Properties

Label 605.2.j.i.269.2
Level $605$
Weight $2$
Character 605.269
Analytic conductor $4.831$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(9,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.j (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.343361479062744140625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 3 x^{14} - 8 x^{13} + 8 x^{12} + 7 x^{11} + 6 x^{10} + 56 x^{9} - 137 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.2
Root \(-0.144291 + 1.72603i\) of defining polynomial
Character \(\chi\) \(=\) 605.269
Dual form 605.2.j.i.9.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.753510 + 0.244830i) q^{2} +(-1.48377 + 2.04223i) q^{3} +(-1.11020 + 0.806607i) q^{4} +(-1.12244 + 1.93394i) q^{5} +(0.618034 - 1.90211i) q^{6} +(-2.03615 - 2.80252i) q^{7} +(1.57045 - 2.16154i) q^{8} +(-1.04209 - 3.20723i) q^{9} +(0.372281 - 1.73205i) q^{10} -3.46410i q^{12} +(2.22040 + 1.61321i) q^{14} +(-2.28412 - 5.16180i) q^{15} +(0.193976 - 0.596996i) q^{16} +(-4.80158 - 1.56013i) q^{17} +(1.57045 + 2.16154i) q^{18} +(3.23607 + 2.35114i) q^{19} +(-0.313800 - 3.05243i) q^{20} +8.74456 q^{21} +2.52434i q^{23} +(2.08418 + 6.41446i) q^{24} +(-2.48026 - 4.34146i) q^{25} +(0.893769 + 0.290403i) q^{27} +(4.52106 + 1.46898i) q^{28} +(-2.22040 + 1.61321i) q^{29} +(2.98487 + 3.33025i) q^{30} +(-0.733075 - 2.25617i) q^{31} +5.84096i q^{32} +4.00000 q^{34} +(7.70536 - 0.792137i) q^{35} +(3.74390 + 2.72010i) q^{36} +(6.48745 + 8.92921i) q^{37} +(-3.01404 - 0.979321i) q^{38} +(2.41756 + 5.46337i) q^{40} +(2.22040 + 1.61321i) q^{41} +(-6.58911 + 2.14093i) q^{42} -3.46410i q^{43} +(7.37228 + 1.58457i) q^{45} +(-0.618034 - 1.90211i) q^{46} +(3.89893 - 5.36641i) q^{47} +(0.931389 + 1.28195i) q^{48} +(-1.54508 + 4.75528i) q^{49} +(2.93182 + 2.66409i) q^{50} +(10.3106 - 7.49107i) q^{51} +(-3.01404 + 0.979321i) q^{53} -0.744563 q^{54} -9.25544 q^{56} +(-9.60315 + 3.12025i) q^{57} +(1.27813 - 1.75919i) q^{58} +(-1.31685 + 0.956749i) q^{59} +(6.69937 + 3.88824i) q^{60} +(3.32025 - 10.2187i) q^{61} +(1.10476 + 1.52057i) q^{62} +(-6.86646 + 9.45088i) q^{63} +(-1.04209 - 3.20723i) q^{64} -0.644810i q^{67} +(6.58911 - 2.14093i) q^{68} +(-5.15528 - 3.74553i) q^{69} +(-5.61212 + 2.48339i) q^{70} +(2.19923 - 6.76852i) q^{71} +(-8.56912 - 2.78428i) q^{72} +(-4.07230 - 5.60503i) q^{73} +(-7.07450 - 5.13992i) q^{74} +(12.5464 + 1.37646i) q^{75} -5.48913 q^{76} +(-3.93829 - 12.1208i) q^{79} +(0.936830 + 1.04523i) q^{80} +(6.26548 - 4.55214i) q^{81} +(-2.06805 - 0.671952i) q^{82} +(6.30860 + 2.04979i) q^{83} +(-9.70820 + 7.05342i) q^{84} +(8.40667 - 7.53482i) q^{85} +(0.848116 + 2.61023i) q^{86} -6.92820i q^{87} +4.37228 q^{89} +(-5.94304 + 0.610965i) q^{90} +(-2.03615 - 2.80252i) q^{92} +(5.69534 + 1.85053i) q^{93} +(-1.62402 + 4.99822i) q^{94} +(-8.17926 + 3.61936i) q^{95} +(-11.9286 - 8.66664i) q^{96} +(3.90781 - 1.26972i) q^{97} -3.96143i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{4} + 3 q^{5} - 8 q^{6} + 2 q^{9} - 40 q^{10} - 12 q^{14} - q^{15} - 14 q^{16} + 16 q^{19} + 12 q^{20} + 48 q^{21} - 4 q^{24} - q^{25} + 12 q^{29} + 6 q^{30} - 2 q^{31} + 64 q^{34} - 18 q^{35}+ \cdots - 36 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.753510 + 0.244830i −0.532812 + 0.173121i −0.563052 0.826422i \(-0.690373\pi\)
0.0302400 + 0.999543i \(0.490373\pi\)
\(3\) −1.48377 + 2.04223i −0.856654 + 1.17908i 0.125703 + 0.992068i \(0.459881\pi\)
−0.982357 + 0.187015i \(0.940119\pi\)
\(4\) −1.11020 + 0.806607i −0.555099 + 0.403303i
\(5\) −1.12244 + 1.93394i −0.501970 + 0.864885i
\(6\) 0.618034 1.90211i 0.252311 0.776534i
\(7\) −2.03615 2.80252i −0.769592 1.05925i −0.996355 0.0853021i \(-0.972814\pi\)
0.226764 0.973950i \(-0.427186\pi\)
\(8\) 1.57045 2.16154i 0.555239 0.764221i
\(9\) −1.04209 3.20723i −0.347364 1.06908i
\(10\) 0.372281 1.73205i 0.117726 0.547723i
\(11\) 0 0
\(12\) 3.46410i 1.00000i
\(13\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(14\) 2.22040 + 1.61321i 0.593426 + 0.431149i
\(15\) −2.28412 5.16180i −0.589757 1.33277i
\(16\) 0.193976 0.596996i 0.0484939 0.149249i
\(17\) −4.80158 1.56013i −1.16455 0.378386i −0.337946 0.941166i \(-0.609732\pi\)
−0.826607 + 0.562779i \(0.809732\pi\)
\(18\) 1.57045 + 2.16154i 0.370159 + 0.509481i
\(19\) 3.23607 + 2.35114i 0.742405 + 0.539389i 0.893463 0.449136i \(-0.148268\pi\)
−0.151058 + 0.988525i \(0.548268\pi\)
\(20\) −0.313800 3.05243i −0.0701678 0.682543i
\(21\) 8.74456 1.90822
\(22\) 0 0
\(23\) 2.52434i 0.526361i 0.964747 + 0.263180i \(0.0847714\pi\)
−0.964747 + 0.263180i \(0.915229\pi\)
\(24\) 2.08418 + 6.41446i 0.425432 + 1.30935i
\(25\) −2.48026 4.34146i −0.496052 0.868293i
\(26\) 0 0
\(27\) 0.893769 + 0.290403i 0.172006 + 0.0558881i
\(28\) 4.52106 + 1.46898i 0.854400 + 0.277611i
\(29\) −2.22040 + 1.61321i −0.412318 + 0.299566i −0.774539 0.632526i \(-0.782018\pi\)
0.362222 + 0.932092i \(0.382018\pi\)
\(30\) 2.98487 + 3.33025i 0.544960 + 0.608017i
\(31\) −0.733075 2.25617i −0.131664 0.405221i 0.863392 0.504534i \(-0.168336\pi\)
−0.995056 + 0.0993129i \(0.968336\pi\)
\(32\) 5.84096i 1.03255i
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) 7.70536 0.792137i 1.30244 0.133896i
\(36\) 3.74390 + 2.72010i 0.623984 + 0.453351i
\(37\) 6.48745 + 8.92921i 1.06653 + 1.46795i 0.873540 + 0.486753i \(0.161819\pi\)
0.192991 + 0.981200i \(0.438181\pi\)
\(38\) −3.01404 0.979321i −0.488942 0.158867i
\(39\) 0 0
\(40\) 2.41756 + 5.46337i 0.382250 + 0.863834i
\(41\) 2.22040 + 1.61321i 0.346768 + 0.251942i 0.747512 0.664248i \(-0.231248\pi\)
−0.400744 + 0.916190i \(0.631248\pi\)
\(42\) −6.58911 + 2.14093i −1.01672 + 0.330353i
\(43\) 3.46410i 0.528271i −0.964486 0.264135i \(-0.914913\pi\)
0.964486 0.264135i \(-0.0850865\pi\)
\(44\) 0 0
\(45\) 7.37228 + 1.58457i 1.09899 + 0.236214i
\(46\) −0.618034 1.90211i −0.0911241 0.280451i
\(47\) 3.89893 5.36641i 0.568717 0.782772i −0.423685 0.905810i \(-0.639264\pi\)
0.992402 + 0.123038i \(0.0392637\pi\)
\(48\) 0.931389 + 1.28195i 0.134434 + 0.185033i
\(49\) −1.54508 + 4.75528i −0.220726 + 0.679326i
\(50\) 2.93182 + 2.66409i 0.414622 + 0.376759i
\(51\) 10.3106 7.49107i 1.44377 1.04896i
\(52\) 0 0
\(53\) −3.01404 + 0.979321i −0.414010 + 0.134520i −0.508613 0.860995i \(-0.669842\pi\)
0.0946033 + 0.995515i \(0.469842\pi\)
\(54\) −0.744563 −0.101322
\(55\) 0 0
\(56\) −9.25544 −1.23681
\(57\) −9.60315 + 3.12025i −1.27197 + 0.413288i
\(58\) 1.27813 1.75919i 0.167826 0.230993i
\(59\) −1.31685 + 0.956749i −0.171440 + 0.124558i −0.670196 0.742184i \(-0.733790\pi\)
0.498757 + 0.866742i \(0.333790\pi\)
\(60\) 6.69937 + 3.88824i 0.864885 + 0.501970i
\(61\) 3.32025 10.2187i 0.425115 1.30837i −0.477770 0.878485i \(-0.658555\pi\)
0.902884 0.429884i \(-0.141445\pi\)
\(62\) 1.10476 + 1.52057i 0.140304 + 0.193113i
\(63\) −6.86646 + 9.45088i −0.865093 + 1.19070i
\(64\) −1.04209 3.20723i −0.130262 0.400904i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.644810i 0.0787761i −0.999224 0.0393880i \(-0.987459\pi\)
0.999224 0.0393880i \(-0.0125408\pi\)
\(68\) 6.58911 2.14093i 0.799047 0.259626i
\(69\) −5.15528 3.74553i −0.620623 0.450909i
\(70\) −5.61212 + 2.48339i −0.670777 + 0.296821i
\(71\) 2.19923 6.76852i 0.261000 0.803276i −0.731588 0.681747i \(-0.761220\pi\)
0.992588 0.121528i \(-0.0387796\pi\)
\(72\) −8.56912 2.78428i −1.00988 0.328130i
\(73\) −4.07230 5.60503i −0.476626 0.656020i 0.501226 0.865316i \(-0.332883\pi\)
−0.977852 + 0.209297i \(0.932883\pi\)
\(74\) −7.07450 5.13992i −0.822394 0.597504i
\(75\) 12.5464 + 1.37646i 1.44873 + 0.158939i
\(76\) −5.48913 −0.629646
\(77\) 0 0
\(78\) 0 0
\(79\) −3.93829 12.1208i −0.443092 1.36370i −0.884563 0.466421i \(-0.845543\pi\)
0.441471 0.897276i \(-0.354457\pi\)
\(80\) 0.936830 + 1.04523i 0.104741 + 0.116860i
\(81\) 6.26548 4.55214i 0.696165 0.505793i
\(82\) −2.06805 0.671952i −0.228378 0.0742046i
\(83\) 6.30860 + 2.04979i 0.692458 + 0.224993i 0.634042 0.773299i \(-0.281395\pi\)
0.0584167 + 0.998292i \(0.481395\pi\)
\(84\) −9.70820 + 7.05342i −1.05925 + 0.769592i
\(85\) 8.40667 7.53482i 0.911831 0.817266i
\(86\) 0.848116 + 2.61023i 0.0914548 + 0.281469i
\(87\) 6.92820i 0.742781i
\(88\) 0 0
\(89\) 4.37228 0.463461 0.231730 0.972780i \(-0.425561\pi\)
0.231730 + 0.972780i \(0.425561\pi\)
\(90\) −5.94304 + 0.610965i −0.626451 + 0.0644013i
\(91\) 0 0
\(92\) −2.03615 2.80252i −0.212283 0.292183i
\(93\) 5.69534 + 1.85053i 0.590580 + 0.191891i
\(94\) −1.62402 + 4.99822i −0.167505 + 0.515527i
\(95\) −8.17926 + 3.61936i −0.839174 + 0.371338i
\(96\) −11.9286 8.66664i −1.21746 0.884535i
\(97\) 3.90781 1.26972i 0.396778 0.128921i −0.103830 0.994595i \(-0.533110\pi\)
0.500608 + 0.865674i \(0.333110\pi\)
\(98\) 3.96143i 0.400165i
\(99\) 0 0
\(100\) 6.25544 + 2.81929i 0.625544 + 0.281929i
\(101\) 1.85410 + 5.70634i 0.184490 + 0.567802i 0.999939 0.0110267i \(-0.00350999\pi\)
−0.815449 + 0.578829i \(0.803510\pi\)
\(102\) −5.93507 + 8.16893i −0.587660 + 0.808844i
\(103\) −6.10844 8.40755i −0.601883 0.828421i 0.393996 0.919112i \(-0.371092\pi\)
−0.995879 + 0.0906914i \(0.971092\pi\)
\(104\) 0 0
\(105\) −9.81524 + 16.9115i −0.957869 + 1.65039i
\(106\) 2.03134 1.47586i 0.197301 0.143348i
\(107\) 3.89893 5.36641i 0.376923 0.518791i −0.577843 0.816148i \(-0.696105\pi\)
0.954766 + 0.297358i \(0.0961053\pi\)
\(108\) −1.22650 + 0.398515i −0.118020 + 0.0383471i
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) −27.8614 −2.64449
\(112\) −2.06805 + 0.671952i −0.195413 + 0.0634935i
\(113\) −9.45499 + 13.0137i −0.889451 + 1.22422i 0.0842619 + 0.996444i \(0.473147\pi\)
−0.973713 + 0.227780i \(0.926853\pi\)
\(114\) 6.47214 4.70228i 0.606171 0.440409i
\(115\) −4.88192 2.83341i −0.455242 0.264217i
\(116\) 1.16385 3.58198i 0.108061 0.332578i
\(117\) 0 0
\(118\) 0.758020 1.04332i 0.0697814 0.0960458i
\(119\) 5.40444 + 16.6331i 0.495424 + 1.52476i
\(120\) −14.7446 3.16915i −1.34599 0.289302i
\(121\) 0 0
\(122\) 8.51278i 0.770711i
\(123\) −6.58911 + 2.14093i −0.594120 + 0.193041i
\(124\) 2.63370 + 1.91350i 0.236514 + 0.171837i
\(125\) 11.1801 + 0.0763444i 0.999977 + 0.00682845i
\(126\) 2.86009 8.80244i 0.254797 0.784184i
\(127\) 11.1102 + 3.60991i 0.985868 + 0.320328i 0.757205 0.653178i \(-0.226564\pi\)
0.228663 + 0.973506i \(0.426564\pi\)
\(128\) −5.29601 7.28933i −0.468106 0.644292i
\(129\) 7.07450 + 5.13992i 0.622875 + 0.452545i
\(130\) 0 0
\(131\) 8.74456 0.764016 0.382008 0.924159i \(-0.375233\pi\)
0.382008 + 0.924159i \(0.375233\pi\)
\(132\) 0 0
\(133\) 13.8564i 1.20150i
\(134\) 0.157869 + 0.485871i 0.0136378 + 0.0419728i
\(135\) −1.56482 + 1.40254i −0.134679 + 0.120711i
\(136\) −10.9129 + 7.92871i −0.935776 + 0.679881i
\(137\) −2.12027 0.688918i −0.181147 0.0588582i 0.217039 0.976163i \(-0.430360\pi\)
−0.398186 + 0.917305i \(0.630360\pi\)
\(138\) 4.80158 + 1.56013i 0.408737 + 0.132807i
\(139\) 14.7514 10.7175i 1.25119 0.909046i 0.252904 0.967491i \(-0.418614\pi\)
0.998291 + 0.0584456i \(0.0186144\pi\)
\(140\) −7.91554 + 7.09462i −0.668985 + 0.599605i
\(141\) 5.17435 + 15.9250i 0.435759 + 1.34113i
\(142\) 5.63858i 0.473179i
\(143\) 0 0
\(144\) −2.11684 −0.176404
\(145\) −0.627600 6.10485i −0.0521194 0.506981i
\(146\) 4.44080 + 3.22643i 0.367523 + 0.267021i
\(147\) −7.41884 10.2112i −0.611896 0.842202i
\(148\) −14.4047 4.68038i −1.18406 0.384725i
\(149\) −3.55033 + 10.9268i −0.290855 + 0.895159i 0.693728 + 0.720237i \(0.255967\pi\)
−0.984582 + 0.174921i \(0.944033\pi\)
\(150\) −9.79084 + 2.03457i −0.799419 + 0.166122i
\(151\) −17.9874 13.0686i −1.46380 1.06351i −0.982354 0.187033i \(-0.940113\pi\)
−0.481443 0.876478i \(-0.659887\pi\)
\(152\) 10.1642 3.30254i 0.824424 0.267872i
\(153\) 17.0256i 1.37643i
\(154\) 0 0
\(155\) 5.18614 + 1.11469i 0.416561 + 0.0895342i
\(156\) 0 0
\(157\) 3.17318 4.36750i 0.253247 0.348565i −0.663398 0.748267i \(-0.730886\pi\)
0.916645 + 0.399702i \(0.130886\pi\)
\(158\) 5.93507 + 8.16893i 0.472169 + 0.649885i
\(159\) 2.47214 7.60845i 0.196053 0.603390i
\(160\) −11.2961 6.55612i −0.893034 0.518307i
\(161\) 7.07450 5.13992i 0.557549 0.405083i
\(162\) −3.60660 + 4.96406i −0.283361 + 0.390013i
\(163\) −3.29456 + 1.07047i −0.258050 + 0.0838454i −0.435185 0.900341i \(-0.643317\pi\)
0.177135 + 0.984187i \(0.443317\pi\)
\(164\) −3.76631 −0.294100
\(165\) 0 0
\(166\) −5.25544 −0.407901
\(167\) 21.2744 6.91246i 1.64626 0.534902i 0.668335 0.743861i \(-0.267007\pi\)
0.977924 + 0.208959i \(0.0670074\pi\)
\(168\) 13.7329 18.9018i 1.05952 1.45830i
\(169\) −10.5172 + 7.64121i −0.809017 + 0.587785i
\(170\) −4.48976 + 7.73577i −0.344349 + 0.593306i
\(171\) 4.16837 12.8289i 0.318763 0.981052i
\(172\) 2.79417 + 3.84584i 0.213053 + 0.293243i
\(173\) 1.10476 1.52057i 0.0839932 0.115607i −0.764953 0.644086i \(-0.777238\pi\)
0.848946 + 0.528480i \(0.177238\pi\)
\(174\) 1.69623 + 5.22047i 0.128591 + 0.395763i
\(175\) −7.11684 + 15.7908i −0.537983 + 1.19368i
\(176\) 0 0
\(177\) 4.10891i 0.308845i
\(178\) −3.29456 + 1.07047i −0.246937 + 0.0802348i
\(179\) −12.8321 9.32310i −0.959120 0.696841i −0.00617360 0.999981i \(-0.501965\pi\)
−0.952946 + 0.303140i \(0.901965\pi\)
\(180\) −9.46283 + 4.18734i −0.705317 + 0.312106i
\(181\) 2.12701 6.54627i 0.158100 0.486580i −0.840362 0.542025i \(-0.817658\pi\)
0.998462 + 0.0554448i \(0.0176577\pi\)
\(182\) 0 0
\(183\) 15.9424 + 21.9429i 1.17850 + 1.62207i
\(184\) 5.45647 + 3.96435i 0.402256 + 0.292256i
\(185\) −24.5503 + 2.52386i −1.80498 + 0.185558i
\(186\) −4.74456 −0.347888
\(187\) 0 0
\(188\) 9.10268i 0.663881i
\(189\) −1.00599 3.09610i −0.0731747 0.225208i
\(190\) 5.27702 4.72975i 0.382836 0.343132i
\(191\) 11.0251 8.01017i 0.797745 0.579596i −0.112507 0.993651i \(-0.535888\pi\)
0.910252 + 0.414055i \(0.135888\pi\)
\(192\) 8.09613 + 2.63059i 0.584288 + 0.189847i
\(193\) −22.2203 7.21983i −1.59946 0.519695i −0.632483 0.774575i \(-0.717964\pi\)
−0.966973 + 0.254880i \(0.917964\pi\)
\(194\) −2.63370 + 1.91350i −0.189089 + 0.137381i
\(195\) 0 0
\(196\) −2.12029 6.52559i −0.151449 0.466113i
\(197\) 1.87953i 0.133911i 0.997756 + 0.0669554i \(0.0213285\pi\)
−0.997756 + 0.0669554i \(0.978671\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) −13.2794 1.45687i −0.938995 0.103016i
\(201\) 1.31685 + 0.956749i 0.0928836 + 0.0674839i
\(202\) −2.79417 3.84584i −0.196597 0.270592i
\(203\) 9.04212 + 2.93796i 0.634632 + 0.206204i
\(204\) −5.40444 + 16.6331i −0.378386 + 1.16455i
\(205\) −5.61212 + 2.48339i −0.391968 + 0.173447i
\(206\) 6.66119 + 4.83964i 0.464107 + 0.337194i
\(207\) 8.09613 2.63059i 0.562720 0.182839i
\(208\) 0 0
\(209\) 0 0
\(210\) 3.25544 15.1460i 0.224647 1.04518i
\(211\) −6.64050 20.4374i −0.457151 1.40697i −0.868591 0.495530i \(-0.834974\pi\)
0.411440 0.911437i \(-0.365026\pi\)
\(212\) 2.55626 3.51838i 0.175564 0.241644i
\(213\) 10.5597 + 14.5342i 0.723542 + 0.995870i
\(214\) −1.62402 + 4.99822i −0.111016 + 0.341671i
\(215\) 6.69937 + 3.88824i 0.456893 + 0.265176i
\(216\) 2.03134 1.47586i 0.138215 0.100419i
\(217\) −4.83032 + 6.64836i −0.327903 + 0.451320i
\(218\) 7.53510 2.44830i 0.510341 0.165820i
\(219\) 17.4891 1.18181
\(220\) 0 0
\(221\) 0 0
\(222\) 20.9938 6.82131i 1.40901 0.457816i
\(223\) −4.45131 + 6.12670i −0.298081 + 0.410274i −0.931618 0.363439i \(-0.881603\pi\)
0.633537 + 0.773713i \(0.281603\pi\)
\(224\) 16.3694 11.8931i 1.09373 0.794639i
\(225\) −11.3394 + 12.4790i −0.755961 + 0.831932i
\(226\) 3.93829 12.1208i 0.261971 0.806264i
\(227\) 5.76170 + 7.93031i 0.382418 + 0.526353i 0.956223 0.292639i \(-0.0945334\pi\)
−0.573805 + 0.818992i \(0.694533\pi\)
\(228\) 8.14459 11.2101i 0.539389 0.742405i
\(229\) −6.29538 19.3752i −0.416010 1.28035i −0.911344 0.411646i \(-0.864954\pi\)
0.495333 0.868703i \(-0.335046\pi\)
\(230\) 4.37228 + 0.939764i 0.288300 + 0.0619662i
\(231\) 0 0
\(232\) 7.33296i 0.481433i
\(233\) −16.1923 + 5.26119i −1.06079 + 0.344672i −0.786894 0.617088i \(-0.788312\pi\)
−0.273896 + 0.961759i \(0.588312\pi\)
\(234\) 0 0
\(235\) 6.00202 + 13.5638i 0.391529 + 0.884803i
\(236\) 0.690248 2.12436i 0.0449313 0.138284i
\(237\) 30.5970 + 9.94157i 1.98749 + 0.645774i
\(238\) −8.14459 11.2101i −0.527935 0.726641i
\(239\) −2.63370 1.91350i −0.170360 0.123774i 0.499338 0.866407i \(-0.333577\pi\)
−0.669698 + 0.742633i \(0.733577\pi\)
\(240\) −3.52464 + 0.362345i −0.227514 + 0.0233893i
\(241\) 5.25544 0.338532 0.169266 0.985570i \(-0.445860\pi\)
0.169266 + 0.985570i \(0.445860\pi\)
\(242\) 0 0
\(243\) 22.3692i 1.43498i
\(244\) 4.55632 + 14.0229i 0.291689 + 0.897725i
\(245\) −7.46218 8.32562i −0.476741 0.531904i
\(246\) 4.44080 3.22643i 0.283135 0.205709i
\(247\) 0 0
\(248\) −6.02808 1.95864i −0.382783 0.124374i
\(249\) −13.5466 + 9.84221i −0.858483 + 0.623725i
\(250\) −8.44299 + 2.67969i −0.533982 + 0.169479i
\(251\) −1.50898 4.64416i −0.0952459 0.293137i 0.892072 0.451894i \(-0.149251\pi\)
−0.987318 + 0.158757i \(0.949251\pi\)
\(252\) 16.0309i 1.00985i
\(253\) 0 0
\(254\) −9.25544 −0.580738
\(255\) 2.91430 + 28.3483i 0.182501 + 1.77524i
\(256\) 11.2317 + 8.16031i 0.701982 + 0.510020i
\(257\) −14.0797 19.3790i −0.878265 1.20883i −0.976898 0.213705i \(-0.931447\pi\)
0.0986329 0.995124i \(-0.468553\pi\)
\(258\) −6.58911 2.14093i −0.410220 0.133289i
\(259\) 11.8149 36.3624i 0.734140 2.25945i
\(260\) 0 0
\(261\) 7.48781 + 5.44021i 0.463484 + 0.336741i
\(262\) −6.58911 + 2.14093i −0.407077 + 0.132267i
\(263\) 14.1514i 0.872610i −0.899799 0.436305i \(-0.856287\pi\)
0.899799 0.436305i \(-0.143713\pi\)
\(264\) 0 0
\(265\) 1.48913 6.92820i 0.0914762 0.425596i
\(266\) 3.39247 + 10.4409i 0.208005 + 0.640175i
\(267\) −6.48745 + 8.92921i −0.397026 + 0.546459i
\(268\) 0.520108 + 0.715868i 0.0317707 + 0.0437286i
\(269\) −3.55033 + 10.9268i −0.216468 + 0.666219i 0.782578 + 0.622552i \(0.213904\pi\)
−0.999046 + 0.0436672i \(0.986096\pi\)
\(270\) 0.835726 1.43994i 0.0508607 0.0876320i
\(271\) 7.67686 5.57757i 0.466336 0.338813i −0.329675 0.944094i \(-0.606939\pi\)
0.796012 + 0.605281i \(0.206939\pi\)
\(272\) −1.86278 + 2.56389i −0.112948 + 0.155459i
\(273\) 0 0
\(274\) 1.76631 0.106707
\(275\) 0 0
\(276\) 8.74456 0.526361
\(277\) −7.81561 + 2.53945i −0.469595 + 0.152581i −0.534249 0.845327i \(-0.679406\pi\)
0.0646543 + 0.997908i \(0.479406\pi\)
\(278\) −8.49133 + 11.6873i −0.509276 + 0.700958i
\(279\) −6.47214 + 4.70228i −0.387477 + 0.281518i
\(280\) 10.3887 17.8995i 0.620841 1.06970i
\(281\) −7.25854 + 22.3395i −0.433008 + 1.33266i 0.462106 + 0.886825i \(0.347094\pi\)
−0.895114 + 0.445837i \(0.852906\pi\)
\(282\) −7.79785 10.7328i −0.464355 0.639130i
\(283\) 2.79417 3.84584i 0.166096 0.228612i −0.717853 0.696195i \(-0.754875\pi\)
0.883949 + 0.467583i \(0.154875\pi\)
\(284\) 3.01796 + 9.28831i 0.179083 + 0.551160i
\(285\) 4.74456 22.0742i 0.281044 1.30756i
\(286\) 0 0
\(287\) 9.50744i 0.561207i
\(288\) 18.7333 6.08682i 1.10387 0.358669i
\(289\) 6.86785 + 4.98978i 0.403991 + 0.293517i
\(290\) 1.96756 + 4.44641i 0.115539 + 0.261102i
\(291\) −3.20521 + 9.86463i −0.187893 + 0.578275i
\(292\) 9.04212 + 2.93796i 0.529150 + 0.171931i
\(293\) −5.93507 8.16893i −0.346731 0.477234i 0.599661 0.800254i \(-0.295302\pi\)
−0.946392 + 0.323020i \(0.895302\pi\)
\(294\) 8.09017 + 5.87785i 0.471828 + 0.342803i
\(295\) −0.372211 3.62061i −0.0216710 0.210800i
\(296\) 29.4891 1.71402
\(297\) 0 0
\(298\) 9.10268i 0.527304i
\(299\) 0 0
\(300\) −15.0393 + 8.59188i −0.868293 + 0.496052i
\(301\) −9.70820 + 7.05342i −0.559572 + 0.406553i
\(302\) 16.7533 + 5.44348i 0.964044 + 0.313237i
\(303\) −14.4047 4.68038i −0.827530 0.268881i
\(304\) 2.03134 1.47586i 0.116505 0.0846461i
\(305\) 16.0356 + 17.8910i 0.918194 + 1.02444i
\(306\) −4.16837 12.8289i −0.238290 0.733381i
\(307\) 28.1176i 1.60475i −0.596817 0.802377i \(-0.703568\pi\)
0.596817 0.802377i \(-0.296432\pi\)
\(308\) 0 0
\(309\) 26.2337 1.49238
\(310\) −4.18072 + 0.429792i −0.237449 + 0.0244106i
\(311\) 14.1490 + 10.2798i 0.802316 + 0.582917i 0.911593 0.411095i \(-0.134853\pi\)
−0.109277 + 0.994011i \(0.534853\pi\)
\(312\) 0 0
\(313\) 30.2643 + 9.83345i 1.71064 + 0.555820i 0.990439 0.137949i \(-0.0440511\pi\)
0.720198 + 0.693769i \(0.244051\pi\)
\(314\) −1.32172 + 4.06785i −0.0745892 + 0.229562i
\(315\) −10.5703 23.8874i −0.595567 1.34590i
\(316\) 14.1490 + 10.2798i 0.795943 + 0.578287i
\(317\) 3.34677 1.08743i 0.187973 0.0610763i −0.213518 0.976939i \(-0.568492\pi\)
0.401491 + 0.915863i \(0.368492\pi\)
\(318\) 6.33830i 0.355434i
\(319\) 0 0
\(320\) 7.37228 + 1.58457i 0.412123 + 0.0885804i
\(321\) 5.17435 + 15.9250i 0.288804 + 0.888848i
\(322\) −4.07230 + 5.60503i −0.226940 + 0.312356i
\(323\) −11.8701 16.3379i −0.660473 0.909063i
\(324\) −3.28415 + 10.1076i −0.182453 + 0.561531i
\(325\) 0 0
\(326\) 2.22040 1.61321i 0.122976 0.0893476i
\(327\) 14.8377 20.4223i 0.820526 1.12936i
\(328\) 6.97406 2.26601i 0.385078 0.125119i
\(329\) −22.9783 −1.26683
\(330\) 0 0
\(331\) 3.11684 0.171317 0.0856586 0.996325i \(-0.472701\pi\)
0.0856586 + 0.996325i \(0.472701\pi\)
\(332\) −8.65717 + 2.81288i −0.475124 + 0.154377i
\(333\) 21.8775 30.1118i 1.19888 1.65012i
\(334\) −14.3381 + 10.4172i −0.784544 + 0.570004i
\(335\) 1.24703 + 0.723760i 0.0681323 + 0.0395432i
\(336\) 1.69623 5.22047i 0.0925371 0.284800i
\(337\) 7.38657 + 10.1667i 0.402372 + 0.553818i 0.961337 0.275373i \(-0.0888015\pi\)
−0.558965 + 0.829191i \(0.688801\pi\)
\(338\) 6.05403 8.33266i 0.329296 0.453237i
\(339\) −12.5479 38.6186i −0.681510 2.09747i
\(340\) −3.25544 + 15.1460i −0.176551 + 0.821409i
\(341\) 0 0
\(342\) 10.6873i 0.577901i
\(343\) −6.58911 + 2.14093i −0.355779 + 0.115599i
\(344\) −7.48781 5.44021i −0.403715 0.293316i
\(345\) 13.0301 5.76589i 0.701519 0.310425i
\(346\) −0.460165 + 1.41624i −0.0247386 + 0.0761377i
\(347\) −27.8635 9.05339i −1.49579 0.486011i −0.557003 0.830511i \(-0.688049\pi\)
−0.938787 + 0.344499i \(0.888049\pi\)
\(348\) 5.58834 + 7.69168i 0.299566 + 0.412318i
\(349\) −6.05883 4.40200i −0.324322 0.235634i 0.413696 0.910415i \(-0.364238\pi\)
−0.738017 + 0.674782i \(0.764238\pi\)
\(350\) 1.49654 13.6410i 0.0799933 0.729140i
\(351\) 0 0
\(352\) 0 0
\(353\) 21.7244i 1.15627i −0.815941 0.578136i \(-0.803780\pi\)
0.815941 0.578136i \(-0.196220\pi\)
\(354\) 1.00599 + 3.09610i 0.0534675 + 0.164556i
\(355\) 10.6214 + 11.8504i 0.563727 + 0.628955i
\(356\) −4.85410 + 3.52671i −0.257267 + 0.186915i
\(357\) −41.9877 13.6426i −2.22222 0.722044i
\(358\) 11.9517 + 3.88335i 0.631668 + 0.205241i
\(359\) 5.26741 3.82700i 0.278003 0.201981i −0.440043 0.897977i \(-0.645037\pi\)
0.718046 + 0.695996i \(0.245037\pi\)
\(360\) 15.0029 13.4470i 0.790725 0.708719i
\(361\) −0.927051 2.85317i −0.0487922 0.150167i
\(362\) 5.45343i 0.286626i
\(363\) 0 0
\(364\) 0 0
\(365\) 15.4107 1.58427i 0.806634 0.0829247i
\(366\) −17.3851 12.6310i −0.908732 0.660232i
\(367\) 14.1119 + 19.4234i 0.736637 + 1.01389i 0.998805 + 0.0488717i \(0.0155626\pi\)
−0.262168 + 0.965022i \(0.584437\pi\)
\(368\) 1.50702 + 0.489660i 0.0785588 + 0.0255253i
\(369\) 2.86009 8.80244i 0.148890 0.458237i
\(370\) 17.8810 7.91242i 0.929589 0.411347i
\(371\) 8.88159 + 6.45285i 0.461109 + 0.335015i
\(372\) −7.81561 + 2.53945i −0.405221 + 0.131664i
\(373\) 8.21782i 0.425503i −0.977106 0.212751i \(-0.931758\pi\)
0.977106 0.212751i \(-0.0682424\pi\)
\(374\) 0 0
\(375\) −16.7446 + 22.7190i −0.864685 + 1.17321i
\(376\) −5.47665 16.8554i −0.282437 0.869251i
\(377\) 0 0
\(378\) 1.51604 + 2.08665i 0.0779767 + 0.107326i
\(379\) 1.96914 6.06040i 0.101148 0.311302i −0.887659 0.460501i \(-0.847670\pi\)
0.988807 + 0.149199i \(0.0476697\pi\)
\(380\) 6.16121 10.6156i 0.316063 0.544571i
\(381\) −23.8572 + 17.3333i −1.22224 + 0.888010i
\(382\) −6.34636 + 8.73501i −0.324708 + 0.446922i
\(383\) 5.41483 1.75938i 0.276685 0.0899003i −0.167388 0.985891i \(-0.553533\pi\)
0.444073 + 0.895991i \(0.353533\pi\)
\(384\) 22.7446 1.16068
\(385\) 0 0
\(386\) 18.5109 0.942179
\(387\) −11.1102 + 3.60991i −0.564762 + 0.183502i
\(388\) −3.31428 + 4.56171i −0.168257 + 0.231586i
\(389\) −7.97805 + 5.79639i −0.404503 + 0.293889i −0.771373 0.636384i \(-0.780429\pi\)
0.366870 + 0.930272i \(0.380429\pi\)
\(390\) 0 0
\(391\) 3.93829 12.1208i 0.199168 0.612975i
\(392\) 7.85227 + 10.8077i 0.396599 + 0.545872i
\(393\) −12.9749 + 17.8584i −0.654497 + 0.900838i
\(394\) −0.460165 1.41624i −0.0231828 0.0713493i
\(395\) 27.8614 + 5.98844i 1.40186 + 0.301311i
\(396\) 0 0
\(397\) 23.3639i 1.17260i 0.810095 + 0.586299i \(0.199416\pi\)
−0.810095 + 0.586299i \(0.800584\pi\)
\(398\) −6.02808 + 1.95864i −0.302160 + 0.0981778i
\(399\) 28.2980 + 20.5597i 1.41667 + 1.02927i
\(400\) −3.07295 + 0.638568i −0.153647 + 0.0319284i
\(401\) 3.55033 10.9268i 0.177295 0.545659i −0.822436 0.568858i \(-0.807385\pi\)
0.999731 + 0.0231995i \(0.00738530\pi\)
\(402\) −1.22650 0.398515i −0.0611724 0.0198761i
\(403\) 0 0
\(404\) −6.66119 4.83964i −0.331407 0.240781i
\(405\) 1.77095 + 17.2266i 0.0879993 + 0.855996i
\(406\) −7.53262 −0.373838
\(407\) 0 0
\(408\) 34.0511i 1.68578i
\(409\) −1.39394 4.29010i −0.0689257 0.212132i 0.910661 0.413155i \(-0.135573\pi\)
−0.979586 + 0.201023i \(0.935573\pi\)
\(410\) 3.62078 3.24527i 0.178818 0.160273i
\(411\) 4.55292 3.30789i 0.224579 0.163166i
\(412\) 13.5632 + 4.40694i 0.668210 + 0.217114i
\(413\) 5.36261 + 1.74242i 0.263877 + 0.0857388i
\(414\) −5.45647 + 3.96435i −0.268171 + 0.194837i
\(415\) −11.0452 + 9.89970i −0.542187 + 0.485957i
\(416\) 0 0
\(417\) 46.0280i 2.25400i
\(418\) 0 0
\(419\) −22.9783 −1.12256 −0.561280 0.827626i \(-0.689691\pi\)
−0.561280 + 0.827626i \(0.689691\pi\)
\(420\) −2.74404 26.6921i −0.133896 1.30244i
\(421\) −25.4752 18.5088i −1.24159 0.902066i −0.243884 0.969804i \(-0.578422\pi\)
−0.997703 + 0.0677386i \(0.978422\pi\)
\(422\) 10.0074 + 13.7740i 0.487151 + 0.670506i
\(423\) −21.2744 6.91246i −1.03439 0.336095i
\(424\) −2.61656 + 8.05295i −0.127072 + 0.391086i
\(425\) 5.13593 + 24.7154i 0.249129 + 1.19887i
\(426\) −11.5153 8.36635i −0.557918 0.405351i
\(427\) −35.3986 + 11.5017i −1.71306 + 0.556606i
\(428\) 9.10268i 0.439995i
\(429\) 0 0
\(430\) −6.00000 1.28962i −0.289346 0.0621910i
\(431\) 9.80289 + 30.1702i 0.472189 + 1.45325i 0.849712 + 0.527247i \(0.176776\pi\)
−0.377524 + 0.926000i \(0.623224\pi\)
\(432\) 0.346739 0.477245i 0.0166825 0.0229615i
\(433\) −12.0758 16.6209i −0.580325 0.798749i 0.413406 0.910547i \(-0.364339\pi\)
−0.993731 + 0.111798i \(0.964339\pi\)
\(434\) 2.01197 6.19221i 0.0965777 0.297236i
\(435\) 13.3987 + 7.77648i 0.642421 + 0.372854i
\(436\) 11.1020 8.06607i 0.531689 0.386295i
\(437\) −5.93507 + 8.16893i −0.283913 + 0.390773i
\(438\) −13.1782 + 4.28187i −0.629680 + 0.204595i
\(439\) 1.48913 0.0710721 0.0355360 0.999368i \(-0.488686\pi\)
0.0355360 + 0.999368i \(0.488686\pi\)
\(440\) 0 0
\(441\) 16.8614 0.802924
\(442\) 0 0
\(443\) 8.87034 12.2090i 0.421443 0.580066i −0.544520 0.838748i \(-0.683288\pi\)
0.965963 + 0.258682i \(0.0832881\pi\)
\(444\) 30.9317 22.4732i 1.46795 1.06653i
\(445\) −4.90762 + 8.45574i −0.232643 + 0.400840i
\(446\) 1.85410 5.70634i 0.0877943 0.270203i
\(447\) −17.0472 23.4635i −0.806305 1.10978i
\(448\) −6.86646 + 9.45088i −0.324410 + 0.446512i
\(449\) 6.75555 + 20.7914i 0.318814 + 0.981208i 0.974156 + 0.225876i \(0.0725245\pi\)
−0.655342 + 0.755332i \(0.727476\pi\)
\(450\) 5.48913 12.1793i 0.258760 0.574136i
\(451\) 0 0
\(452\) 22.0742i 1.03828i
\(453\) 53.3784 17.3437i 2.50793 0.814877i
\(454\) −6.28308 4.56492i −0.294879 0.214242i
\(455\) 0 0
\(456\) −8.33674 + 25.6578i −0.390404 + 1.20154i
\(457\) −19.7673 6.42280i −0.924677 0.300446i −0.192293 0.981338i \(-0.561592\pi\)
−0.732384 + 0.680892i \(0.761592\pi\)
\(458\) 9.48726 + 13.0581i 0.443311 + 0.610165i
\(459\) −3.83843 2.78878i −0.179163 0.130169i
\(460\) 7.70536 0.792137i 0.359264 0.0369336i
\(461\) −32.2337 −1.50127 −0.750636 0.660716i \(-0.770253\pi\)
−0.750636 + 0.660716i \(0.770253\pi\)
\(462\) 0 0
\(463\) 20.1398i 0.935976i 0.883735 + 0.467988i \(0.155021\pi\)
−0.883735 + 0.467988i \(0.844979\pi\)
\(464\) 0.532379 + 1.63849i 0.0247151 + 0.0760651i
\(465\) −9.97149 + 8.93736i −0.462417 + 0.414460i
\(466\) 10.9129 7.92871i 0.505532 0.367290i
\(467\) −4.18832 1.36087i −0.193813 0.0629735i 0.210502 0.977593i \(-0.432490\pi\)
−0.404315 + 0.914620i \(0.632490\pi\)
\(468\) 0 0
\(469\) −1.80709 + 1.31293i −0.0834437 + 0.0606254i
\(470\) −7.84340 8.75095i −0.361789 0.403651i
\(471\) 4.21120 + 12.9607i 0.194042 + 0.597199i
\(472\) 4.34896i 0.200177i
\(473\) 0 0
\(474\) −25.4891 −1.17075
\(475\) 2.18110 19.8807i 0.100076 0.912190i
\(476\) −19.4164 14.1068i −0.889950 0.646586i
\(477\) 6.28181 + 8.64617i 0.287624 + 0.395881i
\(478\) 2.45300 + 0.797029i 0.112198 + 0.0364553i
\(479\) −5.40444 + 16.6331i −0.246935 + 0.759988i 0.748377 + 0.663273i \(0.230833\pi\)
−0.995312 + 0.0967144i \(0.969167\pi\)
\(480\) 30.1499 13.3415i 1.37615 0.608951i
\(481\) 0 0
\(482\) −3.96002 + 1.28669i −0.180374 + 0.0586071i
\(483\) 22.0742i 1.00441i
\(484\) 0 0
\(485\) −1.93070 + 8.98266i −0.0876687 + 0.407882i
\(486\) −5.47665 16.8554i −0.248426 0.764576i
\(487\) 13.3539 18.3801i 0.605124 0.832881i −0.391042 0.920373i \(-0.627885\pi\)
0.996165 + 0.0874917i \(0.0278851\pi\)
\(488\) −16.8738 23.2248i −0.763843 1.05134i
\(489\) 2.70222 8.31657i 0.122199 0.376088i
\(490\) 7.66118 + 4.44647i 0.346097 + 0.200871i
\(491\) −23.8572 + 17.3333i −1.07666 + 0.782240i −0.977098 0.212792i \(-0.931744\pi\)
−0.0995629 + 0.995031i \(0.531744\pi\)
\(492\) 5.58834 7.69168i 0.251942 0.346768i
\(493\) 13.1782 4.28187i 0.593517 0.192846i
\(494\) 0 0
\(495\) 0 0
\(496\) −1.48913 −0.0668637
\(497\) −23.4468 + 7.61834i −1.05173 + 0.341729i
\(498\) 7.79785 10.7328i 0.349430 0.480949i
\(499\) −16.1803 + 11.7557i −0.724331 + 0.526258i −0.887765 0.460297i \(-0.847743\pi\)
0.163434 + 0.986554i \(0.447743\pi\)
\(500\) −12.4737 + 8.93317i −0.557840 + 0.399503i
\(501\) −17.4494 + 53.7037i −0.779581 + 2.39930i
\(502\) 2.27406 + 3.12997i 0.101496 + 0.139698i
\(503\) −0.173369 + 0.238623i −0.00773016 + 0.0106397i −0.812865 0.582453i \(-0.802093\pi\)
0.805134 + 0.593092i \(0.202093\pi\)
\(504\) 9.64502 + 29.6843i 0.429623 + 1.32224i
\(505\) −13.1168 2.81929i −0.583692 0.125457i
\(506\) 0 0
\(507\) 32.8164i 1.45743i
\(508\) −15.2463 + 4.95382i −0.676444 + 0.219790i
\(509\) 22.9537 + 16.6768i 1.01740 + 0.739187i 0.965749 0.259478i \(-0.0835507\pi\)
0.0516541 + 0.998665i \(0.483551\pi\)
\(510\) −9.13648 20.6472i −0.404570 0.914274i
\(511\) −7.41641 + 22.8254i −0.328083 + 1.00973i
\(512\) 6.67716 + 2.16954i 0.295091 + 0.0958810i
\(513\) 2.20952 + 3.04114i 0.0975526 + 0.134270i
\(514\) 15.3537 + 11.1551i 0.677224 + 0.492032i
\(515\) 23.1161 2.37641i 1.01862 0.104717i
\(516\) −12.0000 −0.528271
\(517\) 0 0
\(518\) 30.2921i 1.33096i
\(519\) 1.46615 + 4.51235i 0.0643569 + 0.198070i
\(520\) 0 0
\(521\) −15.0525 + 10.9363i −0.659464 + 0.479129i −0.866482 0.499209i \(-0.833624\pi\)
0.207018 + 0.978337i \(0.433624\pi\)
\(522\) −6.97406 2.26601i −0.305246 0.0991806i
\(523\) −8.65717 2.81288i −0.378552 0.122999i 0.113560 0.993531i \(-0.463775\pi\)
−0.492111 + 0.870532i \(0.663775\pi\)
\(524\) −9.70820 + 7.05342i −0.424105 + 0.308130i
\(525\) −21.6888 37.9642i −0.946577 1.65689i
\(526\) 3.46468 + 10.6632i 0.151067 + 0.464937i
\(527\) 11.9769i 0.521721i
\(528\) 0 0
\(529\) 16.6277 0.722944
\(530\) 0.574163 + 5.58505i 0.0249400 + 0.242599i
\(531\) 4.44080 + 3.22643i 0.192714 + 0.140015i
\(532\) 11.1767 + 15.3834i 0.484570 + 0.666954i
\(533\) 0 0
\(534\) 2.70222 8.31657i 0.116936 0.359893i
\(535\) 6.00202 + 13.5638i 0.259490 + 0.586413i
\(536\) −1.39379 1.01264i −0.0602024 0.0437396i
\(537\) 38.0799 12.3729i 1.64327 0.533930i
\(538\) 9.10268i 0.392445i
\(539\) 0 0
\(540\) 0.605969 2.81929i 0.0260768 0.121323i
\(541\) −0.0722135 0.222250i −0.00310470 0.00955529i 0.949492 0.313791i \(-0.101599\pi\)
−0.952597 + 0.304235i \(0.901599\pi\)
\(542\) −4.41903 + 6.08228i −0.189814 + 0.261256i
\(543\) 10.2130 + 14.0570i 0.438282 + 0.603244i
\(544\) 9.11264 28.0458i 0.390701 1.20245i
\(545\) 11.2244 19.3394i 0.480800 0.828410i
\(546\) 0 0
\(547\) −5.35042 + 7.36423i −0.228768 + 0.314872i −0.907934 0.419112i \(-0.862341\pi\)
0.679167 + 0.733984i \(0.262341\pi\)
\(548\) 2.90961 0.945389i 0.124292 0.0403850i
\(549\) −36.2337 −1.54642
\(550\) 0 0
\(551\) −10.9783 −0.467689
\(552\) −16.1923 + 5.26119i −0.689189 + 0.223931i
\(553\) −25.9498 + 35.7169i −1.10350 + 1.51884i
\(554\) 5.26741 3.82700i 0.223791 0.162593i
\(555\) 31.2727 53.8823i 1.32745 2.28718i
\(556\) −7.73215 + 23.7971i −0.327916 + 1.00922i
\(557\) −18.9100 26.0274i −0.801242 1.10281i −0.992616 0.121297i \(-0.961295\pi\)
0.191375 0.981517i \(-0.438705\pi\)
\(558\) 3.72556 5.12779i 0.157715 0.217077i
\(559\) 0 0
\(560\) 1.02175 4.75372i 0.0431768 0.200881i
\(561\) 0 0
\(562\) 18.6101i 0.785021i
\(563\) −11.6712 + 3.79220i −0.491883 + 0.159822i −0.544447 0.838795i \(-0.683261\pi\)
0.0525644 + 0.998618i \(0.483261\pi\)
\(564\) −18.5898 13.5063i −0.782772 0.568717i
\(565\) −14.5550 32.8925i −0.612335 1.38380i
\(566\) −1.16385 + 3.58198i −0.0489205 + 0.150562i
\(567\) −25.5149 8.29029i −1.07153 0.348160i
\(568\) −11.1767 15.3834i −0.468963 0.645472i
\(569\) −31.3450 22.7735i −1.31405 0.954714i −0.999986 0.00531266i \(-0.998309\pi\)
−0.314065 0.949401i \(-0.601691\pi\)
\(570\) 1.82936 + 17.7948i 0.0766236 + 0.745340i
\(571\) −21.4891 −0.899292 −0.449646 0.893207i \(-0.648450\pi\)
−0.449646 + 0.893207i \(0.648450\pi\)
\(572\) 0 0
\(573\) 34.4010i 1.43712i
\(574\) 2.32771 + 7.16395i 0.0971567 + 0.299018i
\(575\) 10.9593 6.26102i 0.457035 0.261103i
\(576\) −9.20037 + 6.68446i −0.383349 + 0.278519i
\(577\) 30.2643 + 9.83345i 1.25992 + 0.409372i 0.861465 0.507817i \(-0.169547\pi\)
0.398453 + 0.917189i \(0.369547\pi\)
\(578\) −6.39664 2.07839i −0.266065 0.0864498i
\(579\) 47.7144 34.6665i 1.98294 1.44069i
\(580\) 5.62098 + 6.27138i 0.233398 + 0.260405i
\(581\) −7.10067 21.8536i −0.294585 0.906641i
\(582\) 8.21782i 0.340640i
\(583\) 0 0
\(584\) −18.5109 −0.765985
\(585\) 0 0
\(586\) 6.47214 + 4.70228i 0.267361 + 0.194249i
\(587\) 16.4626 + 22.6588i 0.679482 + 0.935227i 0.999928 0.0120400i \(-0.00383253\pi\)
−0.320445 + 0.947267i \(0.603833\pi\)
\(588\) 16.4728 + 5.35233i 0.679326 + 0.220726i
\(589\) 2.93230 9.02469i 0.120823 0.371856i
\(590\) 1.16690 + 2.63703i 0.0480405 + 0.108565i
\(591\) −3.83843 2.78878i −0.157892 0.114715i
\(592\) 6.58911 2.14093i 0.270811 0.0879918i
\(593\) 43.5586i 1.78874i −0.447333 0.894368i \(-0.647626\pi\)
0.447333 0.894368i \(-0.352374\pi\)
\(594\) 0 0
\(595\) −38.2337 8.21782i −1.56743 0.336898i
\(596\) −4.87206 14.9947i −0.199567 0.614205i
\(597\) −11.8701 + 16.3379i −0.485813 + 0.668664i
\(598\) 0 0
\(599\) 10.8089 33.2663i 0.441639 1.35922i −0.444490 0.895784i \(-0.646615\pi\)
0.886128 0.463440i \(-0.153385\pi\)
\(600\) 22.6788 24.9580i 0.925859 1.01890i
\(601\) −24.6486 + 17.9083i −1.00544 + 0.730494i −0.963247 0.268616i \(-0.913434\pi\)
−0.0421910 + 0.999110i \(0.513434\pi\)
\(602\) 5.58834 7.69168i 0.227764 0.313490i
\(603\) −2.06805 + 0.671952i −0.0842177 + 0.0273640i
\(604\) 30.5109 1.24147
\(605\) 0 0
\(606\) 12.0000 0.487467
\(607\) −3.29456 + 1.07047i −0.133722 + 0.0434489i −0.375113 0.926979i \(-0.622396\pi\)
0.241391 + 0.970428i \(0.422396\pi\)
\(608\) −13.7329 + 18.9018i −0.556944 + 0.766567i
\(609\) −19.4164 + 14.1068i −0.786793 + 0.571638i
\(610\) −16.4632 9.55507i −0.666576 0.386874i
\(611\) 0 0
\(612\) −13.7329 18.9018i −0.555121 0.764058i
\(613\) 25.9498 35.7169i 1.04810 1.44259i 0.157661 0.987493i \(-0.449605\pi\)
0.890442 0.455097i \(-0.150395\pi\)
\(614\) 6.88403 + 21.1869i 0.277817 + 0.855032i
\(615\) 3.25544 15.1460i 0.131272 0.610747i
\(616\) 0 0
\(617\) 3.75906i 0.151334i −0.997133 0.0756669i \(-0.975891\pi\)
0.997133 0.0756669i \(-0.0241086\pi\)
\(618\) −19.7673 + 6.42280i −0.795159 + 0.258363i
\(619\) −2.52158 1.83203i −0.101351 0.0736357i 0.535956 0.844246i \(-0.319951\pi\)
−0.637306 + 0.770610i \(0.719951\pi\)
\(620\) −6.65677 + 2.94565i −0.267342 + 0.118300i
\(621\) −0.733075 + 2.25617i −0.0294173 + 0.0905371i
\(622\) −13.1782 4.28187i −0.528399 0.171687i
\(623\) −8.90261 12.2534i −0.356676 0.490922i
\(624\) 0 0
\(625\) −12.6966 + 21.5359i −0.507864 + 0.861437i
\(626\) −25.2119 −1.00767
\(627\) 0 0
\(628\) 7.40830i 0.295624i
\(629\) −17.2193 52.9955i −0.686578 2.11307i
\(630\) 13.8131 + 15.4114i 0.550329 + 0.614007i
\(631\) 13.4345 9.76074i 0.534819 0.388569i −0.287338 0.957829i \(-0.592770\pi\)
0.822157 + 0.569260i \(0.192770\pi\)
\(632\) −32.3845 10.5224i −1.28819 0.418557i
\(633\) 51.5908 + 16.7629i 2.05055 + 0.666265i
\(634\) −2.25559 + 1.63878i −0.0895809 + 0.0650843i
\(635\) −19.4519 + 17.4345i −0.771923 + 0.691868i
\(636\) 3.39247 + 10.4409i 0.134520 + 0.414010i
\(637\) 0 0
\(638\) 0 0
\(639\) −24.0000 −0.949425
\(640\) 20.0416 2.06035i 0.792214 0.0814423i
\(641\) 15.8792 + 11.5369i 0.627189 + 0.455680i 0.855425 0.517926i \(-0.173296\pi\)
−0.228236 + 0.973606i \(0.573296\pi\)
\(642\) −7.79785 10.7328i −0.307757 0.423591i
\(643\) −37.2383 12.0995i −1.46854 0.477156i −0.537871 0.843027i \(-0.680771\pi\)
−0.930665 + 0.365871i \(0.880771\pi\)
\(644\) −3.70820 + 11.4127i −0.146124 + 0.449723i
\(645\) −17.8810 + 7.91242i −0.704064 + 0.311551i
\(646\) 12.9443 + 9.40456i 0.509286 + 0.370018i
\(647\) −39.0259 + 12.6803i −1.53426 + 0.498513i −0.949787 0.312897i \(-0.898701\pi\)
−0.584478 + 0.811410i \(0.698701\pi\)
\(648\) 20.6920i 0.812860i
\(649\) 0 0
\(650\) 0 0
\(651\) −6.41042 19.7293i −0.251244 0.773250i
\(652\) 2.79417 3.84584i 0.109428 0.150615i
\(653\) 15.0433 + 20.7054i 0.588691 + 0.810263i 0.994615 0.103644i \(-0.0330501\pi\)
−0.405924 + 0.913907i \(0.633050\pi\)
\(654\) −6.18034 + 19.0211i −0.241670 + 0.743785i
\(655\) −9.81524 + 16.9115i −0.383513 + 0.660786i
\(656\) 1.39379 1.01264i 0.0544182 0.0395371i
\(657\) −13.7329 + 18.9018i −0.535772 + 0.737428i
\(658\) 17.3143 5.62577i 0.674983 0.219315i
\(659\) −32.7446 −1.27555 −0.637774 0.770224i \(-0.720144\pi\)
−0.637774 + 0.770224i \(0.720144\pi\)
\(660\) 0 0
\(661\) 35.3505 1.37498 0.687488 0.726196i \(-0.258713\pi\)
0.687488 + 0.726196i \(0.258713\pi\)
\(662\) −2.34857 + 0.763097i −0.0912799 + 0.0296586i
\(663\) 0 0
\(664\) 14.3381 10.4172i 0.556425 0.404266i
\(665\) 26.7975 + 15.5530i 1.03916 + 0.603118i
\(666\) −9.11264 + 28.0458i −0.353108 + 1.08675i
\(667\) −4.07230 5.60503i −0.157680 0.217028i
\(668\) −18.0431 + 24.8342i −0.698110 + 0.960866i
\(669\) −5.90743 18.1812i −0.228394 0.702926i
\(670\) −1.11684 0.240051i −0.0431474 0.00927397i
\(671\) 0 0
\(672\) 51.0767i 1.97033i
\(673\) −1.22650 + 0.398515i −0.0472782 + 0.0153616i −0.332561 0.943082i \(-0.607913\pi\)
0.285282 + 0.958443i \(0.407913\pi\)
\(674\) −8.05498 5.85228i −0.310266 0.225422i
\(675\) −0.956006 4.60054i −0.0367967 0.177075i
\(676\) 5.51276 16.9665i 0.212029 0.652559i
\(677\) 41.3222 + 13.4264i 1.58814 + 0.516019i 0.964138 0.265403i \(-0.0855049\pi\)
0.624004 + 0.781421i \(0.285505\pi\)
\(678\) 18.9100 + 26.0274i 0.726233 + 0.999575i
\(679\) −11.5153 8.36635i −0.441916 0.321071i
\(680\) −3.08456 30.0045i −0.118288 1.15062i
\(681\) −24.7446 −0.948214
\(682\) 0 0
\(683\) 44.4434i 1.70058i −0.526314 0.850290i \(-0.676427\pi\)
0.526314 0.850290i \(-0.323573\pi\)
\(684\) 5.72017 + 17.6049i 0.218716 + 0.673140i
\(685\) 3.71220 3.32721i 0.141836 0.127126i
\(686\) 4.44080 3.22643i 0.169550 0.123186i
\(687\) 48.9095 + 15.8917i 1.86601 + 0.606305i
\(688\) −2.06805 0.671952i −0.0788438 0.0256179i
\(689\) 0 0
\(690\) −8.40667 + 7.53482i −0.320036 + 0.286846i
\(691\) 4.98710 + 15.3487i 0.189718 + 0.583893i 0.999998 0.00215105i \(-0.000684700\pi\)
−0.810279 + 0.586044i \(0.800685\pi\)
\(692\) 2.57924i 0.0980480i
\(693\) 0 0
\(694\) 23.2119 0.881113
\(695\) 4.16950 + 40.5580i 0.158158 + 1.53845i
\(696\) −14.9756 10.8804i −0.567649 0.412421i
\(697\) −8.14459 11.2101i −0.308498 0.424612i
\(698\) 5.64313 + 1.83356i 0.213596 + 0.0694014i
\(699\) 13.2810 40.8747i 0.502334 1.54602i
\(700\) −4.83588 23.2715i −0.182779 0.879579i
\(701\) 28.7113 + 20.8600i 1.08441 + 0.787871i 0.978447 0.206499i \(-0.0662071\pi\)
0.105964 + 0.994370i \(0.466207\pi\)
\(702\) 0 0
\(703\) 44.1485i 1.66509i
\(704\) 0 0
\(705\) −36.6060 7.86797i −1.37866 0.296325i
\(706\) 5.31878 + 16.3695i 0.200175 + 0.616075i
\(707\) 12.2169 16.8151i 0.459463 0.632397i
\(708\) 3.31428 + 4.56171i 0.124558 + 0.171440i
\(709\) −12.7058 + 39.1044i −0.477176 + 1.46860i 0.365823 + 0.930684i \(0.380787\pi\)
−0.843000 + 0.537914i \(0.819213\pi\)
\(710\) −10.9047 6.32896i −0.409246 0.237522i
\(711\) −34.7701 + 25.2620i −1.30398 + 0.947398i
\(712\) 6.86646 9.45088i 0.257332 0.354187i
\(713\) 5.69534 1.85053i 0.213292 0.0693029i
\(714\) 34.9783 1.30903
\(715\) 0 0
\(716\) 21.7663 0.813445
\(717\) 7.81561 2.53945i 0.291879 0.0948374i
\(718\) −3.03208 + 4.17330i −0.113156 + 0.155746i
\(719\) 17.2729 12.5495i 0.644172 0.468018i −0.217109 0.976147i \(-0.569663\pi\)
0.861281 + 0.508129i \(0.169663\pi\)
\(720\) 2.37603 4.09385i 0.0885493 0.152569i
\(721\) −11.1246 + 34.2380i −0.414302 + 1.27509i
\(722\) 1.39708 + 1.92292i 0.0519941 + 0.0715637i
\(723\) −7.79785 + 10.7328i −0.290005 + 0.399158i
\(724\) 2.91886 + 8.98332i 0.108479 + 0.333863i
\(725\) 12.5109 + 5.63858i 0.464642 + 0.209412i
\(726\) 0 0
\(727\) 15.7908i 0.585650i −0.956166 0.292825i \(-0.905405\pi\)
0.956166 0.292825i \(-0.0945953\pi\)
\(728\) 0 0
\(729\) −26.8866 19.5343i −0.995801 0.723492i
\(730\) −11.2242 + 4.96677i −0.415428 + 0.183829i
\(731\) −5.40444 + 16.6331i −0.199890 + 0.615199i
\(732\) −35.3986 11.5017i −1.30837 0.425115i
\(733\) 17.8052 + 24.5068i 0.657651 + 0.905179i 0.999401 0.0346121i \(-0.0110196\pi\)
−0.341750 + 0.939791i \(0.611020\pi\)
\(734\) −15.3889 11.1807i −0.568015 0.412687i
\(735\) 28.0750 2.88621i 1.03556 0.106459i
\(736\) −14.7446 −0.543492
\(737\) 0 0
\(738\) 7.33296i 0.269930i
\(739\) −0.230083 0.708121i −0.00846372 0.0260487i 0.946735 0.322012i \(-0.104359\pi\)
−0.955199 + 0.295964i \(0.904359\pi\)
\(740\) 25.2200 22.6045i 0.927106 0.830957i
\(741\) 0 0
\(742\) −8.27222 2.68781i −0.303683 0.0986725i
\(743\) 20.7133 + 6.73017i 0.759898 + 0.246906i 0.663235 0.748411i \(-0.269183\pi\)
0.0966632 + 0.995317i \(0.469183\pi\)
\(744\) 12.9443 9.40456i 0.474560 0.344788i
\(745\) −17.1468 19.1308i −0.628209 0.700899i
\(746\) 2.01197 + 6.19221i 0.0736635 + 0.226713i
\(747\) 22.3692i 0.818446i
\(748\) 0 0
\(749\) −22.9783 −0.839607
\(750\) 7.05488 21.2186i 0.257608 0.774793i
\(751\) −17.4972 12.7125i −0.638482 0.463884i 0.220847 0.975309i \(-0.429118\pi\)
−0.859328 + 0.511425i \(0.829118\pi\)
\(752\) −2.44743 3.36860i −0.0892485 0.122840i
\(753\) 11.7234 + 3.80917i 0.427225 + 0.138814i
\(754\) 0 0
\(755\) 45.4638 20.1179i 1.65460 0.732165i
\(756\) 3.61418 + 2.62586i 0.131447 + 0.0955015i
\(757\) 37.8516 12.2987i 1.37574 0.447005i 0.474473 0.880270i \(-0.342639\pi\)
0.901266 + 0.433266i \(0.142639\pi\)
\(758\) 5.04868i 0.183376i
\(759\) 0 0
\(760\) −5.02175 + 23.3639i −0.182158 + 0.847496i
\(761\) 6.56829 + 20.2151i 0.238100 + 0.732798i 0.996695 + 0.0812347i \(0.0258863\pi\)
−0.758595 + 0.651563i \(0.774114\pi\)
\(762\) 13.7329 18.9018i 0.497491 0.684738i
\(763\) 20.3615 + 28.0252i 0.737135 + 1.01458i
\(764\) −5.77895 + 17.7858i −0.209075 + 0.643467i
\(765\) −32.9264 19.1101i −1.19046 0.690929i
\(766\) −3.64937 + 2.65143i −0.131857 + 0.0957999i
\(767\) 0 0
\(768\) −33.3305 + 10.8297i −1.20271 + 0.390785i
\(769\) 51.2119 1.84675 0.923375 0.383900i \(-0.125419\pi\)
0.923375 + 0.383900i \(0.125419\pi\)
\(770\) 0 0
\(771\) 60.4674 2.17768
\(772\) 30.4926 9.90763i 1.09745 0.356584i
\(773\) 18.1520 24.9840i 0.652881 0.898613i −0.346339 0.938109i \(-0.612575\pi\)
0.999220 + 0.0394963i \(0.0125753\pi\)
\(774\) 7.48781 5.44021i 0.269144 0.195544i
\(775\) −7.97688 + 8.77852i −0.286538 + 0.315334i
\(776\) 3.39247 10.4409i 0.121782 0.374808i
\(777\) 56.7299 + 78.0821i 2.03518 + 2.80118i
\(778\) 4.59240 6.32090i 0.164646 0.226615i
\(779\) 3.39247 + 10.4409i 0.121548 + 0.374085i
\(780\) 0 0
\(781\) 0 0
\(782\) 10.0974i 0.361081i
\(783\) −2.45300 + 0.797029i −0.0876632 + 0.0284835i
\(784\) 2.53918 + 1.84482i 0.0906848 + 0.0658864i
\(785\) 4.88480 + 11.0390i 0.174346 + 0.393999i
\(786\) 5.40444 16.6331i 0.192770 0.593285i
\(787\) 4.52106 + 1.46898i 0.161158 + 0.0523635i 0.388485 0.921455i \(-0.372999\pi\)
−0.227327 + 0.973819i \(0.572999\pi\)
\(788\) −1.51604 2.08665i −0.0540067 0.0743338i
\(789\) 28.9004 + 20.9973i 1.02888 + 0.747525i
\(790\) −22.4600 + 2.30896i −0.799091 + 0.0821493i
\(791\) 55.7228 1.98128
\(792\) 0 0
\(793\) 0 0
\(794\) −5.72017 17.6049i −0.203001 0.624774i
\(795\) 11.9395 + 13.3210i 0.423450 + 0.472447i
\(796\) −8.88159 + 6.45285i −0.314800 + 0.228715i
\(797\) −29.7032 9.65116i −1.05214 0.341862i −0.268633 0.963242i \(-0.586572\pi\)
−0.783509 + 0.621381i \(0.786572\pi\)
\(798\) −26.3565 8.56373i −0.933008 0.303153i
\(799\) −27.0933 + 19.6844i −0.958491 + 0.696385i
\(800\) 25.3583 14.4871i 0.896552 0.512197i
\(801\) −4.55632 14.0229i −0.160990 0.495475i
\(802\) 9.10268i 0.321427i
\(803\) 0 0
\(804\) −2.23369 −0.0787761
\(805\) 1.99962 + 19.4509i 0.0704774 + 0.685555i
\(806\) 0 0
\(807\) −17.0472 23.4635i −0.600090 0.825953i
\(808\) 15.2463 + 4.95382i 0.536362 + 0.174275i
\(809\) 6.56829 20.2151i 0.230929 0.710726i −0.766707 0.641998i \(-0.778106\pi\)
0.997635 0.0687282i \(-0.0218941\pi\)
\(810\) −5.55202 12.5468i −0.195078 0.440850i
\(811\) −27.6956 20.1221i −0.972525 0.706581i −0.0164996 0.999864i \(-0.505252\pi\)
−0.956026 + 0.293283i \(0.905252\pi\)
\(812\) −12.4083 + 4.03171i −0.435447 + 0.141485i
\(813\) 23.9538i 0.840095i
\(814\) 0 0
\(815\) 1.62772 7.57301i 0.0570165 0.265271i
\(816\) −2.47214 7.60845i −0.0865421 0.266349i
\(817\) 8.14459 11.2101i 0.284943 0.392191i
\(818\) 2.10069 + 2.89135i 0.0734489 + 0.101094i
\(819\) 0 0
\(820\) 4.22746 7.28383i 0.147629 0.254362i
\(821\) 14.5623 10.5801i 0.508228 0.369249i −0.303923 0.952697i \(-0.598297\pi\)
0.812151 + 0.583447i \(0.198297\pi\)
\(822\) −2.62080 + 3.60722i −0.0914108 + 0.125816i
\(823\) −31.8757 + 10.3570i −1.11112 + 0.361024i −0.806371 0.591410i \(-0.798572\pi\)
−0.304746 + 0.952434i \(0.598572\pi\)
\(824\) −27.7663 −0.967285
\(825\) 0 0
\(826\) −4.46738 −0.155440
\(827\) 17.1382 5.56855i 0.595955 0.193638i 0.00451961 0.999990i \(-0.498561\pi\)
0.591436 + 0.806352i \(0.298561\pi\)
\(828\) −6.86646 + 9.45088i −0.238626 + 0.328441i
\(829\) 25.3631 18.4274i 0.880897 0.640009i −0.0525914 0.998616i \(-0.516748\pi\)
0.933489 + 0.358607i \(0.116748\pi\)
\(830\) 5.89891 10.1637i 0.204754 0.352788i
\(831\) 6.41042 19.7293i 0.222375 0.684400i
\(832\) 0 0
\(833\) 14.8377 20.4223i 0.514095 0.707592i
\(834\) −11.2690 34.6825i −0.390215 1.20096i
\(835\) −10.5109 + 48.9022i −0.363744 + 1.69233i
\(836\) 0 0
\(837\) 2.22938i 0.0770588i
\(838\) 17.3143 5.62577i 0.598114 0.194339i
\(839\) 5.75765 + 4.18318i 0.198776 + 0.144419i 0.682721 0.730679i \(-0.260796\pi\)
−0.483945 + 0.875098i \(0.660796\pi\)
\(840\) 21.1405 + 47.7747i 0.729417 + 1.64839i
\(841\) −6.63378 + 20.4167i −0.228751 + 0.704024i
\(842\) 23.7274 + 7.70949i 0.817699 + 0.265686i
\(843\) −34.8524 47.9702i −1.20038 1.65218i
\(844\) 23.8572 + 17.3333i 0.821199 + 0.596636i
\(845\) −2.97271 28.9165i −0.102264 0.994757i
\(846\) 17.7228 0.609323
\(847\) 0 0
\(848\) 1.98933i 0.0683140i
\(849\) 3.70820 + 11.4127i 0.127265 + 0.391682i
\(850\) −9.92105 17.3659i −0.340289 0.595644i
\(851\) −22.5404 + 16.3765i −0.772673 + 0.561380i
\(852\) −23.4468 7.61834i −0.803276 0.261000i
\(853\) 23.4468 + 7.61834i 0.802805 + 0.260847i 0.681547 0.731774i \(-0.261307\pi\)
0.121257 + 0.992621i \(0.461307\pi\)
\(854\) 23.8572 17.3333i 0.816377 0.593132i
\(855\) 20.1316 + 22.4611i 0.688488 + 0.768152i
\(856\) −5.47665 16.8554i −0.187188 0.576106i
\(857\) 10.6873i 0.365070i −0.983199 0.182535i \(-0.941570\pi\)
0.983199 0.182535i \(-0.0584303\pi\)
\(858\) 0 0
\(859\) −11.1168 −0.379302 −0.189651 0.981852i \(-0.560736\pi\)
−0.189651 + 0.981852i \(0.560736\pi\)
\(860\) −10.5739 + 1.08704i −0.360568 + 0.0370676i
\(861\) 19.4164 + 14.1068i 0.661709 + 0.480760i
\(862\) −14.7731 20.3335i −0.503175 0.692561i
\(863\) −22.5009 7.31097i −0.765938 0.248868i −0.100113 0.994976i \(-0.531920\pi\)
−0.665825 + 0.746108i \(0.731920\pi\)
\(864\) −1.69623 + 5.22047i −0.0577070 + 0.177604i
\(865\) 1.70067 + 3.84329i 0.0578245 + 0.130676i
\(866\) 13.1685 + 9.56749i 0.447485 + 0.325117i
\(867\) −20.3806 + 6.62205i −0.692161 + 0.224897i
\(868\) 11.2772i 0.382772i
\(869\) 0 0
\(870\) −12.0000 2.57924i −0.406838 0.0874444i
\(871\) 0 0
\(872\) −15.7045 + 21.6154i −0.531823 + 0.731991i
\(873\) −8.14459 11.2101i −0.275653 0.379403i
\(874\) 2.47214 7.60845i 0.0836212 0.257360i
\(875\) −22.5503 31.4878i −0.762341 1.06448i
\(876\) −19.4164 + 14.1068i −0.656020 + 0.476626i
\(877\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(878\) −1.12207 + 0.364583i −0.0378680 + 0.0123041i
\(879\) 25.4891 0.859727
\(880\) 0 0
\(881\) 21.8614 0.736530 0.368265 0.929721i \(-0.379952\pi\)
0.368265 + 0.929721i \(0.379952\pi\)
\(882\) −12.7052 + 4.12818i −0.427807 + 0.139003i
\(883\) −14.2530 + 19.6176i −0.479653 + 0.660185i −0.978438 0.206540i \(-0.933780\pi\)
0.498785 + 0.866726i \(0.333780\pi\)
\(884\) 0 0
\(885\) 7.94640 + 4.61200i 0.267115 + 0.155031i
\(886\) −3.69476 + 11.3713i −0.124128 + 0.382027i
\(887\) 8.31796 + 11.4487i 0.279290 + 0.384409i 0.925498 0.378751i \(-0.123646\pi\)
−0.646209 + 0.763161i \(0.723646\pi\)
\(888\) −43.7550 + 60.2236i −1.46832 + 2.02097i
\(889\) −12.5051 38.4868i −0.419408 1.29080i
\(890\) 1.62772 7.57301i 0.0545613 0.253848i
\(891\) 0 0
\(892\) 10.3923i 0.347960i
\(893\) 25.2344 8.19915i 0.844436 0.274374i
\(894\) 18.5898 + 13.5063i 0.621736 + 0.451717i
\(895\) 32.4336 14.3520i 1.08414 0.479735i
\(896\) −9.64502 + 29.6843i −0.322217 + 0.991683i
\(897\) 0 0
\(898\) −10.1807 14.0126i −0.339736 0.467606i
\(899\) 5.26741 + 3.82700i 0.175678 + 0.127637i
\(900\) 2.52337 23.0006i 0.0841125 0.766686i
\(901\) 16.0000 0.533037
\(902\) 0 0
\(903\) 30.2921i 1.00806i
\(904\) 13.2810 + 40.8747i 0.441720 + 1.35947i
\(905\) 10.2727 + 11.4613i 0.341475 + 0.380987i
\(906\) −35.9749 + 26.1373i −1.19518 + 0.868353i
\(907\) 18.9258 + 6.14936i 0.628420 + 0.204186i 0.605875 0.795560i \(-0.292823\pi\)
0.0225451 + 0.999746i \(0.492823\pi\)
\(908\) −12.7933 4.15679i −0.424560 0.137948i
\(909\) 16.3694 11.8931i 0.542939 0.394468i
\(910\) 0 0
\(911\) −9.42838 29.0176i −0.312376 0.961395i −0.976821 0.214058i \(-0.931332\pi\)
0.664445 0.747337i \(-0.268668\pi\)
\(912\) 6.33830i 0.209882i
\(913\) 0 0
\(914\) 16.4674 0.544692
\(915\) −60.3307 + 6.20220i −1.99447 + 0.205039i
\(916\) 22.6173 + 16.4324i 0.747296 + 0.542942i
\(917\) −17.8052 24.5068i −0.587980 0.809285i
\(918\) 3.57507 + 1.16161i 0.117995 + 0.0383389i
\(919\) −1.92632 + 5.92859i −0.0635433 + 0.195566i −0.977788 0.209596i \(-0.932785\pi\)
0.914245 + 0.405162i \(0.132785\pi\)
\(920\) −13.7914 + 6.10274i −0.454688 + 0.201201i
\(921\) 57.4226 + 41.7200i 1.89214 + 1.37472i
\(922\) 24.2884 7.89178i 0.799896 0.259902i
\(923\) 0 0
\(924\) 0 0
\(925\) 22.6753 50.3118i 0.745558 1.65424i
\(926\) −4.93083 15.1755i −0.162037 0.498699i
\(927\) −20.5994 + 28.3526i −0.676573 + 0.931222i
\(928\) −9.42272 12.9693i −0.309316 0.425737i
\(929\) 16.3712 50.3853i 0.537121 1.65309i −0.201900 0.979406i \(-0.564712\pi\)
0.739021 0.673682i \(-0.235288\pi\)
\(930\) 5.32548 9.17571i 0.174629 0.300883i
\(931\) −16.1803 + 11.7557i −0.530289 + 0.385278i
\(932\) 13.7329 18.9018i 0.449837 0.619147i
\(933\) −41.9877 + 13.6426i −1.37461 + 0.446639i
\(934\) 3.48913 0.114168
\(935\) 0 0
\(936\) 0 0
\(937\) 24.6733 8.01686i 0.806043 0.261899i 0.123122 0.992392i \(-0.460709\pi\)
0.682921 + 0.730492i \(0.260709\pi\)
\(938\) 1.04022 1.43174i 0.0339643 0.0467478i
\(939\) −64.9874 + 47.2161i −2.12078 + 1.54084i
\(940\) −17.6041 10.2172i −0.574181 0.333249i
\(941\) 3.23460 9.95507i 0.105445 0.324526i −0.884390 0.466749i \(-0.845425\pi\)
0.989835 + 0.142223i \(0.0454251\pi\)
\(942\) −6.34636 8.73501i −0.206775 0.284602i
\(943\) −4.07230 + 5.60503i −0.132612 + 0.182525i
\(944\) 0.315738 + 0.971741i 0.0102764 + 0.0316275i
\(945\) 7.11684 + 1.52967i 0.231511 + 0.0497602i
\(946\) 0 0
\(947\) 56.1802i 1.82561i 0.408393 + 0.912806i \(0.366089\pi\)
−0.408393 + 0.912806i \(0.633911\pi\)
\(948\) −41.9877 + 13.6426i −1.36370 + 0.443092i
\(949\) 0 0
\(950\) 3.22392 + 15.5143i 0.104598 + 0.503351i
\(951\) −2.74505 + 8.44838i −0.0890142 + 0.273958i
\(952\) 44.4407 + 14.4397i 1.44033 + 0.467992i
\(953\) −24.4983 33.7190i −0.793578 1.09227i −0.993653 0.112486i \(-0.964119\pi\)
0.200075 0.979781i \(-0.435881\pi\)
\(954\) −6.85025 4.97700i −0.221785 0.161136i
\(955\) 3.11626 + 30.3127i 0.100840 + 0.980897i
\(956\) 4.46738 0.144485
\(957\) 0 0
\(958\) 13.8564i 0.447680i
\(959\) 2.38648 + 7.34483i 0.0770635 + 0.237177i
\(960\) −14.1748 + 12.7048i −0.457491 + 0.410045i
\(961\) 20.5266 14.9135i 0.662149 0.481079i
\(962\) 0 0
\(963\) −21.2744 6.91246i −0.685557 0.222751i
\(964\) −5.83458 + 4.23907i −0.187919 + 0.136531i
\(965\) 38.9037 34.8690i 1.25235 1.12247i
\(966\) −5.40444 16.6331i −0.173885 0.535163i
\(967\) 46.3229i 1.48965i −0.667262 0.744823i \(-0.732534\pi\)
0.667262 0.744823i \(-0.267466\pi\)
\(968\) 0 0
\(969\) 50.9783 1.63766
\(970\) −0.744422 7.24122i −0.0239020 0.232501i
\(971\) −43.7639 31.7963i −1.40445 1.02039i −0.994100 0.108463i \(-0.965407\pi\)
−0.410348 0.911929i \(-0.634593\pi\)
\(972\) −18.0431 24.8342i −0.578734 0.796559i
\(973\) −60.0719 19.5185i −1.92582 0.625736i
\(974\) −5.56231 + 17.1190i −0.178228 + 0.548529i
\(975\) 0 0
\(976\) −5.45647 3.96435i −0.174657 0.126896i
\(977\) 26.0237 8.45562i 0.832573 0.270519i 0.138444 0.990370i \(-0.455790\pi\)
0.694129 + 0.719851i \(0.255790\pi\)
\(978\) 6.92820i 0.221540i
\(979\) 0 0
\(980\) 15.0000 + 3.22405i 0.479157 + 0.102989i
\(981\) 10.4209 + 32.0723i 0.332714 + 1.02399i
\(982\) 13.7329 18.9018i 0.438235 0.603179i
\(983\) −4.79804 6.60394i −0.153034 0.210633i 0.725616 0.688100i \(-0.241555\pi\)
−0.878650 + 0.477467i \(0.841555\pi\)
\(984\) −5.72017 + 17.6049i −0.182353 + 0.561223i
\(985\) −3.63490 2.10965i −0.115817 0.0672192i
\(986\) −8.88159 + 6.45285i −0.282847 + 0.205501i
\(987\) 34.0944 46.9269i 1.08524 1.49370i
\(988\) 0 0
\(989\) 8.74456 0.278061
\(990\) 0 0
\(991\) −26.9783 −0.856992 −0.428496 0.903544i \(-0.640956\pi\)
−0.428496 + 0.903544i \(0.640956\pi\)
\(992\) 13.1782 4.28187i 0.418409 0.135949i
\(993\) −4.62467 + 6.36532i −0.146760 + 0.201997i
\(994\) 15.8022 11.4810i 0.501216 0.364155i
\(995\) −8.97951 + 15.4715i −0.284670 + 0.490481i
\(996\) 7.10067 21.8536i 0.224993 0.692458i
\(997\) −12.9749 17.8584i −0.410919 0.565582i 0.552523 0.833498i \(-0.313665\pi\)
−0.963442 + 0.267916i \(0.913665\pi\)
\(998\) 9.31389 12.8195i 0.294826 0.405793i
\(999\) 3.20521 + 9.86463i 0.101408 + 0.312103i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.j.i.269.2 16
5.4 even 2 inner 605.2.j.i.269.3 16
11.2 odd 10 605.2.j.j.9.2 16
11.3 even 5 55.2.b.a.34.3 yes 4
11.4 even 5 inner 605.2.j.i.124.2 16
11.5 even 5 inner 605.2.j.i.444.3 16
11.6 odd 10 605.2.j.j.444.2 16
11.7 odd 10 605.2.j.j.124.3 16
11.8 odd 10 605.2.b.c.364.2 4
11.9 even 5 inner 605.2.j.i.9.3 16
11.10 odd 2 605.2.j.j.269.3 16
33.14 odd 10 495.2.c.a.199.2 4
44.3 odd 10 880.2.b.h.529.4 4
55.3 odd 20 275.2.a.h.1.3 4
55.4 even 10 inner 605.2.j.i.124.3 16
55.8 even 20 3025.2.a.ba.1.2 4
55.9 even 10 inner 605.2.j.i.9.2 16
55.14 even 10 55.2.b.a.34.2 4
55.19 odd 10 605.2.b.c.364.3 4
55.24 odd 10 605.2.j.j.9.3 16
55.29 odd 10 605.2.j.j.124.2 16
55.39 odd 10 605.2.j.j.444.3 16
55.47 odd 20 275.2.a.h.1.2 4
55.49 even 10 inner 605.2.j.i.444.2 16
55.52 even 20 3025.2.a.ba.1.3 4
55.54 odd 2 605.2.j.j.269.2 16
165.14 odd 10 495.2.c.a.199.3 4
165.47 even 20 2475.2.a.bi.1.3 4
165.113 even 20 2475.2.a.bi.1.2 4
220.3 even 20 4400.2.a.cc.1.1 4
220.47 even 20 4400.2.a.cc.1.4 4
220.179 odd 10 880.2.b.h.529.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.b.a.34.2 4 55.14 even 10
55.2.b.a.34.3 yes 4 11.3 even 5
275.2.a.h.1.2 4 55.47 odd 20
275.2.a.h.1.3 4 55.3 odd 20
495.2.c.a.199.2 4 33.14 odd 10
495.2.c.a.199.3 4 165.14 odd 10
605.2.b.c.364.2 4 11.8 odd 10
605.2.b.c.364.3 4 55.19 odd 10
605.2.j.i.9.2 16 55.9 even 10 inner
605.2.j.i.9.3 16 11.9 even 5 inner
605.2.j.i.124.2 16 11.4 even 5 inner
605.2.j.i.124.3 16 55.4 even 10 inner
605.2.j.i.269.2 16 1.1 even 1 trivial
605.2.j.i.269.3 16 5.4 even 2 inner
605.2.j.i.444.2 16 55.49 even 10 inner
605.2.j.i.444.3 16 11.5 even 5 inner
605.2.j.j.9.2 16 11.2 odd 10
605.2.j.j.9.3 16 55.24 odd 10
605.2.j.j.124.2 16 55.29 odd 10
605.2.j.j.124.3 16 11.7 odd 10
605.2.j.j.269.2 16 55.54 odd 2
605.2.j.j.269.3 16 11.10 odd 2
605.2.j.j.444.2 16 11.6 odd 10
605.2.j.j.444.3 16 55.39 odd 10
880.2.b.h.529.1 4 220.179 odd 10
880.2.b.h.529.4 4 44.3 odd 10
2475.2.a.bi.1.2 4 165.113 even 20
2475.2.a.bi.1.3 4 165.47 even 20
3025.2.a.ba.1.2 4 55.8 even 20
3025.2.a.ba.1.3 4 55.52 even 20
4400.2.a.cc.1.1 4 220.3 even 20
4400.2.a.cc.1.4 4 220.47 even 20