# Properties

 Label 605.2.j.e.444.1 Level $605$ Weight $2$ Character 605.444 Analytic conductor $4.831$ Analytic rank $0$ Dimension $16$ CM no Inner twists $8$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$605 = 5 \cdot 11^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 605.j (of order $$10$$, degree $$4$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.83094932229$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$4$$ over $$\Q(\zeta_{10})$$ Coefficient field: 16.0.6879707136000000000000.7 Defining polynomial: $$x^{16} - 4x^{14} + 15x^{12} - 56x^{10} + 209x^{8} - 56x^{6} + 15x^{4} - 4x^{2} + 1$$ x^16 - 4*x^14 + 15*x^12 - 56*x^10 + 209*x^8 - 56*x^6 + 15*x^4 - 4*x^2 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

## Embedding invariants

 Embedding label 444.1 Root $$1.83730 + 0.596975i$$ of defining polynomial Character $$\chi$$ $$=$$ 605.444 Dual form 605.2.j.e.124.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.13551 + 1.56290i) q^{2} +(0.492303 + 0.159959i) q^{3} +(-0.535233 - 1.64728i) q^{4} +(0.570005 - 2.16220i) q^{5} +(-0.809017 + 0.587785i) q^{6} +(0.852694 - 0.277057i) q^{7} +(-0.492303 - 0.159959i) q^{8} +(-2.21028 - 1.60586i) q^{9} +O(q^{10})$$ $$q+(-1.13551 + 1.56290i) q^{2} +(0.492303 + 0.159959i) q^{3} +(-0.535233 - 1.64728i) q^{4} +(0.570005 - 2.16220i) q^{5} +(-0.809017 + 0.587785i) q^{6} +(0.852694 - 0.277057i) q^{7} +(-0.492303 - 0.159959i) q^{8} +(-2.21028 - 1.60586i) q^{9} +(2.73205 + 3.34607i) q^{10} -0.896575i q^{12} +(-2.49376 + 3.43237i) q^{13} +(-0.535233 + 1.64728i) q^{14} +(0.626478 - 0.973279i) q^{15} +(3.61153 - 2.62393i) q^{16} +(0.608520 + 0.837556i) q^{17} +(5.01960 - 1.63097i) q^{18} +(1.91472 - 5.89289i) q^{19} +(-3.86682 + 0.218323i) q^{20} +0.464102 q^{21} -6.31319i q^{23} +(-0.216775 - 0.157497i) q^{24} +(-4.35019 - 2.46492i) q^{25} +(-2.53275 - 7.79500i) q^{26} +(-1.74403 - 2.40046i) q^{27} +(-0.912780 - 1.25633i) q^{28} +(-2.14093 - 6.58911i) q^{29} +(0.809764 + 2.08429i) q^{30} +(4.26186 + 3.09642i) q^{31} +7.58871i q^{32} -2.00000 q^{34} +(-0.113012 - 2.00162i) q^{35} +(-1.46228 + 4.50045i) q^{36} +(6.36459 - 2.06798i) q^{37} +(7.03582 + 9.68397i) q^{38} +(-1.77672 + 1.29087i) q^{39} +(-0.626478 + 0.973279i) q^{40} +(0.535233 - 1.64728i) q^{41} +(-0.526994 + 0.725345i) q^{42} -10.6945i q^{43} +(-4.73205 + 3.86370i) q^{45} +(9.86689 + 7.16872i) q^{46} +(-3.90308 - 1.26819i) q^{47} +(2.19769 - 0.714073i) q^{48} +(-5.01279 + 3.64201i) q^{49} +(8.79213 - 3.99996i) q^{50} +(0.165602 + 0.509670i) q^{51} +(6.98881 + 2.27080i) q^{52} +(7.03582 - 9.68397i) q^{53} +5.73205 q^{54} -0.464102 q^{56} +(1.88524 - 2.59481i) q^{57} +(12.7292 + 4.13596i) q^{58} +(1.46228 + 4.50045i) q^{59} +(-1.93857 - 0.511052i) q^{60} +(-6.68891 + 4.85978i) q^{61} +(-9.67880 + 3.14483i) q^{62} +(-2.32960 - 0.756934i) q^{63} +(-4.63733 - 3.36921i) q^{64} +(6.00000 + 7.34847i) q^{65} +14.9372i q^{67} +(1.05399 - 1.45069i) q^{68} +(1.00985 - 3.10800i) q^{69} +(3.25665 + 2.09624i) q^{70} +(-1.77672 + 1.29087i) q^{71} +(0.831254 + 1.14412i) q^{72} +(4.65921 - 1.51387i) q^{73} +(-3.99503 + 12.2955i) q^{74} +(-1.74732 - 1.90934i) q^{75} -10.7321 q^{76} -4.24264i q^{78} +(4.42055 + 3.21172i) q^{79} +(-3.61487 - 9.30450i) q^{80} +(2.05813 + 6.33428i) q^{81} +(1.96677 + 2.70702i) q^{82} +(-5.81878 - 8.00886i) q^{83} +(-0.248403 - 0.764504i) q^{84} +(2.15782 - 0.838329i) q^{85} +(16.7145 + 12.1438i) q^{86} -3.58630i q^{87} +6.46410 q^{89} +(-0.665276 - 11.7830i) q^{90} +(-1.17545 + 3.61767i) q^{91} +(-10.3996 + 3.37903i) q^{92} +(1.60283 + 2.20610i) q^{93} +(6.41405 - 4.66008i) q^{94} +(-11.6502 - 7.49897i) q^{95} +(-1.21388 + 3.73594i) q^{96} +(-0.385786 + 0.530989i) q^{97} -11.9700i q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16 q - 4 q^{6} - 4 q^{9}+O(q^{10})$$ 16 * q - 4 * q^6 - 4 * q^9 $$16 q - 4 q^{6} - 4 q^{9} + 16 q^{10} - 4 q^{15} + 4 q^{16} - 4 q^{19} - 12 q^{20} - 48 q^{21} - 8 q^{24} - 4 q^{25} + 12 q^{26} + 28 q^{31} - 32 q^{34} - 12 q^{35} + 12 q^{36} + 12 q^{39} + 4 q^{40} - 48 q^{45} + 28 q^{46} - 4 q^{49} + 24 q^{50} - 16 q^{51} + 64 q^{54} + 48 q^{56} - 12 q^{59} - 12 q^{60} - 40 q^{61} - 16 q^{64} + 96 q^{65} - 20 q^{69} - 12 q^{70} + 12 q^{71} + 24 q^{74} - 24 q^{75} - 144 q^{76} + 8 q^{79} - 24 q^{80} + 8 q^{81} + 24 q^{84} + 8 q^{85} + 48 q^{86} + 48 q^{89} - 16 q^{90} + 36 q^{91} + 4 q^{94} + 36 q^{95} - 12 q^{96}+O(q^{100})$$ 16 * q - 4 * q^6 - 4 * q^9 + 16 * q^10 - 4 * q^15 + 4 * q^16 - 4 * q^19 - 12 * q^20 - 48 * q^21 - 8 * q^24 - 4 * q^25 + 12 * q^26 + 28 * q^31 - 32 * q^34 - 12 * q^35 + 12 * q^36 + 12 * q^39 + 4 * q^40 - 48 * q^45 + 28 * q^46 - 4 * q^49 + 24 * q^50 - 16 * q^51 + 64 * q^54 + 48 * q^56 - 12 * q^59 - 12 * q^60 - 40 * q^61 - 16 * q^64 + 96 * q^65 - 20 * q^69 - 12 * q^70 + 12 * q^71 + 24 * q^74 - 24 * q^75 - 144 * q^76 + 8 * q^79 - 24 * q^80 + 8 * q^81 + 24 * q^84 + 8 * q^85 + 48 * q^86 + 48 * q^89 - 16 * q^90 + 36 * q^91 + 4 * q^94 + 36 * q^95 - 12 * q^96

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/605\mathbb{Z}\right)^\times$$.

 $$n$$ $$122$$ $$486$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{1}{5}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.13551 + 1.56290i −0.802930 + 1.10514i 0.189446 + 0.981891i $$0.439331\pi$$
−0.992376 + 0.123247i $$0.960669\pi$$
$$3$$ 0.492303 + 0.159959i 0.284231 + 0.0923524i 0.447663 0.894202i $$-0.352256\pi$$
−0.163432 + 0.986555i $$0.552256\pi$$
$$4$$ −0.535233 1.64728i −0.267617 0.823639i
$$5$$ 0.570005 2.16220i 0.254914 0.966964i
$$6$$ −0.809017 + 0.587785i −0.330280 + 0.239962i
$$7$$ 0.852694 0.277057i 0.322288 0.104718i −0.143405 0.989664i $$-0.545805\pi$$
0.465693 + 0.884946i $$0.345805\pi$$
$$8$$ −0.492303 0.159959i −0.174055 0.0565540i
$$9$$ −2.21028 1.60586i −0.736759 0.535286i
$$10$$ 2.73205 + 3.34607i 0.863950 + 1.05812i
$$11$$ 0 0
$$12$$ 0.896575i 0.258819i
$$13$$ −2.49376 + 3.43237i −0.691645 + 0.951968i 0.308355 + 0.951271i $$0.400222\pi$$
−1.00000 0.000696272i $$0.999778\pi$$
$$14$$ −0.535233 + 1.64728i −0.143047 + 0.440254i
$$15$$ 0.626478 0.973279i 0.161756 0.251299i
$$16$$ 3.61153 2.62393i 0.902884 0.655983i
$$17$$ 0.608520 + 0.837556i 0.147588 + 0.203137i 0.876410 0.481566i $$-0.159932\pi$$
−0.728822 + 0.684703i $$0.759932\pi$$
$$18$$ 5.01960 1.63097i 1.18313 0.384422i
$$19$$ 1.91472 5.89289i 0.439266 1.35192i −0.449385 0.893338i $$-0.648357\pi$$
0.888651 0.458584i $$-0.151643\pi$$
$$20$$ −3.86682 + 0.218323i −0.864648 + 0.0488185i
$$21$$ 0.464102 0.101275
$$22$$ 0 0
$$23$$ 6.31319i 1.31639i −0.752847 0.658196i $$-0.771320\pi$$
0.752847 0.658196i $$-0.228680\pi$$
$$24$$ −0.216775 0.157497i −0.0442491 0.0321489i
$$25$$ −4.35019 2.46492i −0.870038 0.492985i
$$26$$ −2.53275 7.79500i −0.496713 1.52873i
$$27$$ −1.74403 2.40046i −0.335639 0.461968i
$$28$$ −0.912780 1.25633i −0.172499 0.237425i
$$29$$ −2.14093 6.58911i −0.397561 1.22357i −0.926949 0.375188i $$-0.877578\pi$$
0.529388 0.848380i $$-0.322422\pi$$
$$30$$ 0.809764 + 2.08429i 0.147842 + 0.380538i
$$31$$ 4.26186 + 3.09642i 0.765453 + 0.556134i 0.900578 0.434695i $$-0.143144\pi$$
−0.135125 + 0.990829i $$0.543144\pi$$
$$32$$ 7.58871i 1.34151i
$$33$$ 0 0
$$34$$ −2.00000 −0.342997
$$35$$ −0.113012 2.00162i −0.0191026 0.338335i
$$36$$ −1.46228 + 4.50045i −0.243714 + 0.750075i
$$37$$ 6.36459 2.06798i 1.04633 0.339974i 0.265105 0.964220i $$-0.414594\pi$$
0.781228 + 0.624246i $$0.214594\pi$$
$$38$$ 7.03582 + 9.68397i 1.14136 + 1.57095i
$$39$$ −1.77672 + 1.29087i −0.284504 + 0.206704i
$$40$$ −0.626478 + 0.973279i −0.0990548 + 0.153889i
$$41$$ 0.535233 1.64728i 0.0835894 0.257262i −0.900523 0.434808i $$-0.856816\pi$$
0.984112 + 0.177547i $$0.0568161\pi$$
$$42$$ −0.526994 + 0.725345i −0.0813169 + 0.111923i
$$43$$ 10.6945i 1.63090i −0.578827 0.815451i $$-0.696489\pi$$
0.578827 0.815451i $$-0.303511\pi$$
$$44$$ 0 0
$$45$$ −4.73205 + 3.86370i −0.705412 + 0.575967i
$$46$$ 9.86689 + 7.16872i 1.45479 + 1.05697i
$$47$$ −3.90308 1.26819i −0.569323 0.184984i 0.0101891 0.999948i $$-0.496757\pi$$
−0.579512 + 0.814964i $$0.696757\pi$$
$$48$$ 2.19769 0.714073i 0.317209 0.103068i
$$49$$ −5.01279 + 3.64201i −0.716113 + 0.520287i
$$50$$ 8.79213 3.99996i 1.24340 0.565680i
$$51$$ 0.165602 + 0.509670i 0.0231889 + 0.0713680i
$$52$$ 6.98881 + 2.27080i 0.969174 + 0.314904i
$$53$$ 7.03582 9.68397i 0.966444 1.33020i 0.0226209 0.999744i $$-0.492799\pi$$
0.943823 0.330452i $$-0.107201\pi$$
$$54$$ 5.73205 0.780033
$$55$$ 0 0
$$56$$ −0.464102 −0.0620182
$$57$$ 1.88524 2.59481i 0.249706 0.343691i
$$58$$ 12.7292 + 4.13596i 1.67142 + 0.543079i
$$59$$ 1.46228 + 4.50045i 0.190373 + 0.585908i 0.999999 0.00103733i $$-0.000330192\pi$$
−0.809626 + 0.586946i $$0.800330\pi$$
$$60$$ −1.93857 0.511052i −0.250269 0.0659766i
$$61$$ −6.68891 + 4.85978i −0.856427 + 0.622231i −0.926911 0.375282i $$-0.877546\pi$$
0.0704833 + 0.997513i $$0.477546\pi$$
$$62$$ −9.67880 + 3.14483i −1.22921 + 0.399394i
$$63$$ −2.32960 0.756934i −0.293502 0.0953647i
$$64$$ −4.63733 3.36921i −0.579666 0.421152i
$$65$$ 6.00000 + 7.34847i 0.744208 + 0.911465i
$$66$$ 0 0
$$67$$ 14.9372i 1.82487i 0.409226 + 0.912433i $$0.365799\pi$$
−0.409226 + 0.912433i $$0.634201\pi$$
$$68$$ 1.05399 1.45069i 0.127815 0.175922i
$$69$$ 1.00985 3.10800i 0.121572 0.374160i
$$70$$ 3.25665 + 2.09624i 0.389245 + 0.250548i
$$71$$ −1.77672 + 1.29087i −0.210858 + 0.153198i −0.688202 0.725519i $$-0.741600\pi$$
0.477344 + 0.878717i $$0.341600\pi$$
$$72$$ 0.831254 + 1.14412i 0.0979642 + 0.134836i
$$73$$ 4.65921 1.51387i 0.545319 0.177185i −0.0233860 0.999727i $$-0.507445\pi$$
0.568705 + 0.822542i $$0.307445\pi$$
$$74$$ −3.99503 + 12.2955i −0.464413 + 1.42932i
$$75$$ −1.74732 1.90934i −0.201764 0.220472i
$$76$$ −10.7321 −1.23105
$$77$$ 0 0
$$78$$ 4.24264i 0.480384i
$$79$$ 4.42055 + 3.21172i 0.497351 + 0.361347i 0.808004 0.589177i $$-0.200548\pi$$
−0.310653 + 0.950523i $$0.600548\pi$$
$$80$$ −3.61487 9.30450i −0.404155 1.04027i
$$81$$ 2.05813 + 6.33428i 0.228681 + 0.703809i
$$82$$ 1.96677 + 2.70702i 0.217193 + 0.298941i
$$83$$ −5.81878 8.00886i −0.638694 0.879087i 0.359851 0.933010i $$-0.382827\pi$$
−0.998545 + 0.0539231i $$0.982827\pi$$
$$84$$ −0.248403 0.764504i −0.0271029 0.0834143i
$$85$$ 2.15782 0.838329i 0.234048 0.0909296i
$$86$$ 16.7145 + 12.1438i 1.80237 + 1.30950i
$$87$$ 3.58630i 0.384492i
$$88$$ 0 0
$$89$$ 6.46410 0.685193 0.342597 0.939483i $$-0.388694\pi$$
0.342597 + 0.939483i $$0.388694\pi$$
$$90$$ −0.665276 11.7830i −0.0701262 1.24204i
$$91$$ −1.17545 + 3.61767i −0.123221 + 0.379235i
$$92$$ −10.3996 + 3.37903i −1.08423 + 0.352288i
$$93$$ 1.60283 + 2.20610i 0.166205 + 0.228762i
$$94$$ 6.41405 4.66008i 0.661559 0.480651i
$$95$$ −11.6502 7.49897i −1.19528 0.769378i
$$96$$ −1.21388 + 3.73594i −0.123891 + 0.381298i
$$97$$ −0.385786 + 0.530989i −0.0391707 + 0.0539138i −0.828153 0.560502i $$-0.810608\pi$$
0.788982 + 0.614416i $$0.210608\pi$$
$$98$$ 11.9700i 1.20916i
$$99$$ 0 0
$$100$$ −1.73205 + 8.48528i −0.173205 + 0.848528i
$$101$$ −1.12640 0.818376i −0.112081 0.0814315i 0.530333 0.847789i $$-0.322067\pi$$
−0.642414 + 0.766358i $$0.722067\pi$$
$$102$$ −0.984606 0.319918i −0.0974905 0.0316766i
$$103$$ −4.03499 + 1.31105i −0.397579 + 0.129181i −0.500981 0.865458i $$-0.667027\pi$$
0.103401 + 0.994640i $$0.467027\pi$$
$$104$$ 1.77672 1.29087i 0.174222 0.126580i
$$105$$ 0.264540 1.00348i 0.0258165 0.0979295i
$$106$$ 7.14582 + 21.9926i 0.694063 + 2.13611i
$$107$$ −4.16690 1.35391i −0.402830 0.130887i 0.100593 0.994928i $$-0.467926\pi$$
−0.503423 + 0.864040i $$0.667926\pi$$
$$108$$ −3.02076 + 4.15771i −0.290672 + 0.400076i
$$109$$ −1.19615 −0.114571 −0.0572853 0.998358i $$-0.518244\pi$$
−0.0572853 + 0.998358i $$0.518244\pi$$
$$110$$ 0 0
$$111$$ 3.46410 0.328798
$$112$$ 2.35255 3.23801i 0.222295 0.305963i
$$113$$ 2.68999 + 0.874032i 0.253053 + 0.0822220i 0.432797 0.901492i $$-0.357527\pi$$
−0.179743 + 0.983714i $$0.557527\pi$$
$$114$$ 1.91472 + 5.89289i 0.179330 + 0.551920i
$$115$$ −13.6504 3.59855i −1.27290 0.335566i
$$116$$ −9.70820 + 7.05342i −0.901384 + 0.654894i
$$117$$ 11.0238 3.58185i 1.01915 0.331142i
$$118$$ −8.69420 2.82492i −0.800366 0.260055i
$$119$$ 0.750932 + 0.545584i 0.0688378 + 0.0500136i
$$120$$ −0.464102 + 0.378937i −0.0423665 + 0.0345921i
$$121$$ 0 0
$$122$$ 15.9725i 1.44608i
$$123$$ 0.526994 0.725345i 0.0475174 0.0654021i
$$124$$ 2.81958 8.67778i 0.253206 0.779287i
$$125$$ −7.80928 + 8.00095i −0.698483 + 0.715626i
$$126$$ 3.82831 2.78143i 0.341053 0.247789i
$$127$$ 1.96677 + 2.70702i 0.174522 + 0.240210i 0.887313 0.461167i $$-0.152569\pi$$
−0.712791 + 0.701377i $$0.752569\pi$$
$$128$$ −3.90308 + 1.26819i −0.344987 + 0.112093i
$$129$$ 1.71069 5.26495i 0.150618 0.463553i
$$130$$ −18.2980 + 1.03312i −1.60484 + 0.0906103i
$$131$$ −21.1244 −1.84564 −0.922822 0.385227i $$-0.874123\pi$$
−0.922822 + 0.385227i $$0.874123\pi$$
$$132$$ 0 0
$$133$$ 5.55532i 0.481707i
$$134$$ −23.3453 16.9614i −2.01673 1.46524i
$$135$$ −6.18437 + 2.40267i −0.532266 + 0.206789i
$$136$$ −0.165602 0.509670i −0.0142002 0.0437038i
$$137$$ −8.08980 11.1347i −0.691159 0.951298i −1.00000 0.000184728i $$-0.999941\pi$$
0.308841 0.951114i $$-0.400059\pi$$
$$138$$ 3.71080 + 5.10748i 0.315884 + 0.434778i
$$139$$ 5.12612 + 15.7766i 0.434791 + 1.33815i 0.893300 + 0.449461i $$0.148384\pi$$
−0.458509 + 0.888690i $$0.651616\pi$$
$$140$$ −3.23673 + 1.25749i −0.273554 + 0.106278i
$$141$$ −1.71864 1.24866i −0.144736 0.105157i
$$142$$ 4.24264i 0.356034i
$$143$$ 0 0
$$144$$ −12.1962 −1.01635
$$145$$ −15.4673 + 0.873292i −1.28449 + 0.0725230i
$$146$$ −2.92457 + 9.00090i −0.242039 + 0.744919i
$$147$$ −3.05038 + 0.991130i −0.251592 + 0.0817470i
$$148$$ −6.81308 9.37740i −0.560032 0.770818i
$$149$$ 11.1095 8.07150i 0.910123 0.661243i −0.0309232 0.999522i $$-0.509845\pi$$
0.941046 + 0.338279i $$0.109845\pi$$
$$150$$ 4.96822 0.562811i 0.405654 0.0459534i
$$151$$ 1.91472 5.89289i 0.155817 0.479557i −0.842425 0.538813i $$-0.818873\pi$$
0.998243 + 0.0592563i $$0.0188729\pi$$
$$152$$ −1.88524 + 2.59481i −0.152913 + 0.210467i
$$153$$ 2.82843i 0.228665i
$$154$$ 0 0
$$155$$ 9.12436 7.45001i 0.732886 0.598399i
$$156$$ 3.07738 + 2.23585i 0.246387 + 0.179011i
$$157$$ 11.4808 + 3.73032i 0.916264 + 0.297712i 0.728933 0.684585i $$-0.240016\pi$$
0.187331 + 0.982297i $$0.440016\pi$$
$$158$$ −10.0392 + 3.26193i −0.798675 + 0.259505i
$$159$$ 5.01279 3.64201i 0.397540 0.288830i
$$160$$ 16.4083 + 4.32560i 1.29719 + 0.341969i
$$161$$ −1.74911 5.38322i −0.137850 0.424257i
$$162$$ −12.2369 3.97601i −0.961421 0.312384i
$$163$$ −4.46053 + 6.13939i −0.349376 + 0.480874i −0.947150 0.320790i $$-0.896052\pi$$
0.597775 + 0.801664i $$0.296052\pi$$
$$164$$ −3.00000 −0.234261
$$165$$ 0 0
$$166$$ 19.1244 1.48434
$$167$$ −1.13551 + 1.56290i −0.0878687 + 0.120941i −0.850688 0.525671i $$-0.823814\pi$$
0.762820 + 0.646611i $$0.223814\pi$$
$$168$$ −0.228479 0.0742372i −0.0176275 0.00572753i
$$169$$ −1.54508 4.75528i −0.118853 0.365791i
$$170$$ −1.14001 + 4.32439i −0.0874347 + 0.331666i
$$171$$ −13.6952 + 9.95015i −1.04730 + 0.760907i
$$172$$ −17.6169 + 5.72407i −1.34327 + 0.436456i
$$173$$ 7.25263 + 2.35652i 0.551408 + 0.179163i 0.571451 0.820636i $$-0.306381\pi$$
−0.0200438 + 0.999799i $$0.506381\pi$$
$$174$$ 5.60503 + 4.07230i 0.424917 + 0.308720i
$$175$$ −4.39230 0.896575i −0.332027 0.0677747i
$$176$$ 0 0
$$177$$ 2.44949i 0.184115i
$$178$$ −7.34008 + 10.1027i −0.550162 + 0.757233i
$$179$$ 2.63774 8.11812i 0.197154 0.606777i −0.802791 0.596261i $$-0.796652\pi$$
0.999945 0.0105163i $$-0.00334750\pi$$
$$180$$ 8.89734 + 5.72702i 0.663169 + 0.426867i
$$181$$ −2.74443 + 1.99395i −0.203992 + 0.148209i −0.685091 0.728457i $$-0.740238\pi$$
0.481099 + 0.876666i $$0.340238\pi$$
$$182$$ −4.31932 5.94504i −0.320169 0.440675i
$$183$$ −4.07034 + 1.32253i −0.300888 + 0.0977644i
$$184$$ −1.00985 + 3.10800i −0.0744473 + 0.229125i
$$185$$ −0.843536 14.9403i −0.0620180 1.09843i
$$186$$ −5.26795 −0.386265
$$187$$ 0 0
$$188$$ 7.10823i 0.518421i
$$189$$ −2.15219 1.56366i −0.156549 0.113739i
$$190$$ 24.9491 9.69291i 1.81000 0.703198i
$$191$$ −3.31639 10.2068i −0.239965 0.738537i −0.996424 0.0844956i $$-0.973072\pi$$
0.756459 0.654042i $$-0.226928\pi$$
$$192$$ −1.74403 2.40046i −0.125865 0.173238i
$$193$$ 6.04151 + 8.31543i 0.434877 + 0.598557i 0.969064 0.246809i $$-0.0793821\pi$$
−0.534187 + 0.845367i $$0.679382\pi$$
$$194$$ −0.391818 1.20589i −0.0281309 0.0865780i
$$195$$ 1.77836 + 4.57743i 0.127351 + 0.327796i
$$196$$ 8.68241 + 6.30814i 0.620172 + 0.450582i
$$197$$ 2.55103i 0.181753i 0.995862 + 0.0908765i $$0.0289669\pi$$
−0.995862 + 0.0908765i $$0.971033\pi$$
$$198$$ 0 0
$$199$$ 2.00000 0.141776 0.0708881 0.997484i $$-0.477417\pi$$
0.0708881 + 0.997484i $$0.477417\pi$$
$$200$$ 1.74732 + 1.90934i 0.123555 + 0.135011i
$$201$$ −2.38934 + 7.35362i −0.168531 + 0.518684i
$$202$$ 2.55808 0.831171i 0.179986 0.0584810i
$$203$$ −3.65112 5.02534i −0.256258 0.352709i
$$204$$ 0.750932 0.545584i 0.0525758 0.0381985i
$$205$$ −3.25665 2.09624i −0.227455 0.146407i
$$206$$ 2.53275 7.79500i 0.176465 0.543104i
$$207$$ −10.1381 + 13.9539i −0.704647 + 0.969863i
$$208$$ 18.9396i 1.31322i
$$209$$ 0 0
$$210$$ 1.26795 + 1.55291i 0.0874968 + 0.107161i
$$211$$ 8.99979 + 6.53873i 0.619571 + 0.450145i 0.852772 0.522284i $$-0.174920\pi$$
−0.233200 + 0.972429i $$0.574920\pi$$
$$212$$ −19.7180 6.40677i −1.35424 0.440018i
$$213$$ −1.08117 + 0.351294i −0.0740807 + 0.0240703i
$$214$$ 6.84760 4.97507i 0.468092 0.340089i
$$215$$ −23.1237 6.09593i −1.57702 0.415739i
$$216$$ 0.474619 + 1.46073i 0.0322937 + 0.0993898i
$$217$$ 4.49195 + 1.45952i 0.304933 + 0.0990788i
$$218$$ 1.35825 1.86947i 0.0919921 0.126616i
$$219$$ 2.53590 0.171360
$$220$$ 0 0
$$221$$ −4.39230 −0.295458
$$222$$ −3.93354 + 5.41405i −0.264002 + 0.363367i
$$223$$ −5.51190 1.79092i −0.369104 0.119929i 0.118591 0.992943i $$-0.462162\pi$$
−0.487695 + 0.873014i $$0.662162\pi$$
$$224$$ 2.10250 + 6.47084i 0.140479 + 0.432351i
$$225$$ 5.65680 + 12.4340i 0.377120 + 0.828930i
$$226$$ −4.42055 + 3.21172i −0.294051 + 0.213640i
$$227$$ 20.4741 6.65245i 1.35892 0.441538i 0.463235 0.886236i $$-0.346689\pi$$
0.895681 + 0.444697i $$0.146689\pi$$
$$228$$ −5.28342 1.71669i −0.349903 0.113690i
$$229$$ −14.5042 10.5379i −0.958466 0.696366i −0.00567196 0.999984i $$-0.501805\pi$$
−0.952794 + 0.303618i $$0.901805\pi$$
$$230$$ 21.1244 17.2480i 1.39290 1.13730i
$$231$$ 0 0
$$232$$ 3.58630i 0.235452i
$$233$$ 7.64434 10.5215i 0.500797 0.689288i −0.481536 0.876426i $$-0.659921\pi$$
0.982334 + 0.187138i $$0.0599211\pi$$
$$234$$ −6.91960 + 21.2963i −0.452349 + 1.39219i
$$235$$ −4.96684 + 7.71635i −0.324001 + 0.503359i
$$236$$ 6.63083 4.81758i 0.431630 0.313598i
$$237$$ 1.66251 + 2.28825i 0.107991 + 0.148638i
$$238$$ −1.70539 + 0.554114i −0.110544 + 0.0359179i
$$239$$ −3.60322 + 11.0896i −0.233073 + 0.717324i 0.764299 + 0.644863i $$0.223085\pi$$
−0.997371 + 0.0724614i $$0.976915\pi$$
$$240$$ −0.291272 5.15887i −0.0188016 0.333003i
$$241$$ 10.1244 0.652167 0.326084 0.945341i $$-0.394271\pi$$
0.326084 + 0.945341i $$0.394271\pi$$
$$242$$ 0 0
$$243$$ 12.3490i 0.792188i
$$244$$ 11.5855 + 8.41738i 0.741688 + 0.538868i
$$245$$ 5.01742 + 12.9146i 0.320551 + 0.825084i
$$246$$ 0.535233 + 1.64728i 0.0341252 + 0.105027i
$$247$$ 15.4517 + 21.2675i 0.983170 + 1.35322i
$$248$$ −1.60283 2.20610i −0.101780 0.140088i
$$249$$ −1.58351 4.87355i −0.100351 0.308849i
$$250$$ −3.63714 21.2903i −0.230033 1.34652i
$$251$$ 11.4849 + 8.34429i 0.724922 + 0.526687i 0.887953 0.459934i $$-0.152127\pi$$
−0.163031 + 0.986621i $$0.552127\pi$$
$$252$$ 4.24264i 0.267261i
$$253$$ 0 0
$$254$$ −6.46410 −0.405594
$$255$$ 1.19640 0.0675494i 0.0749215 0.00423011i
$$256$$ 5.99255 18.4432i 0.374534 1.15270i
$$257$$ 4.75577 1.54524i 0.296657 0.0963897i −0.156907 0.987613i $$-0.550152\pi$$
0.453564 + 0.891224i $$0.350152\pi$$
$$258$$ 6.28609 + 8.65206i 0.391355 + 0.538654i
$$259$$ 4.85410 3.52671i 0.301619 0.219139i
$$260$$ 8.89357 13.8168i 0.551556 0.856882i
$$261$$ −5.84914 + 18.0018i −0.362052 + 1.11428i
$$262$$ 23.9870 33.0153i 1.48192 2.03969i
$$263$$ 21.4906i 1.32517i 0.748988 + 0.662584i $$0.230540\pi$$
−0.748988 + 0.662584i $$0.769460\pi$$
$$264$$ 0 0
$$265$$ −16.9282 20.7327i −1.03989 1.27360i
$$266$$ 8.68241 + 6.30814i 0.532353 + 0.386777i
$$267$$ 3.18230 + 1.03399i 0.194753 + 0.0632792i
$$268$$ 24.6057 7.99487i 1.50303 0.488364i
$$269$$ −15.9636 + 11.5982i −0.973316 + 0.707155i −0.956205 0.292698i $$-0.905447\pi$$
−0.0171109 + 0.999854i $$0.505447\pi$$
$$270$$ 3.26730 12.3938i 0.198841 0.754264i
$$271$$ −1.40167 4.31390i −0.0851454 0.262051i 0.899415 0.437096i $$-0.143993\pi$$
−0.984560 + 0.175045i $$0.943993\pi$$
$$272$$ 4.39538 + 1.42815i 0.266509 + 0.0865941i
$$273$$ −1.15736 + 1.59297i −0.0700465 + 0.0964108i
$$274$$ 26.5885 1.60627
$$275$$ 0 0
$$276$$ −5.66025 −0.340707
$$277$$ 13.3438 18.3661i 0.801748 1.10351i −0.190796 0.981630i $$-0.561107\pi$$
0.992545 0.121882i $$-0.0388930\pi$$
$$278$$ −30.4780 9.90289i −1.82795 0.593936i
$$279$$ −4.44747 13.6879i −0.266263 0.819473i
$$280$$ −0.264540 + 1.00348i −0.0158093 + 0.0599693i
$$281$$ 14.0126 10.1807i 0.835921 0.607332i −0.0853074 0.996355i $$-0.527187\pi$$
0.921228 + 0.389023i $$0.127187\pi$$
$$282$$ 3.90308 1.26819i 0.232425 0.0755194i
$$283$$ 28.6407 + 9.30592i 1.70251 + 0.553179i 0.989059 0.147524i $$-0.0471303\pi$$
0.713453 + 0.700703i $$0.247130\pi$$
$$284$$ 3.07738 + 2.23585i 0.182609 + 0.132673i
$$285$$ −4.53590 5.55532i −0.268683 0.329069i
$$286$$ 0 0
$$287$$ 1.55291i 0.0916656i
$$288$$ 12.1864 16.7731i 0.718090 0.988366i
$$289$$ 4.92209 15.1486i 0.289534 0.891095i
$$290$$ 16.1985 25.1655i 0.951207 1.47777i
$$291$$ −0.274860 + 0.199698i −0.0161126 + 0.0117065i
$$292$$ −4.98752 6.86474i −0.291873 0.401728i
$$293$$ −8.95802 + 2.91064i −0.523333 + 0.170041i −0.558757 0.829331i $$-0.688722\pi$$
0.0354243 + 0.999372i $$0.488722\pi$$
$$294$$ 1.91472 5.89289i 0.111669 0.343680i
$$295$$ 10.5644 0.596470i 0.615081 0.0347278i
$$296$$ −3.46410 −0.201347
$$297$$ 0 0
$$298$$ 26.5283i 1.53674i
$$299$$ 21.6692 + 15.7436i 1.25316 + 0.910476i
$$300$$ −2.20999 + 3.90027i −0.127594 + 0.225182i
$$301$$ −2.96300 9.11916i −0.170784 0.525620i
$$302$$ 7.03582 + 9.68397i 0.404866 + 0.557250i
$$303$$ −0.423623 0.583067i −0.0243365 0.0334963i
$$304$$ −8.54749 26.3065i −0.490232 1.50878i
$$305$$ 6.69509 + 17.2328i 0.383360 + 0.986749i
$$306$$ 4.42055 + 3.21172i 0.252706 + 0.183602i
$$307$$ 17.6269i 1.00602i −0.864280 0.503010i $$-0.832226\pi$$
0.864280 0.503010i $$-0.167774\pi$$
$$308$$ 0 0
$$309$$ −2.19615 −0.124935
$$310$$ 1.28279 + 22.7200i 0.0728574 + 1.29041i
$$311$$ −8.66872 + 26.6796i −0.491558 + 1.51286i 0.330695 + 0.943738i $$0.392717\pi$$
−0.822253 + 0.569122i $$0.807283\pi$$
$$312$$ 1.08117 0.351294i 0.0612093 0.0198881i
$$313$$ −10.0784 13.8718i −0.569666 0.784078i 0.422849 0.906200i $$-0.361030\pi$$
−0.992515 + 0.122122i $$0.961030\pi$$
$$314$$ −18.8667 + 13.7075i −1.06471 + 0.773556i
$$315$$ −2.96452 + 4.60560i −0.167032 + 0.259496i
$$316$$ 2.92457 9.00090i 0.164520 0.506340i
$$317$$ −4.09659 + 5.63847i −0.230087 + 0.316688i −0.908413 0.418073i $$-0.862706\pi$$
0.678326 + 0.734761i $$0.262706\pi$$
$$318$$ 11.9700i 0.671247i
$$319$$ 0 0
$$320$$ −9.92820 + 8.10634i −0.555003 + 0.453158i
$$321$$ −1.83481 1.33307i −0.102409 0.0744045i
$$322$$ 10.3996 + 3.37903i 0.579546 + 0.188306i
$$323$$ 6.10077 1.98226i 0.339456 0.110296i
$$324$$ 9.33274 6.78063i 0.518485 0.376702i
$$325$$ 19.3089 8.78452i 1.07106 0.487277i
$$326$$ −4.53027 13.9427i −0.250908 0.772216i
$$327$$ −0.588870 0.191335i −0.0325646 0.0105809i
$$328$$ −0.526994 + 0.725345i −0.0290984 + 0.0400505i
$$329$$ −3.67949 −0.202857
$$330$$ 0 0
$$331$$ −7.80385 −0.428938 −0.214469 0.976731i $$-0.568802\pi$$
−0.214469 + 0.976731i $$0.568802\pi$$
$$332$$ −10.0784 + 13.8718i −0.553125 + 0.761311i
$$333$$ −17.3884 5.64983i −0.952878 0.309609i
$$334$$ −1.15327 3.54939i −0.0631040 0.194214i
$$335$$ 32.2971 + 8.51426i 1.76458 + 0.465184i
$$336$$ 1.67612 1.21777i 0.0914398 0.0664349i
$$337$$ 7.44577 2.41928i 0.405597 0.131786i −0.0991115 0.995076i $$-0.531600\pi$$
0.504708 + 0.863290i $$0.331600\pi$$
$$338$$ 9.18650 + 2.98487i 0.499680 + 0.162356i
$$339$$ 1.18448 + 0.860577i 0.0643323 + 0.0467401i
$$340$$ −2.53590 3.10583i −0.137528 0.168437i
$$341$$ 0 0
$$342$$ 32.7028i 1.76836i
$$343$$ −6.95429 + 9.57176i −0.375496 + 0.516826i
$$344$$ −1.71069 + 5.26495i −0.0922340 + 0.283867i
$$345$$ −6.14450 3.95508i −0.330809 0.212934i
$$346$$ −11.9185 + 8.65928i −0.640741 + 0.465526i
$$347$$ −1.74403 2.40046i −0.0936246 0.128863i 0.759635 0.650350i $$-0.225378\pi$$
−0.853260 + 0.521487i $$0.825378\pi$$
$$348$$ −5.90764 + 1.91951i −0.316683 + 0.102896i
$$349$$ 8.44250 25.9833i 0.451917 1.39086i −0.422800 0.906223i $$-0.638953\pi$$
0.874717 0.484634i $$-0.161047\pi$$
$$350$$ 6.38878 5.84666i 0.341495 0.312517i
$$351$$ 12.5885 0.671922
$$352$$ 0 0
$$353$$ 1.69161i 0.0900356i 0.998986 + 0.0450178i $$0.0143345\pi$$
−0.998986 + 0.0450178i $$0.985666\pi$$
$$354$$ −3.82831 2.78143i −0.203472 0.147831i
$$355$$ 1.77836 + 4.57743i 0.0943858 + 0.242945i
$$356$$ −3.45980 10.6482i −0.183369 0.564352i
$$357$$ 0.282415 + 0.388711i 0.0149470 + 0.0205728i
$$358$$ 9.69263 + 13.3408i 0.512271 + 0.705081i
$$359$$ 5.66729 + 17.4421i 0.299108 + 0.920561i 0.981810 + 0.189864i $$0.0608047\pi$$
−0.682702 + 0.730697i $$0.739195\pi$$
$$360$$ 2.94764 1.14518i 0.155354 0.0603562i
$$361$$ −15.6887 11.3985i −0.825721 0.599922i
$$362$$ 6.55343i 0.344441i
$$363$$ 0 0
$$364$$ 6.58846 0.345329
$$365$$ −0.617511 10.9370i −0.0323220 0.572470i
$$366$$ 2.55494 7.86329i 0.133549 0.411021i
$$367$$ 28.1837 9.15744i 1.47118 0.478015i 0.539714 0.841848i $$-0.318532\pi$$
0.931464 + 0.363834i $$0.118532\pi$$
$$368$$ −16.5654 22.8003i −0.863531 1.18855i
$$369$$ −3.82831 + 2.78143i −0.199294 + 0.144795i
$$370$$ 24.3080 + 15.6465i 1.26371 + 0.813424i
$$371$$ 3.31639 10.2068i 0.172178 0.529910i
$$372$$ 2.77618 3.82108i 0.143938 0.198114i
$$373$$ 34.1170i 1.76651i 0.468892 + 0.883255i $$0.344653\pi$$
−0.468892 + 0.883255i $$0.655347\pi$$
$$374$$ 0 0
$$375$$ −5.12436 + 2.68973i −0.264621 + 0.138897i
$$376$$ 1.71864 + 1.24866i 0.0886321 + 0.0643950i
$$377$$ 27.9552 + 9.08321i 1.43977 + 0.467809i
$$378$$ 4.88769 1.58811i 0.251395 0.0816833i
$$379$$ −4.42055 + 3.21172i −0.227068 + 0.164975i −0.695503 0.718523i $$-0.744818\pi$$
0.468434 + 0.883498i $$0.344818\pi$$
$$380$$ −6.11732 + 23.2048i −0.313812 + 1.19038i
$$381$$ 0.535233 + 1.64728i 0.0274208 + 0.0843926i
$$382$$ 19.7180 + 6.40677i 1.00886 + 0.327799i
$$383$$ −13.9683 + 19.2257i −0.713745 + 0.982386i 0.285964 + 0.958240i $$0.407686\pi$$
−0.999708 + 0.0241451i $$0.992314\pi$$
$$384$$ −2.12436 −0.108408
$$385$$ 0 0
$$386$$ −19.8564 −1.01066
$$387$$ −17.1739 + 23.6379i −0.872999 + 1.20158i
$$388$$ 1.08117 + 0.351294i 0.0548882 + 0.0178343i
$$389$$ 5.60073 + 17.2373i 0.283968 + 0.873965i 0.986706 + 0.162516i $$0.0519609\pi$$
−0.702737 + 0.711449i $$0.748039\pi$$
$$390$$ −9.17342 2.41832i −0.464514 0.122457i
$$391$$ 5.28765 3.84170i 0.267408 0.194283i
$$392$$ 3.05038 0.991130i 0.154068 0.0500596i
$$393$$ −10.3996 3.37903i −0.524590 0.170450i
$$394$$ −3.98700 2.89673i −0.200862 0.145935i
$$395$$ 9.46410 7.72741i 0.476191 0.388808i
$$396$$ 0 0
$$397$$ 16.0096i 0.803500i 0.915749 + 0.401750i $$0.131598\pi$$
−0.915749 + 0.401750i $$0.868402\pi$$
$$398$$ −2.27103 + 3.12580i −0.113836 + 0.156682i
$$399$$ 0.888623 2.73490i 0.0444868 0.136916i
$$400$$ −22.1787 + 2.51245i −1.10893 + 0.125622i
$$401$$ 26.1478 18.9975i 1.30576 0.948691i 0.305767 0.952106i $$-0.401087\pi$$
0.999994 + 0.00341570i $$0.00108725\pi$$
$$402$$ −8.77985 12.0844i −0.437899 0.602717i
$$403$$ −21.2561 + 6.90653i −1.05884 + 0.344039i
$$404$$ −0.745208 + 2.29351i −0.0370755 + 0.114107i
$$405$$ 14.8691 0.839518i 0.738852 0.0417160i
$$406$$ 12.0000 0.595550
$$407$$ 0 0
$$408$$ 0.277401i 0.0137334i
$$409$$ 1.51743 + 1.10248i 0.0750320 + 0.0545139i 0.624669 0.780890i $$-0.285234\pi$$
−0.549637 + 0.835404i $$0.685234\pi$$
$$410$$ 6.97418 2.70952i 0.344430 0.133814i
$$411$$ −2.20155 6.77566i −0.108594 0.334219i
$$412$$ 4.31932 + 5.94504i 0.212798 + 0.292891i
$$413$$ 2.49376 + 3.43237i 0.122710 + 0.168896i
$$414$$ −10.2966 31.6897i −0.506050 1.55746i
$$415$$ −20.6335 + 8.01625i −1.01286 + 0.393502i
$$416$$ −26.0472 18.9244i −1.27707 0.927846i
$$417$$ 8.58682i 0.420498i
$$418$$ 0 0
$$419$$ 29.6603 1.44900 0.724499 0.689276i $$-0.242071\pi$$
0.724499 + 0.689276i $$0.242071\pi$$
$$420$$ −1.79460 + 0.101324i −0.0875675 + 0.00494411i
$$421$$ 6.50560 20.0222i 0.317063 0.975821i −0.657833 0.753164i $$-0.728527\pi$$
0.974897 0.222657i $$-0.0714731\pi$$
$$422$$ −20.4388 + 6.64096i −0.994944 + 0.323277i
$$423$$ 6.59035 + 9.07084i 0.320434 + 0.441039i
$$424$$ −5.01279 + 3.64201i −0.243443 + 0.176871i
$$425$$ −0.582665 5.14348i −0.0282634 0.249496i
$$426$$ 0.678648 2.08867i 0.0328806 0.101196i
$$427$$ −4.35716 + 5.99711i −0.210858 + 0.290221i
$$428$$ 7.58871i 0.366814i
$$429$$ 0 0
$$430$$ 35.7846 29.2180i 1.72569 1.40902i
$$431$$ −15.3132 11.1257i −0.737613 0.535907i 0.154350 0.988016i $$-0.450672\pi$$
−0.891963 + 0.452109i $$0.850672\pi$$
$$432$$ −12.5973 4.09310i −0.606087 0.196930i
$$433$$ −19.2610 + 6.25829i −0.925627 + 0.300754i −0.732773 0.680473i $$-0.761774\pi$$
−0.192854 + 0.981228i $$0.561774\pi$$
$$434$$ −7.38176 + 5.36316i −0.354336 + 0.257440i
$$435$$ −7.75429 2.04421i −0.371790 0.0980123i
$$436$$ 0.640220 + 1.97040i 0.0306610 + 0.0943648i
$$437$$ −37.2030 12.0880i −1.77966 0.578246i
$$438$$ −2.87955 + 3.96336i −0.137590 + 0.189377i
$$439$$ −20.2487 −0.966418 −0.483209 0.875505i $$-0.660529\pi$$
−0.483209 + 0.875505i $$0.660529\pi$$
$$440$$ 0 0
$$441$$ 16.9282 0.806105
$$442$$ 4.98752 6.86474i 0.237232 0.326522i
$$443$$ −8.72954 2.83640i −0.414753 0.134761i 0.0942048 0.995553i $$-0.469969\pi$$
−0.508958 + 0.860791i $$0.669969\pi$$
$$444$$ −1.85410 5.70634i −0.0879918 0.270811i
$$445$$ 3.68457 13.9767i 0.174665 0.662557i
$$446$$ 9.05788 6.58093i 0.428903 0.311616i
$$447$$ 6.76033 2.19656i 0.319753 0.103894i
$$448$$ −4.88769 1.58811i −0.230921 0.0750309i
$$449$$ −8.50816 6.18154i −0.401525 0.291725i 0.368637 0.929573i $$-0.379825\pi$$
−0.770162 + 0.637849i $$0.779825\pi$$
$$450$$ −25.8564 5.27792i −1.21888 0.248803i
$$451$$ 0 0
$$452$$ 4.89898i 0.230429i
$$453$$ 1.88524 2.59481i 0.0885764 0.121915i
$$454$$ −12.8515 + 39.5530i −0.603153 + 1.85631i
$$455$$ 7.15211 + 4.60365i 0.335296 + 0.215823i
$$456$$ −1.34317 + 0.975873i −0.0628999 + 0.0456994i
$$457$$ 12.4688 + 17.1618i 0.583266 + 0.802797i 0.994049 0.108936i $$-0.0347444\pi$$
−0.410782 + 0.911733i $$0.634744\pi$$
$$458$$ 32.9395 10.7027i 1.53916 0.500104i
$$459$$ 0.949237 2.92145i 0.0443066 0.136362i
$$460$$ 1.37832 + 24.4120i 0.0642643 + 1.13822i
$$461$$ 33.0000 1.53696 0.768482 0.639872i $$-0.221013\pi$$
0.768482 + 0.639872i $$0.221013\pi$$
$$462$$ 0 0
$$463$$ 17.8671i 0.830356i −0.909740 0.415178i $$-0.863719\pi$$
0.909740 0.415178i $$-0.136281\pi$$
$$464$$ −25.0214 18.1791i −1.16159 0.843945i
$$465$$ 5.68364 2.20814i 0.263573 0.102400i
$$466$$ 7.76385 + 23.8947i 0.359654 + 1.10690i
$$467$$ −10.4424 14.3727i −0.483215 0.665088i 0.495904 0.868377i $$-0.334837\pi$$
−0.979119 + 0.203289i $$0.934837\pi$$
$$468$$ −11.8006 16.2421i −0.545483 0.750793i
$$469$$ 4.13845 + 12.7368i 0.191096 + 0.588133i
$$470$$ −6.41997 16.5247i −0.296131 0.762228i
$$471$$ 5.05531 + 3.67290i 0.232937 + 0.169238i
$$472$$ 2.44949i 0.112747i
$$473$$ 0 0
$$474$$ −5.46410 −0.250974
$$475$$ −22.8549 + 20.9156i −1.04866 + 0.959672i
$$476$$ 0.496805 1.52901i 0.0227710 0.0700820i
$$477$$ −31.1022 + 10.1057i −1.42407 + 0.462709i
$$478$$ −13.2404 18.2238i −0.605601 0.833538i
$$479$$ −7.65662 + 5.56286i −0.349840 + 0.254174i −0.748802 0.662794i $$-0.769371\pi$$
0.398962 + 0.916967i $$0.369371\pi$$
$$480$$ 7.38593 + 4.75416i 0.337120 + 0.216997i
$$481$$ −8.77370 + 27.0027i −0.400047 + 1.23122i
$$482$$ −11.4963 + 15.8234i −0.523644 + 0.720734i
$$483$$ 2.92996i 0.133318i
$$484$$ 0 0
$$485$$ 0.928203 + 1.13681i 0.0421475 + 0.0516200i
$$486$$ −19.3002 14.0224i −0.875477 0.636071i
$$487$$ −12.1050 3.93314i −0.548529 0.178228i 0.0216245 0.999766i $$-0.493116\pi$$
−0.570153 + 0.821538i $$0.693116\pi$$
$$488$$ 4.07034 1.32253i 0.184255 0.0598682i
$$489$$ −3.17798 + 2.30894i −0.143713 + 0.104414i
$$490$$ −25.8816 6.82298i −1.16921 0.308231i
$$491$$ 4.85553 + 14.9438i 0.219127 + 0.674403i 0.998835 + 0.0482597i $$0.0153675\pi$$
−0.779708 + 0.626143i $$0.784632\pi$$
$$492$$ −1.47691 0.479877i −0.0665842 0.0216345i
$$493$$ 4.21595 5.80276i 0.189877 0.261343i
$$494$$ −50.7846 −2.28491
$$495$$ 0 0
$$496$$ 23.5167 1.05593
$$497$$ −1.15736 + 1.59297i −0.0519146 + 0.0714544i
$$498$$ 9.41498 + 3.05911i 0.421895 + 0.137082i
$$499$$ −11.8639 36.5133i −0.531100 1.63456i −0.751928 0.659245i $$-0.770876\pi$$
0.220828 0.975313i $$-0.429124\pi$$
$$500$$ 17.3596 + 8.58168i 0.776344 + 0.383785i
$$501$$ −0.809017 + 0.587785i −0.0361442 + 0.0262603i
$$502$$ −26.0826 + 8.47475i −1.16412 + 0.378247i
$$503$$ −32.5791 10.5856i −1.45263 0.471988i −0.526820 0.849977i $$-0.676616\pi$$
−0.925810 + 0.377989i $$0.876616\pi$$
$$504$$ 1.02579 + 0.745282i 0.0456924 + 0.0331975i
$$505$$ −2.41154 + 1.96902i −0.107312 + 0.0876201i
$$506$$ 0 0
$$507$$ 2.58819i 0.114946i
$$508$$ 3.40654 4.68870i 0.151141 0.208028i
$$509$$ 6.77619 20.8550i 0.300349 0.924380i −0.681023 0.732262i $$-0.738465\pi$$
0.981372 0.192118i $$-0.0615355\pi$$
$$510$$ −1.25296 + 1.94656i −0.0554818 + 0.0861950i
$$511$$ 3.55345 2.58173i 0.157195 0.114209i
$$512$$ 17.1958 + 23.6679i 0.759952 + 1.04598i
$$513$$ −17.4850 + 5.68121i −0.771980 + 0.250831i
$$514$$ −2.98518 + 9.18745i −0.131671 + 0.405241i
$$515$$ 0.534780 + 9.47175i 0.0235652 + 0.417375i
$$516$$ −9.58846 −0.422108
$$517$$ 0 0
$$518$$ 11.5911i 0.509284i
$$519$$ 3.19355 + 2.32025i 0.140181 + 0.101848i
$$520$$ −1.77836 4.57743i −0.0779865 0.200733i
$$521$$ 12.1285 + 37.3277i 0.531360 + 1.63536i 0.751385 + 0.659864i $$0.229386\pi$$
−0.220025 + 0.975494i $$0.570614\pi$$
$$522$$ −21.4932 29.5829i −0.940733 1.29481i
$$523$$ −5.09089 7.00701i −0.222609 0.306395i 0.683075 0.730348i $$-0.260642\pi$$
−0.905684 + 0.423953i $$0.860642\pi$$
$$524$$ 11.3065 + 34.7977i 0.493925 + 1.52014i
$$525$$ −2.01893 1.14398i −0.0881133 0.0499272i
$$526$$ −33.5877 24.4029i −1.46449 1.06402i
$$527$$ 5.45378i 0.237570i
$$528$$ 0 0
$$529$$ −16.8564 −0.732887
$$530$$ 51.6254 2.91480i 2.24246 0.126611i
$$531$$ 3.99503 12.2955i 0.173370 0.533577i
$$532$$ −9.15115 + 2.97339i −0.396753 + 0.128913i
$$533$$ 4.31932 + 5.94504i 0.187091 + 0.257508i
$$534$$ −5.22957 + 3.79950i −0.226306 + 0.164421i
$$535$$ −5.30257 + 8.23793i −0.229250 + 0.356157i
$$536$$ 2.38934 7.35362i 0.103204 0.317628i
$$537$$ 2.59713 3.57465i 0.112075 0.154257i
$$538$$ 38.1194i 1.64344i
$$539$$ 0 0
$$540$$ 7.26795 + 8.90138i 0.312763 + 0.383055i
$$541$$ −18.9248 13.7497i −0.813640 0.591144i 0.101244 0.994862i $$-0.467718\pi$$
−0.914884 + 0.403718i $$0.867718\pi$$
$$542$$ 8.33381 + 2.70782i 0.357968 + 0.116311i
$$543$$ −1.67004 + 0.542630i −0.0716684 + 0.0232865i
$$544$$ −6.35597 + 4.61788i −0.272510 + 0.197990i
$$545$$ −0.681812 + 2.58632i −0.0292056 + 0.110786i
$$546$$ −1.17545 3.61767i −0.0503048 0.154822i
$$547$$ 19.2610 + 6.25829i 0.823543 + 0.267585i 0.690323 0.723501i $$-0.257468\pi$$
0.133220 + 0.991087i $$0.457468\pi$$
$$548$$ −14.0120 + 19.2858i −0.598561 + 0.823849i
$$549$$ 22.5885 0.964052
$$550$$ 0 0
$$551$$ −42.9282 −1.82880
$$552$$ −0.994306 + 1.36855i −0.0423205 + 0.0582492i
$$553$$ 4.65921 + 1.51387i 0.198130 + 0.0643762i
$$554$$ 13.5524 + 41.7099i 0.575785 + 1.77208i
$$555$$ 1.97455 7.49007i 0.0838152 0.317936i
$$556$$ 23.2447 16.8883i 0.985796 0.716222i
$$557$$ −6.17146 + 2.00523i −0.261493 + 0.0849643i −0.436830 0.899544i $$-0.643899\pi$$
0.175336 + 0.984509i $$0.443899\pi$$
$$558$$ 26.4430 + 8.59185i 1.11942 + 0.363722i
$$559$$ 36.7076 + 26.6696i 1.55257 + 1.12800i
$$560$$ −5.66025 6.93237i −0.239189 0.292946i
$$561$$ 0 0
$$562$$ 33.4607i 1.41145i
$$563$$ 3.56959 4.91312i 0.150440 0.207064i −0.727145 0.686484i $$-0.759153\pi$$
0.877585 + 0.479421i $$0.159153\pi$$
$$564$$ −1.13703 + 3.49940i −0.0478774 + 0.147352i
$$565$$ 3.42314 5.31809i 0.144013 0.223734i
$$566$$ −47.0661 + 34.1955i −1.97834 + 1.43735i
$$567$$ 3.50991 + 4.83098i 0.147402 + 0.202882i
$$568$$ 1.08117 0.351294i 0.0453650 0.0147400i
$$569$$ 1.81567 5.58807i 0.0761170 0.234264i −0.905757 0.423796i $$-0.860697\pi$$
0.981874 + 0.189532i $$0.0606972\pi$$
$$570$$ 13.8330 0.781018i 0.579400 0.0327132i
$$571$$ −35.7128 −1.49453 −0.747267 0.664524i $$-0.768635\pi$$
−0.747267 + 0.664524i $$0.768635\pi$$
$$572$$ 0 0
$$573$$ 5.55532i 0.232077i
$$574$$ 2.42705 + 1.76336i 0.101303 + 0.0736010i
$$575$$ −15.5615 + 27.4636i −0.648961 + 1.14531i
$$576$$ 4.83928 + 14.8938i 0.201637 + 0.620574i
$$577$$ 12.1864 + 16.7731i 0.507326 + 0.698275i 0.983466 0.181095i $$-0.0579642\pi$$
−0.476139 + 0.879370i $$0.657964\pi$$
$$578$$ 18.0867 + 24.8942i 0.752307 + 1.03546i
$$579$$ 1.64413 + 5.06010i 0.0683276 + 0.210291i
$$580$$ 9.71717 + 25.0115i 0.403483 + 1.03855i
$$581$$ −7.18055 5.21697i −0.297899 0.216437i
$$582$$ 0.656339i 0.0272061i
$$583$$ 0 0
$$584$$ −2.53590 −0.104936
$$585$$ −1.46105 25.8773i −0.0604068 1.06989i
$$586$$ 5.62292 17.3056i 0.232281 0.714886i
$$587$$ 34.1879 11.1083i 1.41109 0.458490i 0.498328 0.866989i $$-0.333948\pi$$
0.912759 + 0.408499i $$0.133948\pi$$
$$588$$ 3.26533 + 4.49435i 0.134660 + 0.185344i
$$589$$ 26.4071 19.1859i 1.08809 0.790542i
$$590$$ −11.0638 + 17.1883i −0.455488 + 0.707633i
$$591$$ −0.408059 + 1.25588i −0.0167853 + 0.0516599i
$$592$$ 17.5597 24.1689i 0.721699 0.993334i
$$593$$ 30.2533i 1.24235i −0.783670 0.621177i $$-0.786655\pi$$
0.783670 0.621177i $$-0.213345\pi$$
$$594$$ 0 0
$$595$$ 1.60770 1.31268i 0.0659091 0.0538145i
$$596$$ −19.2422 13.9802i −0.788189 0.572653i
$$597$$ 0.984606 + 0.319918i 0.0402972 + 0.0130934i
$$598$$ −49.2114 + 15.9897i −2.01240 + 0.653869i
$$599$$ 16.5402 12.0172i 0.675816 0.491009i −0.196151 0.980574i $$-0.562844\pi$$
0.871967 + 0.489565i $$0.162844\pi$$
$$600$$ 0.554797 + 1.21948i 0.0226495 + 0.0497849i
$$601$$ −6.18034 19.0211i −0.252101 0.775888i −0.994387 0.105804i $$-0.966258\pi$$
0.742286 0.670084i $$-0.233742\pi$$
$$602$$ 17.6169 + 5.72407i 0.718010 + 0.233296i
$$603$$ 23.9870 33.0153i 0.976826 1.34449i
$$604$$ −10.7321 −0.436681
$$605$$ 0 0
$$606$$ 1.39230 0.0565585
$$607$$ 18.5103 25.4773i 0.751311 1.03409i −0.246577 0.969123i $$-0.579306\pi$$
0.997887 0.0649672i $$-0.0206943\pi$$
$$608$$ 44.7194 + 14.5302i 1.81361 + 0.589278i
$$609$$ −0.993610 3.05802i −0.0402631 0.123917i
$$610$$ −34.5356 9.10437i −1.39830 0.368625i
$$611$$ 14.0862 10.2342i 0.569868 0.414033i
$$612$$ −4.65921 + 1.51387i −0.188337 + 0.0611945i
$$613$$ −6.36459 2.06798i −0.257064 0.0835250i 0.177650 0.984094i $$-0.443150\pi$$
−0.434714 + 0.900569i $$0.643150\pi$$
$$614$$ 27.5491 + 20.0156i 1.11179 + 0.807764i
$$615$$ −1.26795 1.55291i −0.0511286 0.0626195i
$$616$$ 0 0
$$617$$ 1.69161i 0.0681019i 0.999420 + 0.0340509i $$0.0108408\pi$$
−0.999420 + 0.0340509i $$0.989159\pi$$
$$618$$ 2.49376 3.43237i 0.100314 0.138070i
$$619$$ 8.89493 27.3758i 0.357518 1.10033i −0.597018 0.802228i $$-0.703648\pi$$
0.954535 0.298098i $$-0.0963522\pi$$
$$620$$ −17.1559 11.0429i −0.688997 0.443492i
$$621$$ −15.1545 + 11.0104i −0.608131 + 0.441833i
$$622$$ −31.8541 43.8434i −1.27723 1.75796i
$$623$$ 5.51190 1.79092i 0.220830 0.0717519i
$$624$$ −3.02956 + 9.32401i −0.121279 + 0.373259i
$$625$$ 12.8483 + 21.4458i 0.513932 + 0.857831i
$$626$$ 33.1244 1.32392
$$627$$ 0 0
$$628$$ 20.9086i 0.834344i
$$629$$ 5.60503 + 4.07230i 0.223487 + 0.162373i
$$630$$ −3.83184 9.86299i −0.152664 0.392951i
$$631$$ 5.97037 + 18.3749i 0.237676 + 0.731493i 0.996755 + 0.0804940i $$0.0256498\pi$$
−0.759079 + 0.650999i $$0.774350\pi$$
$$632$$ −1.66251 2.28825i −0.0661310 0.0910215i
$$633$$ 3.38470 + 4.65864i 0.134530 + 0.185164i
$$634$$ −4.16064 12.8051i −0.165240 0.508556i
$$635$$ 6.97418 2.70952i 0.276762 0.107524i
$$636$$ −8.68241 6.30814i −0.344280 0.250134i
$$637$$ 26.2880i 1.04157i
$$638$$ 0 0
$$639$$ 6.00000 0.237356
$$640$$ 0.517297 + 9.16210i 0.0204480 + 0.362164i
$$641$$ 6.13597 18.8846i 0.242356 0.745895i −0.753704 0.657214i $$-0.771735\pi$$
0.996060 0.0886813i $$-0.0282653\pi$$
$$642$$ 4.16690 1.35391i 0.164455 0.0534345i
$$643$$ 16.2611 + 22.3815i 0.641277 + 0.882642i 0.998683 0.0513075i $$-0.0163388\pi$$
−0.357406 + 0.933949i $$0.616339\pi$$
$$644$$ −7.93148 + 5.76256i −0.312544 + 0.227077i
$$645$$ −10.4088 6.69989i −0.409845 0.263808i
$$646$$ −3.82943 + 11.7858i −0.150667 + 0.463705i
$$647$$ −11.1543 + 15.3525i −0.438519 + 0.603569i −0.969882 0.243575i $$-0.921680\pi$$
0.531363 + 0.847144i $$0.321680\pi$$
$$648$$ 3.44760i 0.135435i
$$649$$ 0 0
$$650$$ −8.19615 + 40.1528i −0.321480 + 1.57492i
$$651$$ 1.97794 + 1.43705i 0.0775214 + 0.0563226i
$$652$$ 12.5007 + 4.06173i 0.489566 + 0.159069i
$$653$$ 30.3814 9.87152i 1.18892 0.386302i 0.353244 0.935531i $$-0.385078\pi$$
0.835672 + 0.549229i $$0.185078\pi$$
$$654$$ 0.967708 0.703081i 0.0378404 0.0274926i
$$655$$ −12.0410 + 45.6750i −0.470480 + 1.78467i
$$656$$ −2.38934 7.35362i −0.0932879 0.287111i
$$657$$ −12.7292 4.13596i −0.496613 0.161359i
$$658$$ 4.17811 5.75068i 0.162880 0.224185i
$$659$$ 11.3205 0.440984 0.220492 0.975389i $$-0.429234\pi$$
0.220492 + 0.975389i $$0.429234\pi$$
$$660$$ 0 0
$$661$$ −1.58846 −0.0617838 −0.0308919 0.999523i $$-0.509835\pi$$
−0.0308919 + 0.999523i $$0.509835\pi$$
$$662$$ 8.86138 12.1966i 0.344407 0.474036i
$$663$$ −2.16235 0.702589i −0.0839785 0.0272863i
$$664$$ 1.58351 + 4.87355i 0.0614522 + 0.189130i
$$665$$ −12.0117 3.16656i −0.465793 0.122794i
$$666$$ 28.5749 20.7609i 1.10725 0.804468i
$$667$$ −41.5983 + 13.5161i −1.61069 + 0.523346i
$$668$$ 3.18230 + 1.03399i 0.123127 + 0.0400063i
$$669$$ −2.42705 1.76336i −0.0938352 0.0681753i
$$670$$ −49.9808 + 40.8091i −1.93093 + 1.57659i
$$671$$ 0 0
$$672$$ 3.52193i 0.135861i
$$673$$ 0.950617 1.30841i 0.0366436 0.0504356i −0.790302 0.612717i $$-0.790076\pi$$
0.826946 + 0.562282i $$0.190076\pi$$
$$674$$ −4.67368 + 14.3841i −0.180024 + 0.554055i
$$675$$ 1.66993 + 14.7414i 0.0642758 + 0.567395i
$$676$$ −7.00629 + 5.09037i −0.269473 + 0.195783i
$$677$$ 5.31363 + 7.31358i 0.204219 + 0.281084i 0.898826 0.438306i $$-0.144421\pi$$
−0.694606 + 0.719390i $$0.744421\pi$$
$$678$$ −2.68999 + 0.874032i −0.103309 + 0.0335670i
$$679$$ −0.181843 + 0.559656i −0.00697851 + 0.0214776i
$$680$$ −1.19640 + 0.0675494i −0.0458798 + 0.00259040i
$$681$$ 11.1436 0.427023
$$682$$ 0 0
$$683$$ 22.4887i 0.860507i 0.902708 + 0.430253i $$0.141576\pi$$
−0.902708 + 0.430253i $$0.858424\pi$$
$$684$$ 23.7208 + 17.2342i 0.906987 + 0.658965i
$$685$$ −28.6866 + 11.1449i −1.09606 + 0.425826i
$$686$$ −7.06302 21.7377i −0.269667 0.829951i
$$687$$ −5.45484 7.50794i −0.208115 0.286446i
$$688$$ −28.0617 38.6237i −1.06984 1.47251i
$$689$$ 15.6933 + 48.2990i 0.597867 + 1.84005i
$$690$$ 13.1586 5.11220i 0.500938 0.194618i
$$691$$ 22.5788 + 16.4045i 0.858939 + 0.624056i 0.927596 0.373585i $$-0.121871\pi$$
−0.0686571 + 0.997640i $$0.521871\pi$$
$$692$$ 13.2084i 0.502108i
$$693$$ 0 0
$$694$$ 5.73205 0.217586
$$695$$ 37.0339 2.09096i 1.40478 0.0793145i
$$696$$ −0.573661 + 1.76555i −0.0217446 + 0.0669229i
$$697$$ 1.70539 0.554114i 0.0645962 0.0209886i
$$698$$ 31.0228 + 42.6992i 1.17423 + 1.61619i
$$699$$ 5.44634 3.95700i 0.206000 0.149667i
$$700$$ 0.873998 + 7.71522i 0.0330340 + 0.291608i
$$701$$ −3.13454 + 9.64713i −0.118390 + 0.364367i −0.992639 0.121111i $$-0.961354\pi$$
0.874249 + 0.485478i $$0.161354\pi$$
$$702$$ −14.2944 + 19.6745i −0.539506 + 0.742567i
$$703$$ 41.4655i 1.56390i
$$704$$ 0 0
$$705$$ −3.67949 + 3.00429i −0.138578 + 0.113148i
$$706$$ −2.64383 1.92085i −0.0995017 0.0722922i
$$707$$ −1.18721 0.385748i −0.0446496 0.0145075i
$$708$$ 4.03499 1.31105i 0.151644 0.0492722i
$$709$$ 18.9248 13.7497i 0.710735 0.516379i −0.172676 0.984979i $$-0.555241\pi$$
0.883411 + 0.468600i $$0.155241\pi$$
$$710$$ −9.17342 2.41832i −0.344272 0.0907581i
$$711$$ −4.61307 14.1976i −0.173004 0.532450i
$$712$$ −3.18230 1.03399i −0.119262 0.0387505i
$$713$$ 19.5483 26.9059i 0.732090 1.00764i
$$714$$ −0.928203 −0.0347371
$$715$$ 0 0
$$716$$ −14.7846 −0.552527
$$717$$ −3.54775 + 4.88306i −0.132493 + 0.182361i
$$718$$ −33.6956 10.9484i −1.25751 0.408590i
$$719$$ 12.3001 + 37.8557i 0.458715 + 1.41178i 0.866718 + 0.498799i $$0.166225\pi$$
−0.408003 + 0.912981i $$0.633775\pi$$
$$720$$ −6.95186 + 26.3705i −0.259081 + 0.982770i
$$721$$ −3.07738 + 2.23585i −0.114608 + 0.0832672i
$$722$$ 35.6295 11.5767i 1.32599 0.430841i
$$723$$ 4.98425 + 1.61948i 0.185366 + 0.0602292i
$$724$$ 4.75350 + 3.45362i 0.176662 + 0.128353i
$$725$$ −6.92820 + 33.9411i −0.257307 + 1.26054i
$$726$$ 0 0
$$727$$ 4.00240i 0.148441i −0.997242 0.0742205i $$-0.976353\pi$$
0.997242 0.0742205i $$-0.0236469\pi$$
$$728$$ 1.15736 1.59297i 0.0428946 0.0590393i
$$729$$ 4.19906 12.9234i 0.155521 0.478644i
$$730$$ 17.7947 + 11.4540i 0.658611 + 0.423933i
$$731$$ 8.95727 6.50784i 0.331297 0.240701i
$$732$$ 4.35716 + 5.99711i 0.161045 + 0.221660i
$$733$$ 33.0714 10.7455i 1.22152 0.396896i 0.373885 0.927475i $$-0.378026\pi$$
0.847635 + 0.530579i $$0.178026\pi$$
$$734$$ −17.6908 + 54.4468i −0.652980 + 2.00967i
$$735$$ 0.404285 + 7.16048i 0.0149123 + 0.264118i
$$736$$ 47.9090 1.76595
$$737$$ 0 0
$$738$$ 9.14162i 0.336508i
$$739$$ 20.2835 + 14.7368i 0.746141 + 0.542103i 0.894628 0.446811i $$-0.147440\pi$$
−0.148487 + 0.988914i $$0.547440\pi$$
$$740$$ −24.1593 + 9.38606i −0.888113 + 0.345039i
$$741$$ 4.20501 + 12.9417i 0.154475 + 0.475425i
$$742$$ 12.1864 + 16.7731i 0.447377 + 0.615761i
$$743$$ −4.72695 6.50609i −0.173415 0.238685i 0.713459 0.700697i $$-0.247128\pi$$
−0.886874 + 0.462012i $$0.847128\pi$$
$$744$$ −0.436191 1.34246i −0.0159915 0.0492169i
$$745$$ −11.1197 28.6216i −0.407395 1.04862i
$$746$$ −53.3215 38.7403i −1.95224 1.41838i
$$747$$ 27.0459i 0.989559i
$$748$$ 0 0
$$749$$ −3.92820 −0.143533
$$750$$ 1.61500 11.0631i 0.0589715 0.403967i
$$751$$ −6.37842 + 19.6308i −0.232752 + 0.716337i 0.764660 + 0.644434i $$0.222907\pi$$
−0.997412 + 0.0719027i $$0.977093\pi$$
$$752$$ −17.4237 + 5.66132i −0.635378 + 0.206447i
$$753$$ 4.31932 + 5.94504i 0.157405 + 0.216649i
$$754$$ −45.9397 + 33.3772i −1.67303 + 1.21552i
$$755$$ −11.6502 7.49897i −0.423994 0.272915i
$$756$$ −1.42386 + 4.38218i −0.0517851 + 0.159378i
$$757$$ 20.6183 28.3786i 0.749385 1.03144i −0.248639 0.968596i $$-0.579983\pi$$
0.998023 0.0628432i $$-0.0200168\pi$$
$$758$$ 10.5558i 0.383405i
$$759$$ 0 0
$$760$$ 4.53590 + 5.55532i 0.164534 + 0.201513i
$$761$$ 6.35597 + 4.61788i 0.230404 + 0.167398i 0.696997 0.717074i $$-0.254519\pi$$
−0.466594 + 0.884472i $$0.654519\pi$$
$$762$$ −3.18230 1.03399i −0.115282 0.0374575i
$$763$$ −1.01995 + 0.331402i −0.0369247 + 0.0119976i
$$764$$ −15.0384 + 10.9260i −0.544069 + 0.395290i
$$765$$ −6.11562 1.61222i −0.221111 0.0582898i
$$766$$ −14.1867 43.6620i −0.512585 1.57757i
$$767$$ −19.0938 6.20395i −0.689437 0.224012i
$$768$$ 5.90030 8.12107i 0.212909 0.293044i
$$769$$ 17.8564 0.643918 0.321959 0.946754i $$-0.395659\pi$$
0.321959 + 0.946754i $$0.395659\pi$$
$$770$$ 0 0
$$771$$ 2.58846 0.0932210
$$772$$ 10.4642 14.4027i 0.376615 0.518366i
$$773$$ 49.1148 + 15.9584i 1.76654 + 0.573983i 0.997844 0.0656355i $$-0.0209075\pi$$
0.768693 + 0.639618i $$0.220907\pi$$
$$774$$ −17.4424 53.6823i −0.626955 1.92957i
$$775$$ −10.9075