\) 0 0
\(749\) −22.9783 −0.839607
\(750\) 22.3602 0.152689i 0.816478 0.00557540i
\(751\) 6.68333 20.5692i 0.243878 0.750580i −0.751941 0.659231i \(-0.770882\pi\)
0.995819 0.0913493i \(-0.0291180\pi\)
\(752\) 3.96002 1.28669i 0.144407 0.0469207i
\(753\) 7.24547 + 9.97254i 0.264040 + 0.363420i
\(754\) 0 0
\(755\) −24.9560 42.9987i −0.908240 1.56488i
\(756\) −1.38050 + 4.24873i −0.0502081 + 0.154525i
\(757\) 23.3936 32.1985i 0.850253 1.17027i −0.133554 0.991042i \(-0.542639\pi\)
0.983807 0.179232i \(-0.0573612\pi\)
\(758\) 5.04868i 0.183376i
\(759\) 0 0
\(760\) −5.02175 23.3639i −0.182158 0.847496i
\(761\) −17.1960 12.4936i −0.623355 0.452894i 0.230737 0.973016i \(-0.425886\pi\)
−0.854092 + 0.520122i \(0.825886\pi\)
\(762\) −22.2203 7.21983i −0.804958 0.261547i
\(763\) −32.9456 + 10.7047i −1.19271 + 0.387535i
\(764\) 15.1295 10.9922i 0.547365 0.397684i
\(765\) −28.3497 25.4095i −1.02498 0.918684i
\(766\) 1.39394 + 4.29010i 0.0503650 + 0.155007i
\(767\) 0 0
\(768\) −20.5994 + 28.3526i −0.743316 + 1.02309i
\(769\) 51.2119 1.84675 0.923375 0.383900i \(-0.125419\pi\)
0.923375 + 0.383900i \(0.125419\pi\)
\(770\) 0 0
\(771\) 60.4674 2.17768
\(772\) 18.8454 25.9385i 0.678262 0.933548i
\(773\) −29.3705 9.54305i −1.05638 0.343240i −0.271213 0.962519i \(-0.587425\pi\)
−0.785170 + 0.619280i \(0.787425\pi\)
\(774\) −2.86009 8.80244i −0.102804 0.316397i
\(775\) 5.88388 10.2992i 0.211355 0.369957i
\(776\) −8.88159 + 6.45285i −0.318831 + 0.231644i
\(777\) −91.7910 + 29.8247i −3.29298 + 1.06996i
\(778\) −7.43067 2.41437i −0.266402 0.0865593i
\(779\) −8.88159 6.45285i −0.318216 0.231197i
\(780\) 0 0
\(781\) 0 0
\(782\) 10.0974i 0.361081i
\(783\) −1.51604 + 2.08665i −0.0541788 + 0.0745708i
\(784\) −0.969879 + 2.98498i −0.0346385 + 0.106606i
\(785\) −10.4404 + 6.05952i −0.372636 + 0.216274i
\(786\) −14.1490 + 10.2798i −0.504678 + 0.366670i
\(787\) 2.79417 + 3.84584i 0.0996013 + 0.137089i 0.855909 0.517127i \(-0.172999\pi\)
−0.756307 + 0.654216i \(0.772999\pi\)
\(788\) 2.45300 0.797029i 0.0873846 0.0283930i
\(789\) −11.0390 + 33.9744i −0.392997 + 1.20952i
\(790\) −9.13648 + 20.6472i −0.325061 + 0.734595i
\(791\) 55.7228 1.98128
\(792\) 0 0
\(793\) 0 0
\(794\) 14.9756 + 10.8804i 0.531465 + 0.386132i
\(795\) −1.82936 + 17.7948i −0.0648808 + 0.631115i
\(796\) 3.39247 + 10.4409i 0.120243 + 0.370069i
\(797\) −18.3576 25.2671i −0.650260 0.895006i 0.348851 0.937178i \(-0.386572\pi\)
−0.999110 + 0.0421727i \(0.986572\pi\)
\(798\) −16.2892 22.4201i −0.576631 0.793664i
\(799\) 10.3487 + 31.8501i 0.366111 + 1.12677i
\(800\) −29.0306 + 3.18492i −1.02639 + 0.112604i
\(801\) 11.9286 + 8.66664i 0.421476 + 0.306221i
\(802\) 9.10268i 0.321427i
\(803\) 0 0
\(804\) −2.23369 −0.0787761
\(805\) −17.8810 7.91242i −0.630223 0.278876i
\(806\) 0 0
\(807\) 27.5830 8.96224i 0.970966 0.315486i
\(808\) 9.42272 + 12.9693i 0.331490 + 0.456257i
\(809\) −17.1960 + 12.4936i −0.604580 + 0.439253i −0.847501 0.530793i \(-0.821894\pi\)
0.242922 + 0.970046i \(0.421894\pi\)
\(810\) 11.8665 6.88719i 0.416946 0.241991i
\(811\) 10.5788 32.5582i 0.371472 1.14327i −0.574357 0.818605i \(-0.694748\pi\)
0.945828 0.324667i \(-0.105252\pi\)
\(812\) −7.66877 + 10.5552i −0.269121 + 0.370413i
\(813\) 23.9538i 0.840095i
\(814\) 0 0
\(815\) 1.62772 + 7.57301i 0.0570165 + 0.265271i
\(816\) 6.47214 + 4.70228i 0.226570 + 0.164613i
\(817\) −13.1782 4.28187i −0.461048 0.149803i
\(818\) −3.39899 + 1.10440i −0.118843 + 0.0386144i
\(819\) 0 0
\(820\) −5.62098 + 6.27138i −0.196293 + 0.219006i
\(821\) −5.56231 17.1190i −0.194126 0.597458i −0.999986 0.00535152i \(-0.998297\pi\)
0.805860 0.592106i \(-0.201703\pi\)
\(822\) 4.24054 + 1.37784i 0.147906 + 0.0480575i
\(823\) −19.7003 + 27.1151i −0.686708 + 0.945173i −0.999990 0.00448737i \(-0.998572\pi\)
0.313282 + 0.949660i \(0.398572\pi\)
\(824\) −27.7663 −0.967285
\(825\) 0 0
\(826\) −4.46738 −0.155440
\(827\) 10.5920 14.5787i 0.368321 0.506950i −0.584123 0.811665i \(-0.698561\pi\)
0.952443 + 0.304715i \(0.0985614\pi\)
\(828\) 11.1102 + 3.60991i 0.386105 + 0.125453i
\(829\) −9.68785 29.8161i −0.336473 1.03556i −0.965992 0.258572i \(-0.916748\pi\)
0.629519 0.776985i \(-0.283252\pi\)
\(830\) −7.84340 + 8.75095i −0.272248 + 0.303750i
\(831\) −16.7827 + 12.1933i −0.582186 + 0.422983i
\(832\) 0 0
\(833\) −24.0079 7.80063i −0.831824 0.270276i
\(834\) 29.5027 + 21.4350i 1.02160 + 0.742233i
\(835\) −10.5109 48.9022i −0.363744 1.69233i
\(836\) 0 0
\(837\) 2.22938i 0.0770588i
\(838\) 10.7008 14.7285i 0.369655 0.508786i
\(839\) −2.19923 + 6.76852i −0.0759257 + 0.233675i −0.981815 0.189839i \(-0.939204\pi\)
0.905890 + 0.423514i \(0.139204\pi\)
\(840\) −45.1843 + 26.2245i −1.55901 + 0.904831i
\(841\) 17.3675 12.6182i 0.598878 0.435111i
\(842\) 14.6643 + 20.1837i 0.505366 + 0.695576i
\(843\) 56.3924 18.3230i 1.94226 0.631078i
\(844\) −9.11264 + 28.0458i −0.313670 + 0.965377i
\(845\) 26.5826 + 11.7629i 0.914469 + 0.404656i
\(846\) 17.7228 0.609323
\(847\) 0 0
\(848\) 1.98933i 0.0683140i
\(849\) −9.70820 7.05342i −0.333185 0.242073i
\(850\) −2.18110 19.8807i −0.0748109 0.681903i
\(851\) 8.60965 + 26.4978i 0.295135 + 0.908332i
\(852\) −14.4909 19.9451i −0.496452 0.683307i
\(853\) 14.4909 + 19.9451i 0.496161 + 0.682906i 0.981509 0.191414i \(-0.0613074\pi\)
−0.485349 + 0.874321i \(0.661307\pi\)
\(854\) −9.11264 28.0458i −0.311828 0.959708i
\(855\) −3.08456 + 30.0045i −0.105490 + 1.02613i
\(856\) 14.3381 + 10.4172i 0.490065 + 0.356053i
\(857\) 10.6873i 0.365070i 0.983199 + 0.182535i \(0.0584303\pi\)
−0.983199 + 0.182535i \(0.941570\pi\)
\(858\) 0 0
\(859\) −11.1168 −0.379302 −0.189651 0.981852i \(-0.560736\pi\)
−0.189651 + 0.981852i \(0.560736\pi\)
\(860\) −4.30135 + 9.72048i −0.146675 + 0.331466i
\(861\) −7.41641 + 22.8254i −0.252751 + 0.777886i
\(862\) 23.9034 7.76670i 0.814155 0.264535i
\(863\) −13.9063 19.1404i −0.473376 0.651546i 0.503839 0.863797i \(-0.331920\pi\)
−0.977215 + 0.212252i \(0.931920\pi\)
\(864\) 4.44080 3.22643i 0.151079 0.109765i
\(865\) −3.63490 + 2.10965i −0.123590 + 0.0717304i
\(866\) −5.02993 + 15.4805i −0.170924 + 0.526050i
\(867\) −12.5959 + 17.3368i −0.427779 + 0.588787i
\(868\) 11.2772i 0.382772i
\(869\) 0 0
\(870\) −12.0000 + 2.57924i −0.406838 + 0.0874444i
\(871\) 0 0
\(872\) 25.4105 + 8.25636i 0.860507 + 0.279596i
\(873\) 13.1782 4.28187i 0.446015 0.144919i
\(874\) −6.47214 + 4.70228i −0.218923 + 0.159057i
\(875\) −36.9151 11.7164i −1.24796 0.396086i
\(876\) 7.41641 + 22.8254i 0.250577 + 0.771197i
\(877\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(878\) −0.693478 + 0.954490i −0.0234037 + 0.0322125i
\(879\) 25.4891 0.859727
\(880\) 0 0
\(881\) 21.8614 0.736530 0.368265 0.929721i \(-0.379952\pi\)
0.368265 + 0.929721i \(0.379952\pi\)
\(882\) −7.85227 + 10.8077i −0.264400 + 0.363915i
\(883\) 23.0619 + 7.49326i 0.776095 + 0.252168i 0.670172 0.742206i \(-0.266220\pi\)
0.105923 + 0.994374i \(0.466220\pi\)
\(884\) 0 0
\(885\) 6.84185 + 6.13228i 0.229986 + 0.206135i
\(886\) 9.67301 7.02786i 0.324971 0.236105i
\(887\) −13.4587 + 4.37301i −0.451900 + 0.146831i −0.526120 0.850411i \(-0.676354\pi\)
0.0742192 + 0.997242i \(0.476354\pi\)
\(888\) 70.7971 + 23.0034i 2.37580 + 0.771943i
\(889\) 32.7388 + 23.7861i 1.09802 + 0.797761i
\(890\) 1.62772 + 7.57301i 0.0545613 + 0.253848i
\(891\) 0 0
\(892\) 10.3923i 0.347960i
\(893\) 15.5957 21.4656i 0.521890 0.718320i
\(894\) −7.10067 + 21.8536i −0.237482 + 0.730894i
\(895\) −17.8035 30.6750i −0.595104 1.02535i
\(896\) 25.2510 18.3459i 0.843576 0.612894i
\(897\) 0 0
\(898\) 16.4728 5.35233i 0.549704 0.178610i
\(899\) −2.01197 + 6.19221i −0.0671030 + 0.206522i
\(900\) 22.6546 + 4.70770i 0.755154 + 0.156923i
\(901\) 16.0000 0.533037
\(902\) 0 0
\(903\) 30.2921i 1.00806i
\(904\) −34.7701 25.2620i −1.15644 0.840201i
\(905\) −1.57397 + 15.3105i −0.0523207 + 0.508939i
\(906\) 13.7412 + 42.2910i 0.456520 + 1.40502i
\(907\) 11.6968 + 16.0992i 0.388385 + 0.534566i 0.957782 0.287497i \(-0.0928230\pi\)
−0.569396 + 0.822063i \(0.692823\pi\)
\(908\) −7.90668 10.8826i −0.262392 0.361152i
\(909\) −6.25255 19.2434i −0.207384 0.638263i
\(910\) 0 0
\(911\) 24.6838 + 17.9338i 0.817811 + 0.594175i 0.916085 0.400985i \(-0.131332\pi\)
−0.0982734 + 0.995159i \(0.531332\pi\)
\(912\) 6.33830i 0.209882i
\(913\) 0 0
\(914\) 16.4674 0.544692
\(915\) −24.5419 + 55.4613i −0.811329 + 1.83349i
\(916\) −8.63903 + 26.5882i −0.285442 + 0.878499i
\(917\) 28.8095 9.36076i 0.951372 0.309120i
\(918\) 2.20952 + 3.04114i 0.0729249 + 0.100373i
\(919\) 5.04316 3.66407i 0.166358 0.120867i −0.501491 0.865163i \(-0.667215\pi\)
0.667850 + 0.744296i \(0.267215\pi\)
\(920\) 7.57036 + 13.0436i 0.249587 + 0.430034i
\(921\) −21.9335 + 67.5043i −0.722733 + 2.22434i
\(922\) 15.0111 20.6609i 0.494363 0.680432i
\(923\) 0 0
\(924\) 0 0
\(925\) 22.6753 + 50.3118i 0.745558 + 1.65424i
\(926\) 12.9091 + 9.37900i 0.424219 + 0.308213i
\(927\) 33.3305 + 10.8297i 1.09472 + 0.355695i
\(928\) 15.2463 4.95382i 0.500484 0.162617i
\(929\) −42.8603 + 31.1398i −1.40620 + 1.02166i −0.412340 + 0.911030i \(0.635288\pi\)
−0.993861 + 0.110635i \(0.964712\pi\)
\(930\) −7.08095 + 7.90028i −0.232194 + 0.259061i
\(931\) 6.18034 + 19.0211i 0.202552 + 0.623392i
\(932\) −22.2203 7.21983i −0.727852 0.236493i
\(933\) −25.9498 + 35.7169i −0.849559 + 1.16932i
\(934\) 3.48913 0.114168
\(935\) 0 0
\(936\) 0 0
\(937\) 15.2490 20.9884i 0.498162 0.685661i −0.483705 0.875231i \(-0.660709\pi\)
0.981867 + 0.189570i \(0.0607093\pi\)
\(938\) −1.68311 0.546874i −0.0549553 0.0178561i
\(939\) 24.8230 + 76.3972i 0.810067 + 2.49313i
\(940\) −15.1571 13.5852i −0.494370 0.443099i
\(941\) −8.46828 + 6.15257i −0.276058 + 0.200568i −0.717196 0.696871i \(-0.754575\pi\)
0.441138 + 0.897439i \(0.354575\pi\)
\(942\) 10.2686 3.33648i 0.334570 0.108708i
\(943\) 6.58911 + 2.14093i 0.214571 + 0.0697184i
\(944\) −0.826613 0.600569i −0.0269039 0.0195469i
\(945\) 7.11684 1.52967i 0.231511 0.0497602i
\(946\) 0 0
\(947\) 56.1802i 1.82561i −0.408393 0.912806i \(-0.633911\pi\)
0.408393 0.912806i \(-0.366089\pi\)
\(948\) −25.9498 + 35.7169i −0.842811 + 1.16003i
\(949\) 0 0
\(950\) −11.7273 + 10.6564i −0.380484 + 0.345738i
\(951\) 7.18662 5.22139i 0.233042 0.169315i
\(952\) 27.4659 + 37.8035i 0.890173 + 1.22522i
\(953\) 39.6391 12.8795i 1.28404 0.417209i 0.414037 0.910260i \(-0.364119\pi\)
0.870000 + 0.493051i \(0.164119\pi\)
\(954\) 2.61656 8.05295i 0.0847144 0.260724i
\(955\) −27.8662 12.3309i −0.901728 0.399018i
\(956\) 4.46738 0.144485
\(957\) 0 0
\(958\) 13.8564i 0.447680i
\(959\) −6.24789 4.53936i −0.201755 0.146583i
\(960\) 18.9354 + 1.94662i 0.611136 + 0.0628269i
\(961\) −7.84047 24.1305i −0.252918 0.778402i
\(962\) 0 0
\(963\) −13.1483 18.0970i −0.423697 0.583169i
\(964\) 2.22861 + 6.85896i 0.0717787 + 0.220912i
\(965\) −51.9693 5.34262i −1.67295 0.171985i
\(966\) 14.1490 + 10.2798i 0.455237 + 0.330749i
\(967\) 46.3229i 1.48965i 0.667262 + 0.744823i \(0.267466\pi\)
−0.667262 + 0.744823i \(0.732534\pi\)
\(968\) 0 0
\(969\) 50.9783 1.63766
\(970\) 6.65677 + 2.94565i 0.213736 + 0.0945790i
\(971\) 16.7163 51.4475i 0.536452 1.65103i −0.204040 0.978963i \(-0.565407\pi\)
0.740491 0.672066i \(-0.234593\pi\)
\(972\) 29.1944 9.48584i 0.936411 0.304258i
\(973\) −37.1265 51.1002i −1.19022 1.63820i
\(974\) 14.5623 10.5801i 0.466606 0.339009i
\(975\) 0 0
\(976\) 2.08418 6.41446i 0.0667131 0.205322i
\(977\) 16.0835 22.1371i 0.514558 0.708228i −0.470122 0.882602i \(-0.655790\pi\)
0.984680 + 0.174373i \(0.0557899\pi\)
\(978\) 6.92820i 0.221540i
\(979\) 0 0
\(980\) 15.0000 3.22405i 0.479157 0.102989i
\(981\) −27.2823 19.8218i −0.871058 0.632860i
\(982\) −22.2203 7.21983i −0.709080 0.230394i
\(983\) 7.76340 2.52248i 0.247614 0.0804547i −0.182580 0.983191i \(-0.558445\pi\)
0.430194 + 0.902736i \(0.358445\pi\)
\(984\) 14.9756 10.8804i 0.477405 0.346855i
\(985\) −3.12965 2.80507i −0.0997188 0.0893771i
\(986\) 3.39247 + 10.4409i 0.108038 + 0.332507i
\(987\) −55.1659 17.9245i −1.75595 0.570543i
\(988\) 0 0
\(989\) 8.74456 0.278061
\(990\) 0 0
\(991\) −26.9783 −0.856992 −0.428496 0.903544i \(-0.640956\pi\)
−0.428496 + 0.903544i \(0.640956\pi\)
\(992\) 8.14459 11.2101i 0.258591 0.355920i
\(993\) 7.48288 + 2.43134i 0.237462 + 0.0771561i
\(994\) −6.03591 18.5766i −0.191448 0.589215i
\(995\) 11.9395 13.3210i 0.378507 0.422304i
\(996\) −18.5898 + 13.5063i −0.589040 + 0.427963i
\(997\) 20.9938 6.82131i 0.664882 0.216033i 0.0429172 0.999079i \(-0.486335\pi\)
0.621964 + 0.783046i \(0.286335\pi\)
\(998\) −15.0702 4.89660i −0.477039 0.154999i
\(999\) −8.39135 6.09667i −0.265491 0.192890i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.j.i.444.2 16
5.4 even 2 inner 605.2.j.i.444.3 16
11.2 odd 10 605.2.j.j.269.2 16
11.3 even 5 inner 605.2.j.i.124.3 16
11.4 even 5 inner 605.2.j.i.9.2 16
11.5 even 5 55.2.b.a.34.2 4
11.6 odd 10 605.2.b.c.364.3 4
11.7 odd 10 605.2.j.j.9.3 16
11.8 odd 10 605.2.j.j.124.2 16
11.9 even 5 inner 605.2.j.i.269.3 16
11.10 odd 2 605.2.j.j.444.3 16
33.5 odd 10 495.2.c.a.199.3 4
44.27 odd 10 880.2.b.h.529.1 4
55.4 even 10 inner 605.2.j.i.9.3 16
55.9 even 10 inner 605.2.j.i.269.2 16
55.14 even 10 inner 605.2.j.i.124.2 16
55.17 even 20 3025.2.a.ba.1.2 4
55.19 odd 10 605.2.j.j.124.3 16
55.24 odd 10 605.2.j.j.269.3 16
55.27 odd 20 275.2.a.h.1.3 4
55.28 even 20 3025.2.a.ba.1.3 4
55.29 odd 10 605.2.j.j.9.2 16
55.38 odd 20 275.2.a.h.1.2 4
55.39 odd 10 605.2.b.c.364.2 4
55.49 even 10 55.2.b.a.34.3 yes 4
55.54 odd 2 605.2.j.j.444.2 16
165.38 even 20 2475.2.a.bi.1.3 4
165.104 odd 10 495.2.c.a.199.2 4
165.137 even 20 2475.2.a.bi.1.2 4
220.27 even 20 4400.2.a.cc.1.1 4
220.159 odd 10 880.2.b.h.529.4 4
220.203 even 20 4400.2.a.cc.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.b.a.34.2 4 11.5 even 5
55.2.b.a.34.3 yes 4 55.49 even 10
275.2.a.h.1.2 4 55.38 odd 20
275.2.a.h.1.3 4 55.27 odd 20
495.2.c.a.199.2 4 165.104 odd 10
495.2.c.a.199.3 4 33.5 odd 10
605.2.b.c.364.2 4 55.39 odd 10
605.2.b.c.364.3 4 11.6 odd 10
605.2.j.i.9.2 16 11.4 even 5 inner
605.2.j.i.9.3 16 55.4 even 10 inner
605.2.j.i.124.2 16 55.14 even 10 inner
605.2.j.i.124.3 16 11.3 even 5 inner
605.2.j.i.269.2 16 55.9 even 10 inner
605.2.j.i.269.3 16 11.9 even 5 inner
605.2.j.i.444.2 16 1.1 even 1 trivial
605.2.j.i.444.3 16 5.4 even 2 inner
605.2.j.j.9.2 16 55.29 odd 10
605.2.j.j.9.3 16 11.7 odd 10
605.2.j.j.124.2 16 11.8 odd 10
605.2.j.j.124.3 16 55.19 odd 10
605.2.j.j.269.2 16 11.2 odd 10
605.2.j.j.269.3 16 55.24 odd 10
605.2.j.j.444.2 16 55.54 odd 2
605.2.j.j.444.3 16 11.10 odd 2
880.2.b.h.529.1 4 44.27 odd 10
880.2.b.h.529.4 4 220.159 odd 10
2475.2.a.bi.1.2 4 165.137 even 20
2475.2.a.bi.1.3 4 165.38 even 20
3025.2.a.ba.1.2 4 55.17 even 20
3025.2.a.ba.1.3 4 55.28 even 20
4400.2.a.cc.1.1 4 220.27 even 20
4400.2.a.cc.1.4 4 220.203 even 20