Properties

Label 605.2.g.l.81.1
Level $605$
Weight $2$
Character 605.81
Analytic conductor $4.831$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,2,Mod(81,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.64000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 2x^{6} + 4x^{4} + 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.1
Root \(0.437016 - 1.34500i\) of defining polynomial
Character \(\chi\) \(=\) 605.81
Dual form 605.2.g.l.366.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.335106 - 0.243469i) q^{2} +(0.874032 - 2.68999i) q^{3} +(-0.565015 - 1.73894i) q^{4} +(0.809017 - 0.587785i) q^{5} +(-0.947822 + 0.688633i) q^{6} +(0.618034 + 1.90211i) q^{7} +(-0.490035 + 1.50817i) q^{8} +(-4.04508 - 2.93893i) q^{9} -0.414214 q^{10} -5.17157 q^{12} +(-5.52431 - 4.01365i) q^{13} +(0.255998 - 0.787881i) q^{14} +(-0.874032 - 2.68999i) q^{15} +(-2.42705 + 1.76336i) q^{16} +(0.947822 - 0.688633i) q^{17} +(0.639995 + 1.96970i) q^{18} +(-1.47923 - 1.07472i) q^{20} +5.65685 q^{21} +2.82843 q^{23} +(3.62867 + 2.63638i) q^{24} +(0.309017 - 0.951057i) q^{25} +(0.874032 + 2.68999i) q^{26} +(-4.57649 + 3.32502i) q^{27} +(2.95846 - 2.14944i) q^{28} +(-2.36610 - 7.28210i) q^{29} +(-0.362036 + 1.11423i) q^{30} +4.41421 q^{32} -0.485281 q^{34} +(1.61803 + 1.17557i) q^{35} +(-2.82508 + 8.69469i) q^{36} +(1.13003 + 3.47788i) q^{37} +(-15.6251 + 11.3523i) q^{39} +(0.490035 + 1.50817i) q^{40} +(-1.85410 + 5.70634i) q^{41} +(-1.89564 - 1.37727i) q^{42} +6.00000 q^{43} -5.00000 q^{45} +(-0.947822 - 0.688633i) q^{46} +(-0.874032 + 2.68999i) q^{47} +(2.62210 + 8.06998i) q^{48} +(2.42705 - 1.76336i) q^{49} +(-0.335106 + 0.243469i) q^{50} +(-1.02399 - 3.15152i) q^{51} +(-3.85816 + 11.8742i) q^{52} +(-0.277611 - 0.201696i) q^{53} +2.34315 q^{54} -3.17157 q^{56} +(-0.980070 + 3.01635i) q^{58} +(-2.98413 - 9.18421i) q^{59} +(-4.18389 + 3.03977i) q^{60} +(10.7710 - 7.82560i) q^{61} +(3.09017 - 9.51057i) q^{63} +(3.37487 + 2.45199i) q^{64} -6.82843 q^{65} -4.48528 q^{67} +(-1.73302 - 1.25912i) q^{68} +(2.47214 - 7.60845i) q^{69} +(-0.255998 - 0.787881i) q^{70} +(9.15298 - 6.65003i) q^{71} +(6.41464 - 4.66051i) q^{72} +(2.11010 + 6.49422i) q^{73} +(0.468074 - 1.44058i) q^{74} +(-2.28825 - 1.66251i) q^{75} +8.00000 q^{78} +(3.23607 + 2.35114i) q^{79} +(-0.927051 + 2.85317i) q^{80} +(0.309017 + 0.951057i) q^{81} +(2.01063 - 1.46081i) q^{82} +(-4.85410 + 3.52671i) q^{83} +(-3.19621 - 9.83692i) q^{84} +(0.362036 - 1.11423i) q^{85} +(-2.01063 - 1.46081i) q^{86} -21.6569 q^{87} +9.31371 q^{89} +(1.67553 + 1.21734i) q^{90} +(4.22020 - 12.9884i) q^{91} +(-1.59810 - 4.91846i) q^{92} +(0.947822 - 0.688633i) q^{94} +(3.85816 - 11.8742i) q^{96} +(6.19453 + 4.50059i) q^{97} -1.24264 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{4} + 2 q^{5} - 8 q^{6} - 4 q^{7} + 6 q^{8} - 10 q^{9} + 8 q^{10} - 64 q^{12} - 8 q^{13} + 4 q^{14} - 6 q^{16} + 8 q^{17} + 10 q^{18} + 2 q^{20} - 8 q^{24} - 2 q^{25} - 4 q^{28} + 4 q^{29}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.335106 0.243469i −0.236956 0.172158i 0.462970 0.886374i \(-0.346784\pi\)
−0.699926 + 0.714215i \(0.746784\pi\)
\(3\) 0.874032 2.68999i 0.504623 1.55307i −0.296781 0.954945i \(-0.595913\pi\)
0.801404 0.598123i \(-0.204087\pi\)
\(4\) −0.565015 1.73894i −0.282508 0.869469i
\(5\) 0.809017 0.587785i 0.361803 0.262866i
\(6\) −0.947822 + 0.688633i −0.386947 + 0.281133i
\(7\) 0.618034 + 1.90211i 0.233595 + 0.718931i 0.997305 + 0.0733714i \(0.0233759\pi\)
−0.763710 + 0.645560i \(0.776624\pi\)
\(8\) −0.490035 + 1.50817i −0.173254 + 0.533220i
\(9\) −4.04508 2.93893i −1.34836 0.979642i
\(10\) −0.414214 −0.130986
\(11\) 0 0
\(12\) −5.17157 −1.49290
\(13\) −5.52431 4.01365i −1.53217 1.11319i −0.955018 0.296549i \(-0.904164\pi\)
−0.577151 0.816637i \(-0.695836\pi\)
\(14\) 0.255998 0.787881i 0.0684184 0.210570i
\(15\) −0.874032 2.68999i −0.225674 0.694553i
\(16\) −2.42705 + 1.76336i −0.606763 + 0.440839i
\(17\) 0.947822 0.688633i 0.229881 0.167018i −0.466882 0.884319i \(-0.654623\pi\)
0.696763 + 0.717301i \(0.254623\pi\)
\(18\) 0.639995 + 1.96970i 0.150848 + 0.464263i
\(19\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(20\) −1.47923 1.07472i −0.330766 0.240315i
\(21\) 5.65685 1.23443
\(22\) 0 0
\(23\) 2.82843 0.589768 0.294884 0.955533i \(-0.404719\pi\)
0.294884 + 0.955533i \(0.404719\pi\)
\(24\) 3.62867 + 2.63638i 0.740699 + 0.538149i
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) 0.874032 + 2.68999i 0.171412 + 0.527551i
\(27\) −4.57649 + 3.32502i −0.880746 + 0.639900i
\(28\) 2.95846 2.14944i 0.559096 0.406207i
\(29\) −2.36610 7.28210i −0.439373 1.35225i −0.888538 0.458803i \(-0.848278\pi\)
0.449165 0.893449i \(-0.351722\pi\)
\(30\) −0.362036 + 1.11423i −0.0660984 + 0.203430i
\(31\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(32\) 4.41421 0.780330
\(33\) 0 0
\(34\) −0.485281 −0.0832251
\(35\) 1.61803 + 1.17557i 0.273498 + 0.198708i
\(36\) −2.82508 + 8.69469i −0.470846 + 1.44911i
\(37\) 1.13003 + 3.47788i 0.185776 + 0.571759i 0.999961 0.00884630i \(-0.00281590\pi\)
−0.814185 + 0.580605i \(0.802816\pi\)
\(38\) 0 0
\(39\) −15.6251 + 11.3523i −2.50202 + 1.81782i
\(40\) 0.490035 + 1.50817i 0.0774813 + 0.238463i
\(41\) −1.85410 + 5.70634i −0.289562 + 0.891180i 0.695432 + 0.718592i \(0.255213\pi\)
−0.984994 + 0.172588i \(0.944787\pi\)
\(42\) −1.89564 1.37727i −0.292504 0.212517i
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) −5.00000 −0.745356
\(46\) −0.947822 0.688633i −0.139749 0.101533i
\(47\) −0.874032 + 2.68999i −0.127491 + 0.392376i −0.994347 0.106183i \(-0.966137\pi\)
0.866856 + 0.498559i \(0.166137\pi\)
\(48\) 2.62210 + 8.06998i 0.378467 + 1.16480i
\(49\) 2.42705 1.76336i 0.346722 0.251908i
\(50\) −0.335106 + 0.243469i −0.0473911 + 0.0344317i
\(51\) −1.02399 3.15152i −0.143388 0.441302i
\(52\) −3.85816 + 11.8742i −0.535031 + 1.64666i
\(53\) −0.277611 0.201696i −0.0381328 0.0277051i 0.568556 0.822645i \(-0.307502\pi\)
−0.606688 + 0.794940i \(0.707502\pi\)
\(54\) 2.34315 0.318862
\(55\) 0 0
\(56\) −3.17157 −0.423819
\(57\) 0 0
\(58\) −0.980070 + 3.01635i −0.128689 + 0.396066i
\(59\) −2.98413 9.18421i −0.388501 1.19568i −0.933909 0.357512i \(-0.883625\pi\)
0.545408 0.838171i \(-0.316375\pi\)
\(60\) −4.18389 + 3.03977i −0.540138 + 0.392433i
\(61\) 10.7710 7.82560i 1.37909 1.00197i 0.382123 0.924112i \(-0.375193\pi\)
0.996965 0.0778539i \(-0.0248068\pi\)
\(62\) 0 0
\(63\) 3.09017 9.51057i 0.389325 1.19822i
\(64\) 3.37487 + 2.45199i 0.421859 + 0.306499i
\(65\) −6.82843 −0.846962
\(66\) 0 0
\(67\) −4.48528 −0.547964 −0.273982 0.961735i \(-0.588341\pi\)
−0.273982 + 0.961735i \(0.588341\pi\)
\(68\) −1.73302 1.25912i −0.210160 0.152690i
\(69\) 2.47214 7.60845i 0.297610 0.915950i
\(70\) −0.255998 0.787881i −0.0305976 0.0941698i
\(71\) 9.15298 6.65003i 1.08626 0.789213i 0.107496 0.994206i \(-0.465717\pi\)
0.978764 + 0.204992i \(0.0657169\pi\)
\(72\) 6.41464 4.66051i 0.755973 0.549246i
\(73\) 2.11010 + 6.49422i 0.246969 + 0.760091i 0.995306 + 0.0967733i \(0.0308522\pi\)
−0.748338 + 0.663318i \(0.769148\pi\)
\(74\) 0.468074 1.44058i 0.0544125 0.167464i
\(75\) −2.28825 1.66251i −0.264224 0.191970i
\(76\) 0 0
\(77\) 0 0
\(78\) 8.00000 0.905822
\(79\) 3.23607 + 2.35114i 0.364086 + 0.264524i 0.754754 0.656007i \(-0.227756\pi\)
−0.390668 + 0.920532i \(0.627756\pi\)
\(80\) −0.927051 + 2.85317i −0.103647 + 0.318994i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 2.01063 1.46081i 0.222037 0.161320i
\(83\) −4.85410 + 3.52671i −0.532807 + 0.387107i −0.821407 0.570343i \(-0.806810\pi\)
0.288600 + 0.957450i \(0.406810\pi\)
\(84\) −3.19621 9.83692i −0.348735 1.07330i
\(85\) 0.362036 1.11423i 0.0392683 0.120855i
\(86\) −2.01063 1.46081i −0.216812 0.157523i
\(87\) −21.6569 −2.32186
\(88\) 0 0
\(89\) 9.31371 0.987251 0.493626 0.869675i \(-0.335671\pi\)
0.493626 + 0.869675i \(0.335671\pi\)
\(90\) 1.67553 + 1.21734i 0.176616 + 0.128319i
\(91\) 4.22020 12.9884i 0.442397 1.36156i
\(92\) −1.59810 4.91846i −0.166614 0.512785i
\(93\) 0 0
\(94\) 0.947822 0.688633i 0.0977604 0.0710271i
\(95\) 0 0
\(96\) 3.85816 11.8742i 0.393772 1.21191i
\(97\) 6.19453 + 4.50059i 0.628959 + 0.456965i 0.856039 0.516911i \(-0.172918\pi\)
−0.227081 + 0.973876i \(0.572918\pi\)
\(98\) −1.24264 −0.125526
\(99\) 0 0
\(100\) −1.82843 −0.182843
\(101\) −10.7710 7.82560i −1.07176 0.778676i −0.0955291 0.995427i \(-0.530454\pi\)
−0.976227 + 0.216750i \(0.930454\pi\)
\(102\) −0.424151 + 1.30540i −0.0419973 + 0.129254i
\(103\) 0.362036 + 1.11423i 0.0356725 + 0.109789i 0.967307 0.253608i \(-0.0816172\pi\)
−0.931635 + 0.363396i \(0.881617\pi\)
\(104\) 8.76038 6.36479i 0.859026 0.624119i
\(105\) 4.57649 3.32502i 0.446620 0.324488i
\(106\) 0.0439223 + 0.135179i 0.00426611 + 0.0131297i
\(107\) 1.13003 3.47788i 0.109244 0.336219i −0.881459 0.472261i \(-0.843438\pi\)
0.990703 + 0.136042i \(0.0434381\pi\)
\(108\) 8.36778 + 6.07955i 0.805190 + 0.585005i
\(109\) −3.65685 −0.350263 −0.175132 0.984545i \(-0.556035\pi\)
−0.175132 + 0.984545i \(0.556035\pi\)
\(110\) 0 0
\(111\) 10.3431 0.981728
\(112\) −4.85410 3.52671i −0.458670 0.333243i
\(113\) 2.57817 7.93480i 0.242534 0.746443i −0.753498 0.657450i \(-0.771635\pi\)
0.996032 0.0889933i \(-0.0283650\pi\)
\(114\) 0 0
\(115\) 2.28825 1.66251i 0.213380 0.155030i
\(116\) −11.3262 + 8.22899i −1.05161 + 0.764043i
\(117\) 10.5505 + 32.4711i 0.975394 + 3.00195i
\(118\) −1.23607 + 3.80423i −0.113789 + 0.350207i
\(119\) 1.89564 + 1.37727i 0.173773 + 0.126254i
\(120\) 4.48528 0.409448
\(121\) 0 0
\(122\) −5.51472 −0.499279
\(123\) 13.7295 + 9.97505i 1.23794 + 0.899420i
\(124\) 0 0
\(125\) −0.309017 0.951057i −0.0276393 0.0850651i
\(126\) −3.35106 + 2.43469i −0.298536 + 0.216899i
\(127\) 12.6667 9.20287i 1.12398 0.816622i 0.139176 0.990268i \(-0.455555\pi\)
0.984808 + 0.173645i \(0.0555546\pi\)
\(128\) −3.26209 10.0397i −0.288331 0.887391i
\(129\) 5.24419 16.1400i 0.461725 1.42104i
\(130\) 2.28825 + 1.66251i 0.200692 + 0.145812i
\(131\) −11.3137 −0.988483 −0.494242 0.869325i \(-0.664554\pi\)
−0.494242 + 0.869325i \(0.664554\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.50304 + 1.09203i 0.129843 + 0.0943366i
\(135\) −1.74806 + 5.37999i −0.150449 + 0.463036i
\(136\) 0.574112 + 1.76693i 0.0492297 + 0.151513i
\(137\) −18.5836 + 13.5018i −1.58770 + 1.15353i −0.680573 + 0.732680i \(0.738269\pi\)
−0.907129 + 0.420853i \(0.861731\pi\)
\(138\) −2.68085 + 1.94775i −0.228209 + 0.165803i
\(139\) 1.23607 + 3.80423i 0.104842 + 0.322670i 0.989693 0.143203i \(-0.0457402\pi\)
−0.884851 + 0.465873i \(0.845740\pi\)
\(140\) 1.13003 3.47788i 0.0955050 0.293934i
\(141\) 6.47214 + 4.70228i 0.545052 + 0.396004i
\(142\) −4.68629 −0.393265
\(143\) 0 0
\(144\) 15.0000 1.25000
\(145\) −6.19453 4.50059i −0.514427 0.373753i
\(146\) 0.874032 2.68999i 0.0723354 0.222625i
\(147\) −2.62210 8.06998i −0.216267 0.665601i
\(148\) 5.40932 3.93010i 0.444644 0.323053i
\(149\) 9.43059 6.85173i 0.772584 0.561315i −0.130160 0.991493i \(-0.541549\pi\)
0.902744 + 0.430178i \(0.141549\pi\)
\(150\) 0.362036 + 1.11423i 0.0295601 + 0.0909767i
\(151\) 3.70820 11.4127i 0.301769 0.928751i −0.679094 0.734052i \(-0.737627\pi\)
0.980863 0.194699i \(-0.0623730\pi\)
\(152\) 0 0
\(153\) −5.85786 −0.473580
\(154\) 0 0
\(155\) 0 0
\(156\) 28.5694 + 20.7569i 2.28738 + 1.66188i
\(157\) −4.32624 + 13.3148i −0.345271 + 1.06264i 0.616167 + 0.787616i \(0.288685\pi\)
−0.961438 + 0.275020i \(0.911315\pi\)
\(158\) −0.511996 1.57576i −0.0407322 0.125361i
\(159\) −0.785202 + 0.570482i −0.0622705 + 0.0452422i
\(160\) 3.57117 2.59461i 0.282326 0.205122i
\(161\) 1.74806 + 5.37999i 0.137767 + 0.424002i
\(162\) 0.127999 0.393941i 0.0100566 0.0309509i
\(163\) 0.392601 + 0.285241i 0.0307509 + 0.0223418i 0.603055 0.797700i \(-0.293950\pi\)
−0.572304 + 0.820042i \(0.693950\pi\)
\(164\) 10.9706 0.856657
\(165\) 0 0
\(166\) 2.48528 0.192895
\(167\) 8.87537 + 6.44833i 0.686797 + 0.498987i 0.875606 0.483027i \(-0.160463\pi\)
−0.188809 + 0.982014i \(0.560463\pi\)
\(168\) −2.77206 + 8.53151i −0.213869 + 0.658220i
\(169\) 10.3914 + 31.9816i 0.799342 + 2.46012i
\(170\) −0.392601 + 0.285241i −0.0301111 + 0.0218770i
\(171\) 0 0
\(172\) −3.39009 10.4336i −0.258492 0.795556i
\(173\) −1.89802 + 5.84152i −0.144304 + 0.444122i −0.996921 0.0784144i \(-0.975014\pi\)
0.852617 + 0.522537i \(0.175014\pi\)
\(174\) 7.25734 + 5.27276i 0.550177 + 0.399727i
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) −27.3137 −2.05302
\(178\) −3.12108 2.26760i −0.233935 0.169963i
\(179\) −0.511996 + 1.57576i −0.0382684 + 0.117778i −0.968366 0.249535i \(-0.919722\pi\)
0.930097 + 0.367313i \(0.119722\pi\)
\(180\) 2.82508 + 8.69469i 0.210569 + 0.648064i
\(181\) 1.06281 0.772178i 0.0789982 0.0573956i −0.547585 0.836750i \(-0.684453\pi\)
0.626583 + 0.779354i \(0.284453\pi\)
\(182\) −4.57649 + 3.32502i −0.339232 + 0.246467i
\(183\) −11.6366 35.8138i −0.860203 2.64743i
\(184\) −1.38603 + 4.26576i −0.102179 + 0.314476i
\(185\) 2.95846 + 2.14944i 0.217510 + 0.158030i
\(186\) 0 0
\(187\) 0 0
\(188\) 5.17157 0.377176
\(189\) −9.15298 6.65003i −0.665782 0.483719i
\(190\) 0 0
\(191\) −5.96826 18.3684i −0.431848 1.32909i −0.896282 0.443485i \(-0.853742\pi\)
0.464433 0.885608i \(-0.346258\pi\)
\(192\) 9.54558 6.93527i 0.688893 0.500510i
\(193\) −5.52431 + 4.01365i −0.397649 + 0.288909i −0.768583 0.639751i \(-0.779038\pi\)
0.370934 + 0.928659i \(0.379038\pi\)
\(194\) −0.980070 3.01635i −0.0703649 0.216561i
\(195\) −5.96826 + 18.3684i −0.427396 + 1.31539i
\(196\) −4.43769 3.22417i −0.316978 0.230298i
\(197\) 5.17157 0.368459 0.184230 0.982883i \(-0.441021\pi\)
0.184230 + 0.982883i \(0.441021\pi\)
\(198\) 0 0
\(199\) 21.6569 1.53521 0.767607 0.640921i \(-0.221447\pi\)
0.767607 + 0.640921i \(0.221447\pi\)
\(200\) 1.28293 + 0.932102i 0.0907167 + 0.0659096i
\(201\) −3.92028 + 12.0654i −0.276515 + 0.851026i
\(202\) 1.70414 + 5.24481i 0.119903 + 0.369023i
\(203\) 12.3891 9.00117i 0.869541 0.631758i
\(204\) −4.90173 + 3.56132i −0.343190 + 0.249342i
\(205\) 1.85410 + 5.70634i 0.129496 + 0.398548i
\(206\) 0.149960 0.461530i 0.0104482 0.0321563i
\(207\) −11.4412 8.31254i −0.795220 0.577761i
\(208\) 20.4853 1.42040
\(209\) 0 0
\(210\) −2.34315 −0.161692
\(211\) −12.9443 9.40456i −0.891120 0.647437i 0.0450495 0.998985i \(-0.485655\pi\)
−0.936170 + 0.351548i \(0.885655\pi\)
\(212\) −0.193883 + 0.596709i −0.0133159 + 0.0409821i
\(213\) −9.88854 30.4338i −0.677552 2.08529i
\(214\) −1.22543 + 0.890329i −0.0837689 + 0.0608617i
\(215\) 4.85410 3.52671i 0.331047 0.240520i
\(216\) −2.77206 8.53151i −0.188615 0.580496i
\(217\) 0 0
\(218\) 1.22543 + 0.890329i 0.0829968 + 0.0603007i
\(219\) 19.3137 1.30510
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) −3.46605 2.51823i −0.232626 0.169013i
\(223\) −1.59810 + 4.91846i −0.107017 + 0.329364i −0.990199 0.139667i \(-0.955397\pi\)
0.883182 + 0.469031i \(0.155397\pi\)
\(224\) 2.72813 + 8.39633i 0.182281 + 0.561004i
\(225\) −4.04508 + 2.93893i −0.269672 + 0.195928i
\(226\) −2.79584 + 2.03129i −0.185976 + 0.135120i
\(227\) −0.830110 2.55482i −0.0550963 0.169569i 0.919722 0.392571i \(-0.128414\pi\)
−0.974818 + 0.223002i \(0.928414\pi\)
\(228\) 0 0
\(229\) 17.2432 + 12.5279i 1.13946 + 0.827866i 0.987044 0.160451i \(-0.0512947\pi\)
0.152416 + 0.988316i \(0.451295\pi\)
\(230\) −1.17157 −0.0772512
\(231\) 0 0
\(232\) 12.1421 0.797170
\(233\) 17.9134 + 13.0148i 1.17354 + 0.852629i 0.991429 0.130648i \(-0.0417058\pi\)
0.182115 + 0.983277i \(0.441706\pi\)
\(234\) 4.37016 13.4500i 0.285686 0.879252i
\(235\) 0.874032 + 2.68999i 0.0570156 + 0.175476i
\(236\) −14.2847 + 10.3784i −0.929854 + 0.675579i
\(237\) 9.15298 6.65003i 0.594550 0.431966i
\(238\) −0.299920 0.923060i −0.0194410 0.0598331i
\(239\) 0.212076 0.652702i 0.0137180 0.0422198i −0.943963 0.330051i \(-0.892934\pi\)
0.957681 + 0.287831i \(0.0929341\pi\)
\(240\) 6.86474 + 4.98752i 0.443117 + 0.321943i
\(241\) −6.00000 −0.386494 −0.193247 0.981150i \(-0.561902\pi\)
−0.193247 + 0.981150i \(0.561902\pi\)
\(242\) 0 0
\(243\) −14.1421 −0.907218
\(244\) −19.6940 14.3085i −1.26078 0.916011i
\(245\) 0.927051 2.85317i 0.0592271 0.182282i
\(246\) −2.17222 6.68539i −0.138495 0.426245i
\(247\) 0 0
\(248\) 0 0
\(249\) 5.24419 + 16.1400i 0.332337 + 1.02283i
\(250\) −0.127999 + 0.393941i −0.00809537 + 0.0249150i
\(251\) −9.70820 7.05342i −0.612776 0.445208i 0.237614 0.971360i \(-0.423635\pi\)
−0.850391 + 0.526151i \(0.823635\pi\)
\(252\) −18.2843 −1.15180
\(253\) 0 0
\(254\) −6.48528 −0.406923
\(255\) −2.68085 1.94775i −0.167881 0.121973i
\(256\) 1.22697 3.77623i 0.0766857 0.236014i
\(257\) 4.11416 + 12.6621i 0.256634 + 0.789839i 0.993503 + 0.113804i \(0.0363035\pi\)
−0.736869 + 0.676036i \(0.763696\pi\)
\(258\) −5.68693 + 4.13180i −0.354053 + 0.257235i
\(259\) −5.91691 + 4.29889i −0.367659 + 0.267120i
\(260\) 3.85816 + 11.8742i 0.239273 + 0.736407i
\(261\) −11.8305 + 36.4105i −0.732289 + 2.25375i
\(262\) 3.79129 + 2.75453i 0.234227 + 0.170176i
\(263\) −22.9706 −1.41643 −0.708213 0.705999i \(-0.750498\pi\)
−0.708213 + 0.705999i \(0.750498\pi\)
\(264\) 0 0
\(265\) −0.343146 −0.0210793
\(266\) 0 0
\(267\) 8.14048 25.0538i 0.498189 1.53327i
\(268\) 2.53425 + 7.79962i 0.154804 + 0.476438i
\(269\) 4.29888 3.12332i 0.262107 0.190432i −0.448968 0.893548i \(-0.648208\pi\)
0.711076 + 0.703116i \(0.248208\pi\)
\(270\) 1.89564 1.37727i 0.115365 0.0838178i
\(271\) 4.73220 + 14.5642i 0.287460 + 0.884712i 0.985650 + 0.168800i \(0.0539891\pi\)
−0.698190 + 0.715913i \(0.746011\pi\)
\(272\) −1.08611 + 3.34270i −0.0658550 + 0.202681i
\(273\) −31.2502 22.7046i −1.89135 1.37415i
\(274\) 9.51472 0.574805
\(275\) 0 0
\(276\) −14.6274 −0.880467
\(277\) 0.947822 + 0.688633i 0.0569491 + 0.0413760i 0.615896 0.787828i \(-0.288794\pi\)
−0.558947 + 0.829204i \(0.688794\pi\)
\(278\) 0.511996 1.57576i 0.0307075 0.0945079i
\(279\) 0 0
\(280\) −2.56586 + 1.86420i −0.153339 + 0.111407i
\(281\) −4.29888 + 3.12332i −0.256450 + 0.186322i −0.708580 0.705630i \(-0.750664\pi\)
0.452131 + 0.891952i \(0.350664\pi\)
\(282\) −1.02399 3.15152i −0.0609779 0.187671i
\(283\) 3.90209 12.0094i 0.231955 0.713884i −0.765556 0.643370i \(-0.777536\pi\)
0.997511 0.0705145i \(-0.0224641\pi\)
\(284\) −16.7356 12.1591i −0.993073 0.721510i
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) −17.8559 12.9730i −1.05217 0.764444i
\(289\) −4.82914 + 14.8626i −0.284067 + 0.874268i
\(290\) 0.980070 + 3.01635i 0.0575517 + 0.177126i
\(291\) 17.5208 12.7296i 1.02709 0.746221i
\(292\) 10.1008 7.33866i 0.591105 0.429463i
\(293\) 4.58224 + 14.1027i 0.267697 + 0.823887i 0.991060 + 0.133419i \(0.0425955\pi\)
−0.723363 + 0.690468i \(0.757405\pi\)
\(294\) −1.08611 + 3.34270i −0.0633431 + 0.194950i
\(295\) −7.81256 5.67616i −0.454865 0.330479i
\(296\) −5.79899 −0.337059
\(297\) 0 0
\(298\) −4.82843 −0.279703
\(299\) −15.6251 11.3523i −0.903624 0.656521i
\(300\) −1.59810 + 4.91846i −0.0922666 + 0.283967i
\(301\) 3.70820 + 11.4127i 0.213737 + 0.657816i
\(302\) −4.02127 + 2.92162i −0.231398 + 0.168121i
\(303\) −30.4650 + 22.1341i −1.75017 + 1.27157i
\(304\) 0 0
\(305\) 4.11416 12.6621i 0.235576 0.725029i
\(306\) 1.96300 + 1.42621i 0.112217 + 0.0815308i
\(307\) 27.6569 1.57846 0.789230 0.614098i \(-0.210480\pi\)
0.789230 + 0.614098i \(0.210480\pi\)
\(308\) 0 0
\(309\) 3.31371 0.188510
\(310\) 0 0
\(311\) 8.44040 25.9769i 0.478611 1.47301i −0.362414 0.932017i \(-0.618047\pi\)
0.841025 0.540996i \(-0.181953\pi\)
\(312\) −9.46439 29.1284i −0.535816 1.64907i
\(313\) −17.2432 + 12.5279i −0.974641 + 0.708118i −0.956504 0.291718i \(-0.905773\pi\)
−0.0181361 + 0.999836i \(0.505773\pi\)
\(314\) 4.69148 3.40856i 0.264756 0.192356i
\(315\) −3.09017 9.51057i −0.174111 0.535860i
\(316\) 2.26006 6.95575i 0.127138 0.391292i
\(317\) −17.2432 12.5279i −0.968472 0.703636i −0.0133691 0.999911i \(-0.504256\pi\)
−0.955103 + 0.296275i \(0.904256\pi\)
\(318\) 0.402020 0.0225442
\(319\) 0 0
\(320\) 4.17157 0.233198
\(321\) −8.36778 6.07955i −0.467044 0.339327i
\(322\) 0.724072 2.22846i 0.0403509 0.124187i
\(323\) 0 0
\(324\) 1.47923 1.07472i 0.0821794 0.0597068i
\(325\) −5.52431 + 4.01365i −0.306434 + 0.222637i
\(326\) −0.0621155 0.191172i −0.00344026 0.0105880i
\(327\) −3.19621 + 9.83692i −0.176751 + 0.543983i
\(328\) −7.69757 5.59261i −0.425027 0.308800i
\(329\) −5.65685 −0.311872
\(330\) 0 0
\(331\) 15.3137 0.841718 0.420859 0.907126i \(-0.361729\pi\)
0.420859 + 0.907126i \(0.361729\pi\)
\(332\) 8.87537 + 6.44833i 0.487099 + 0.353898i
\(333\) 5.65015 17.3894i 0.309626 0.952932i
\(334\) −1.40422 4.32175i −0.0768356 0.236476i
\(335\) −3.62867 + 2.63638i −0.198255 + 0.144041i
\(336\) −13.7295 + 9.97505i −0.749004 + 0.544183i
\(337\) 1.08611 + 3.34270i 0.0591641 + 0.182088i 0.976271 0.216554i \(-0.0694816\pi\)
−0.917107 + 0.398642i \(0.869482\pi\)
\(338\) 4.30428 13.2472i 0.234122 0.720553i
\(339\) −19.0912 13.8705i −1.03689 0.753345i
\(340\) −2.14214 −0.116174
\(341\) 0 0
\(342\) 0 0
\(343\) 16.1803 + 11.7557i 0.873656 + 0.634748i
\(344\) −2.94021 + 9.04904i −0.158525 + 0.487891i
\(345\) −2.47214 7.60845i −0.133095 0.409625i
\(346\) 2.05827 1.49542i 0.110653 0.0803941i
\(347\) −18.5836 + 13.5018i −0.997619 + 0.724812i −0.961576 0.274538i \(-0.911475\pi\)
−0.0360423 + 0.999350i \(0.511475\pi\)
\(348\) 12.2364 + 37.6599i 0.655943 + 2.01878i
\(349\) 2.15402 6.62940i 0.115302 0.354864i −0.876708 0.481023i \(-0.840265\pi\)
0.992010 + 0.126160i \(0.0402652\pi\)
\(350\) −0.670212 0.486937i −0.0358243 0.0260279i
\(351\) 38.6274 2.06178
\(352\) 0 0
\(353\) −1.31371 −0.0699216 −0.0349608 0.999389i \(-0.511131\pi\)
−0.0349608 + 0.999389i \(0.511131\pi\)
\(354\) 9.15298 + 6.65003i 0.486476 + 0.353445i
\(355\) 3.49613 10.7600i 0.185555 0.571080i
\(356\) −5.26239 16.1960i −0.278906 0.858384i
\(357\) 5.36169 3.89550i 0.283771 0.206172i
\(358\) 0.555221 0.403392i 0.0293444 0.0213199i
\(359\) −7.20433 22.1727i −0.380230 1.17023i −0.939882 0.341500i \(-0.889065\pi\)
0.559652 0.828728i \(-0.310935\pi\)
\(360\) 2.45017 7.54086i 0.129136 0.397438i
\(361\) 15.3713 + 11.1679i 0.809017 + 0.587785i
\(362\) −0.544156 −0.0286002
\(363\) 0 0
\(364\) −24.9706 −1.30881
\(365\) 5.52431 + 4.01365i 0.289156 + 0.210084i
\(366\) −4.82004 + 14.8346i −0.251948 + 0.775415i
\(367\) 2.62210 + 8.06998i 0.136872 + 0.421250i 0.995877 0.0907188i \(-0.0289165\pi\)
−0.859004 + 0.511968i \(0.828916\pi\)
\(368\) −6.86474 + 4.98752i −0.357849 + 0.259993i
\(369\) 24.2705 17.6336i 1.26347 0.917966i
\(370\) −0.468074 1.44058i −0.0243340 0.0748923i
\(371\) 0.212076 0.652702i 0.0110104 0.0338866i
\(372\) 0 0
\(373\) 3.79899 0.196704 0.0983521 0.995152i \(-0.468643\pi\)
0.0983521 + 0.995152i \(0.468643\pi\)
\(374\) 0 0
\(375\) −2.82843 −0.146059
\(376\) −3.62867 2.63638i −0.187134 0.135961i
\(377\) −16.1567 + 49.7253i −0.832114 + 2.56098i
\(378\) 1.44814 + 4.45693i 0.0744845 + 0.229240i
\(379\) −18.0760 + 13.1330i −0.928501 + 0.674595i −0.945625 0.325258i \(-0.894549\pi\)
0.0171244 + 0.999853i \(0.494549\pi\)
\(380\) 0 0
\(381\) −13.6846 42.1168i −0.701083 2.15771i
\(382\) −2.47214 + 7.60845i −0.126485 + 0.389282i
\(383\) 27.6216 + 20.0682i 1.41140 + 1.02544i 0.993118 + 0.117121i \(0.0373664\pi\)
0.418278 + 0.908319i \(0.362634\pi\)
\(384\) −29.8579 −1.52368
\(385\) 0 0
\(386\) 2.82843 0.143963
\(387\) −24.2705 17.6336i −1.23374 0.896364i
\(388\) 4.32624 13.3148i 0.219631 0.675956i
\(389\) −7.61029 23.4221i −0.385857 1.18755i −0.935857 0.352381i \(-0.885372\pi\)
0.550000 0.835165i \(-0.314628\pi\)
\(390\) 6.47214 4.70228i 0.327729 0.238109i
\(391\) 2.68085 1.94775i 0.135576 0.0985019i
\(392\) 1.47010 + 4.52452i 0.0742515 + 0.228523i
\(393\) −9.88854 + 30.4338i −0.498811 + 1.53518i
\(394\) −1.73302 1.25912i −0.0873085 0.0634333i
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) 13.3137 0.668196 0.334098 0.942538i \(-0.391568\pi\)
0.334098 + 0.942538i \(0.391568\pi\)
\(398\) −7.25734 5.27276i −0.363777 0.264300i
\(399\) 0 0
\(400\) 0.927051 + 2.85317i 0.0463525 + 0.142658i
\(401\) −14.0071 + 10.1767i −0.699480 + 0.508202i −0.879763 0.475413i \(-0.842299\pi\)
0.180283 + 0.983615i \(0.442299\pi\)
\(402\) 4.25125 3.08871i 0.212033 0.154051i
\(403\) 0 0
\(404\) −7.52245 + 23.1517i −0.374256 + 1.15184i
\(405\) 0.809017 + 0.587785i 0.0402004 + 0.0292073i
\(406\) −6.34315 −0.314805
\(407\) 0 0
\(408\) 5.25483 0.260153
\(409\) 28.2918 + 20.5552i 1.39894 + 1.01639i 0.994817 + 0.101683i \(0.0324227\pi\)
0.404122 + 0.914705i \(0.367577\pi\)
\(410\) 0.767994 2.36364i 0.0379285 0.116732i
\(411\) 20.0770 + 61.7907i 0.990326 + 3.04791i
\(412\) 1.73302 1.25912i 0.0853800 0.0620322i
\(413\) 15.6251 11.3523i 0.768862 0.558611i
\(414\) 1.81018 + 5.57116i 0.0889655 + 0.273808i
\(415\) −1.85410 + 5.70634i −0.0910143 + 0.280113i
\(416\) −24.3855 17.7171i −1.19560 0.868652i
\(417\) 11.3137 0.554035
\(418\) 0 0
\(419\) −14.3431 −0.700709 −0.350354 0.936617i \(-0.613939\pi\)
−0.350354 + 0.936617i \(0.613939\pi\)
\(420\) −8.36778 6.07955i −0.408306 0.296652i
\(421\) −1.85410 + 5.70634i −0.0903634 + 0.278110i −0.986018 0.166641i \(-0.946708\pi\)
0.895654 + 0.444751i \(0.146708\pi\)
\(422\) 2.04798 + 6.30305i 0.0996943 + 0.306828i
\(423\) 11.4412 8.31254i 0.556292 0.404169i
\(424\) 0.440231 0.319847i 0.0213795 0.0155331i
\(425\) −0.362036 1.11423i −0.0175613 0.0540482i
\(426\) −4.09597 + 12.6061i −0.198450 + 0.610767i
\(427\) 21.5420 + 15.6512i 1.04249 + 0.757415i
\(428\) −6.68629 −0.323194
\(429\) 0 0
\(430\) −2.48528 −0.119851
\(431\) 9.15298 + 6.65003i 0.440884 + 0.320321i 0.785986 0.618244i \(-0.212156\pi\)
−0.345102 + 0.938565i \(0.612156\pi\)
\(432\) 5.24419 16.1400i 0.252311 0.776534i
\(433\) 1.13003 + 3.47788i 0.0543058 + 0.167136i 0.974531 0.224254i \(-0.0719944\pi\)
−0.920225 + 0.391390i \(0.871994\pi\)
\(434\) 0 0
\(435\) −17.5208 + 12.7296i −0.840056 + 0.610337i
\(436\) 2.06618 + 6.35904i 0.0989520 + 0.304543i
\(437\) 0 0
\(438\) −6.47214 4.70228i −0.309251 0.224684i
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) −15.0000 −0.714286
\(442\) 2.68085 + 1.94775i 0.127515 + 0.0926450i
\(443\) −6.54238 + 20.1354i −0.310838 + 0.956660i 0.666596 + 0.745419i \(0.267751\pi\)
−0.977434 + 0.211241i \(0.932249\pi\)
\(444\) −5.84403 17.9861i −0.277346 0.853582i
\(445\) 7.53495 5.47446i 0.357191 0.259514i
\(446\) 1.73302 1.25912i 0.0820611 0.0596209i
\(447\) −10.1885 31.3569i −0.481898 1.48313i
\(448\) −2.57817 + 7.93480i −0.121807 + 0.374884i
\(449\) 13.4519 + 9.77335i 0.634833 + 0.461233i 0.858071 0.513531i \(-0.171663\pi\)
−0.223238 + 0.974764i \(0.571663\pi\)
\(450\) 2.07107 0.0976311
\(451\) 0 0
\(452\) −15.2548 −0.717527
\(453\) −27.4589 19.9501i −1.29013 0.937337i
\(454\) −0.343843 + 1.05824i −0.0161373 + 0.0496656i
\(455\) −4.22020 12.9884i −0.197846 0.608907i
\(456\) 0 0
\(457\) −13.3369 + 9.68981i −0.623873 + 0.453270i −0.854272 0.519826i \(-0.825997\pi\)
0.230399 + 0.973096i \(0.425997\pi\)
\(458\) −2.72813 8.39633i −0.127477 0.392335i
\(459\) −2.04798 + 6.30305i −0.0955917 + 0.294201i
\(460\) −4.18389 3.03977i −0.195075 0.141730i
\(461\) 32.6274 1.51961 0.759805 0.650151i \(-0.225294\pi\)
0.759805 + 0.650151i \(0.225294\pi\)
\(462\) 0 0
\(463\) 22.1421 1.02903 0.514516 0.857481i \(-0.327972\pi\)
0.514516 + 0.857481i \(0.327972\pi\)
\(464\) 18.5836 + 13.5018i 0.862721 + 0.626803i
\(465\) 0 0
\(466\) −2.83417 8.72268i −0.131290 0.404071i
\(467\) 7.41996 5.39092i 0.343355 0.249462i −0.402721 0.915323i \(-0.631936\pi\)
0.746076 + 0.665861i \(0.231936\pi\)
\(468\) 50.5040 36.6933i 2.33455 1.69615i
\(469\) −2.77206 8.53151i −0.128002 0.393949i
\(470\) 0.362036 1.11423i 0.0166995 0.0513957i
\(471\) 32.0354 + 23.2751i 1.47612 + 1.07246i
\(472\) 15.3137 0.704871
\(473\) 0 0
\(474\) −4.68629 −0.215248
\(475\) 0 0
\(476\) 1.32391 4.07458i 0.0606814 0.186758i
\(477\) 0.530189 + 1.63176i 0.0242757 + 0.0747129i
\(478\) −0.229980 + 0.167090i −0.0105191 + 0.00764254i
\(479\) −29.1246 + 21.1603i −1.33074 + 0.966837i −0.331007 + 0.943628i \(0.607388\pi\)
−0.999731 + 0.0232090i \(0.992612\pi\)
\(480\) −3.85816 11.8742i −0.176100 0.541981i
\(481\) 7.71633 23.7484i 0.351834 1.08283i
\(482\) 2.01063 + 1.46081i 0.0915819 + 0.0665382i
\(483\) 16.0000 0.728025
\(484\) 0 0
\(485\) 7.65685 0.347680
\(486\) 4.73911 + 3.44317i 0.214970 + 0.156185i
\(487\) −2.32218 + 7.14692i −0.105228 + 0.323858i −0.989784 0.142576i \(-0.954461\pi\)
0.884556 + 0.466434i \(0.154461\pi\)
\(488\) 6.52418 + 20.0794i 0.295336 + 0.908950i
\(489\) 1.11044 0.806784i 0.0502160 0.0364840i
\(490\) −1.00532 + 0.730406i −0.0454156 + 0.0329964i
\(491\) 7.20433 + 22.1727i 0.325127 + 1.00064i 0.971383 + 0.237517i \(0.0763337\pi\)
−0.646256 + 0.763120i \(0.723666\pi\)
\(492\) 9.58862 29.5107i 0.432289 1.33045i
\(493\) −7.25734 5.27276i −0.326854 0.237473i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 18.3060 + 13.3001i 0.821135 + 0.596589i
\(498\) 2.17222 6.68539i 0.0973393 0.299580i
\(499\) −0.511996 1.57576i −0.0229201 0.0705408i 0.938942 0.344075i \(-0.111807\pi\)
−0.961862 + 0.273534i \(0.911807\pi\)
\(500\) −1.47923 + 1.07472i −0.0661531 + 0.0480631i
\(501\) 25.1033 18.2386i 1.12153 0.814843i
\(502\) 1.53599 + 4.72729i 0.0685545 + 0.210989i
\(503\) 8.84636 27.2263i 0.394440 1.21396i −0.534957 0.844879i \(-0.679672\pi\)
0.929397 0.369081i \(-0.120328\pi\)
\(504\) 12.8293 + 9.32102i 0.571462 + 0.415191i
\(505\) −13.3137 −0.592452
\(506\) 0 0
\(507\) 95.1127 4.22410
\(508\) −23.1601 16.8268i −1.02756 0.746567i
\(509\) 2.87809 8.85786i 0.127569 0.392618i −0.866791 0.498671i \(-0.833821\pi\)
0.994360 + 0.106053i \(0.0338215\pi\)
\(510\) 0.424151 + 1.30540i 0.0187817 + 0.0578043i
\(511\) −11.0486 + 8.02730i −0.488762 + 0.355107i
\(512\) −18.4111 + 13.3764i −0.813663 + 0.591161i
\(513\) 0 0
\(514\) 1.70414 5.24481i 0.0751665 0.231339i
\(515\) 0.947822 + 0.688633i 0.0417660 + 0.0303448i
\(516\) −31.0294 −1.36599
\(517\) 0 0
\(518\) 3.02944 0.133106
\(519\) 14.0547 + 10.2113i 0.616934 + 0.448228i
\(520\) 3.34617 10.2984i 0.146739 0.451617i
\(521\) 0.830110 + 2.55482i 0.0363678 + 0.111928i 0.967592 0.252517i \(-0.0812585\pi\)
−0.931225 + 0.364446i \(0.881258\pi\)
\(522\) 12.8293 9.32102i 0.561522 0.407970i
\(523\) 30.4174 22.0995i 1.33006 0.966345i 0.330313 0.943872i \(-0.392846\pi\)
0.999747 0.0224738i \(-0.00715424\pi\)
\(524\) 6.39242 + 19.6738i 0.279254 + 0.859455i
\(525\) 1.74806 5.37999i 0.0762918 0.234802i
\(526\) 7.69757 + 5.59261i 0.335630 + 0.243849i
\(527\) 0 0
\(528\) 0 0
\(529\) −15.0000 −0.652174
\(530\) 0.114990 + 0.0835452i 0.00499485 + 0.00362897i
\(531\) −14.9207 + 45.9211i −0.647502 + 1.99280i
\(532\) 0 0
\(533\) 33.1459 24.0819i 1.43571 1.04310i
\(534\) −8.82774 + 6.41373i −0.382014 + 0.277549i
\(535\) −1.13003 3.47788i −0.0488555 0.150362i
\(536\) 2.19794 6.76458i 0.0949368 0.292185i
\(537\) 3.79129 + 2.75453i 0.163606 + 0.118867i
\(538\) −2.20101 −0.0948923
\(539\) 0 0
\(540\) 10.3431 0.445098
\(541\) 4.85410 + 3.52671i 0.208694 + 0.151625i 0.687223 0.726447i \(-0.258830\pi\)
−0.478529 + 0.878072i \(0.658830\pi\)
\(542\) 1.96014 6.03269i 0.0841952 0.259126i
\(543\) −1.14822 3.53387i −0.0492750 0.151653i
\(544\) 4.18389 3.03977i 0.179383 0.130329i
\(545\) −2.95846 + 2.14944i −0.126726 + 0.0920721i
\(546\) 4.94427 + 15.2169i 0.211595 + 0.651223i
\(547\) 10.5066 32.3359i 0.449229 1.38258i −0.428550 0.903518i \(-0.640975\pi\)
0.877779 0.479066i \(-0.159025\pi\)
\(548\) 33.9787 + 24.6870i 1.45150 + 1.05458i
\(549\) −66.5685 −2.84108
\(550\) 0 0
\(551\) 0 0
\(552\) 10.2634 + 7.45682i 0.436840 + 0.317383i
\(553\) −2.47214 + 7.60845i −0.105126 + 0.323544i
\(554\) −0.149960 0.461530i −0.00637120 0.0196085i
\(555\) 8.36778 6.07955i 0.355193 0.258062i
\(556\) 5.91691 4.29889i 0.250933 0.182314i
\(557\) −11.7866 36.2753i −0.499413 1.53703i −0.809965 0.586478i \(-0.800514\pi\)
0.310552 0.950556i \(-0.399486\pi\)
\(558\) 0 0
\(559\) −33.1459 24.0819i −1.40192 1.01856i
\(560\) −6.00000 −0.253546
\(561\) 0 0
\(562\) 2.20101 0.0928440
\(563\) 9.43059 + 6.85173i 0.397452 + 0.288766i 0.768502 0.639847i \(-0.221002\pi\)
−0.371050 + 0.928613i \(0.621002\pi\)
\(564\) 4.52012 13.9115i 0.190331 0.585780i
\(565\) −2.57817 7.93480i −0.108465 0.333820i
\(566\) −4.23152 + 3.07438i −0.177864 + 0.129226i
\(567\) −1.61803 + 1.17557i −0.0679510 + 0.0493693i
\(568\) 5.54411 + 17.0630i 0.232626 + 0.715949i
\(569\) −6.28638 + 19.3475i −0.263539 + 0.811089i 0.728488 + 0.685059i \(0.240224\pi\)
−0.992026 + 0.126030i \(0.959776\pi\)
\(570\) 0 0
\(571\) −45.9411 −1.92258 −0.961288 0.275545i \(-0.911142\pi\)
−0.961288 + 0.275545i \(0.911142\pi\)
\(572\) 0 0
\(573\) −54.6274 −2.28209
\(574\) 4.02127 + 2.92162i 0.167845 + 0.121946i
\(575\) 0.874032 2.68999i 0.0364497 0.112181i
\(576\) −6.44543 19.8370i −0.268560 0.826542i
\(577\) −5.63930 + 4.09719i −0.234767 + 0.170568i −0.698949 0.715172i \(-0.746349\pi\)
0.464182 + 0.885740i \(0.346349\pi\)
\(578\) 5.23684 3.80479i 0.217824 0.158258i
\(579\) 5.96826 + 18.3684i 0.248033 + 0.763366i
\(580\) −4.32624 + 13.3148i −0.179637 + 0.552867i
\(581\) −9.70820 7.05342i −0.402764 0.292625i
\(582\) −8.97056 −0.371842
\(583\) 0 0
\(584\) −10.8284 −0.448084
\(585\) 27.6216 + 20.0682i 1.14201 + 0.829720i
\(586\) 1.89802 5.84152i 0.0784067 0.241311i
\(587\) 8.07836 + 24.8626i 0.333430 + 1.02619i 0.967490 + 0.252908i \(0.0813870\pi\)
−0.634061 + 0.773283i \(0.718613\pi\)
\(588\) −12.5517 + 9.11932i −0.517622 + 0.376075i
\(589\) 0 0
\(590\) 1.23607 + 3.80423i 0.0508881 + 0.156618i
\(591\) 4.52012 13.9115i 0.185933 0.572243i
\(592\) −8.87537 6.44833i −0.364776 0.265025i
\(593\) −20.4853 −0.841230 −0.420615 0.907239i \(-0.638186\pi\)
−0.420615 + 0.907239i \(0.638186\pi\)
\(594\) 0 0
\(595\) 2.34315 0.0960596
\(596\) −17.2432 12.5279i −0.706307 0.513162i
\(597\) 18.9288 58.2568i 0.774704 2.38429i
\(598\) 2.47214 + 7.60845i 0.101093 + 0.311133i
\(599\) −4.57649 + 3.32502i −0.186990 + 0.135856i −0.677342 0.735668i \(-0.736868\pi\)
0.490352 + 0.871525i \(0.336868\pi\)
\(600\) 3.62867 2.63638i 0.148140 0.107630i
\(601\) 13.5786 + 41.7905i 0.553881 + 1.70467i 0.698881 + 0.715238i \(0.253682\pi\)
−0.145000 + 0.989432i \(0.546318\pi\)
\(602\) 1.53599 4.72729i 0.0626022 0.192670i
\(603\) 18.1433 + 13.1819i 0.738854 + 0.536809i
\(604\) −21.9411 −0.892772
\(605\) 0 0
\(606\) 15.5980 0.633625
\(607\) −14.7923 10.7472i −0.600400 0.436216i 0.245621 0.969366i \(-0.421008\pi\)
−0.846021 + 0.533150i \(0.821008\pi\)
\(608\) 0 0
\(609\) −13.3847 41.1938i −0.542374 1.66926i
\(610\) −4.46150 + 3.24147i −0.180641 + 0.131243i
\(611\) 15.6251 11.3523i 0.632125 0.459265i
\(612\) 3.30978 + 10.1865i 0.133790 + 0.411763i
\(613\) −7.86629 + 24.2099i −0.317716 + 0.977831i 0.656905 + 0.753973i \(0.271865\pi\)
−0.974622 + 0.223858i \(0.928135\pi\)
\(614\) −9.26797 6.73358i −0.374025 0.271745i
\(615\) 16.9706 0.684319
\(616\) 0 0
\(617\) 11.6569 0.469287 0.234644 0.972081i \(-0.424608\pi\)
0.234644 + 0.972081i \(0.424608\pi\)
\(618\) −1.11044 0.806784i −0.0446686 0.0324536i
\(619\) −7.92840 + 24.4011i −0.318669 + 0.980764i 0.655548 + 0.755153i \(0.272438\pi\)
−0.974218 + 0.225610i \(0.927562\pi\)
\(620\) 0 0
\(621\) −12.9443 + 9.40456i −0.519436 + 0.377392i
\(622\) −9.15298 + 6.65003i −0.367001 + 0.266642i
\(623\) 5.75619 + 17.7157i 0.230617 + 0.709766i
\(624\) 17.9048 55.1053i 0.716765 2.20598i
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 8.82843 0.352855
\(627\) 0 0
\(628\) 25.5980 1.02147
\(629\) 3.46605 + 2.51823i 0.138200 + 0.100408i
\(630\) −1.27999 + 3.93941i −0.0509960 + 0.156950i
\(631\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(632\) −5.13171 + 3.72841i −0.204129 + 0.148308i
\(633\) −36.6119 + 26.6001i −1.45519 + 1.05726i
\(634\) 2.72813 + 8.39633i 0.108348 + 0.333461i
\(635\) 4.83823 14.8906i 0.191999 0.590914i
\(636\) 1.43568 + 1.04309i 0.0569286 + 0.0413610i
\(637\) −20.4853 −0.811656
\(638\) 0 0
\(639\) −56.5685 −2.23782
\(640\) −8.54027 6.20487i −0.337584 0.245269i
\(641\) 9.27051 28.5317i 0.366163 1.12693i −0.583086 0.812410i \(-0.698155\pi\)
0.949250 0.314524i \(-0.101845\pi\)
\(642\) 1.32391 + 4.07458i 0.0522507 + 0.160811i
\(643\) −40.0106 + 29.0694i −1.57786 + 1.14639i −0.658773 + 0.752341i \(0.728924\pi\)
−0.919091 + 0.394044i \(0.871076\pi\)
\(644\) 8.36778 6.07955i 0.329737 0.239568i
\(645\) −5.24419 16.1400i −0.206490 0.635510i
\(646\) 0 0
\(647\) 28.4068 + 20.6387i 1.11679 + 0.811392i 0.983719 0.179715i \(-0.0575176\pi\)
0.133067 + 0.991107i \(0.457518\pi\)
\(648\) −1.58579 −0.0622956
\(649\) 0 0
\(650\) 2.82843 0.110940
\(651\) 0 0
\(652\) 0.274191 0.843874i 0.0107382 0.0330487i
\(653\) 0.106038 + 0.326351i 0.00414958 + 0.0127711i 0.953110 0.302624i \(-0.0978628\pi\)
−0.948960 + 0.315396i \(0.897863\pi\)
\(654\) 3.46605 2.51823i 0.135533 0.0984706i
\(655\) −9.15298 + 6.65003i −0.357637 + 0.259838i
\(656\) −5.56231 17.1190i −0.217172 0.668385i
\(657\) 10.5505 32.4711i 0.411614 1.26682i
\(658\) 1.89564 + 1.37727i 0.0738999 + 0.0536914i
\(659\) 21.9411 0.854705 0.427352 0.904085i \(-0.359446\pi\)
0.427352 + 0.904085i \(0.359446\pi\)
\(660\) 0 0
\(661\) −0.627417 −0.0244037 −0.0122018 0.999926i \(-0.503884\pi\)
−0.0122018 + 0.999926i \(0.503884\pi\)
\(662\) −5.13171 3.72841i −0.199450 0.144909i
\(663\) −6.99226 + 21.5200i −0.271557 + 0.835766i
\(664\) −2.94021 9.04904i −0.114102 0.351171i
\(665\) 0 0
\(666\) −6.12717 + 4.45165i −0.237423 + 0.172498i
\(667\) −6.69234 20.5969i −0.259128 0.797515i
\(668\) 6.19853 19.0771i 0.239828 0.738116i
\(669\) 11.8338 + 8.59778i 0.457522 + 0.332409i
\(670\) 1.85786 0.0717756
\(671\) 0 0
\(672\) 24.9706 0.963260
\(673\) 3.62867 + 2.63638i 0.139875 + 0.101625i 0.655522 0.755176i \(-0.272449\pi\)
−0.515647 + 0.856801i \(0.672449\pi\)
\(674\) 0.449881 1.38459i 0.0173288 0.0533324i
\(675\) 1.74806 + 5.37999i 0.0672830 + 0.207076i
\(676\) 49.7426 36.1401i 1.91318 1.39001i
\(677\) 13.8921 10.0932i 0.533917 0.387913i −0.287904 0.957659i \(-0.592958\pi\)
0.821821 + 0.569746i \(0.192958\pi\)
\(678\) 3.02052 + 9.29620i 0.116002 + 0.357018i
\(679\) −4.73220 + 14.5642i −0.181605 + 0.558923i
\(680\) 1.50304 + 1.09203i 0.0576391 + 0.0418773i
\(681\) −7.59798 −0.291155
\(682\) 0 0
\(683\) 31.7990 1.21675 0.608377 0.793648i \(-0.291821\pi\)
0.608377 + 0.793648i \(0.291821\pi\)
\(684\) 0 0
\(685\) −7.09829 + 21.8463i −0.271212 + 0.834704i
\(686\) −2.55998 7.87881i −0.0977405 0.300814i
\(687\) 48.7710 35.4342i 1.86073 1.35190i
\(688\) −14.5623 + 10.5801i −0.555183 + 0.403364i
\(689\) 0.724072 + 2.22846i 0.0275849 + 0.0848977i
\(690\) −1.02399 + 3.15152i −0.0389827 + 0.119976i
\(691\) 13.4995 + 9.80796i 0.513545 + 0.373112i 0.814167 0.580631i \(-0.197194\pi\)
−0.300622 + 0.953743i \(0.597194\pi\)
\(692\) 11.2304 0.426918
\(693\) 0 0
\(694\) 9.51472 0.361174
\(695\) 3.23607 + 2.35114i 0.122751 + 0.0891839i
\(696\) 10.6126 32.6623i 0.402270 1.23806i
\(697\) 2.17222 + 6.68539i 0.0822785 + 0.253227i
\(698\) −2.33588 + 1.69711i −0.0884142 + 0.0642367i
\(699\) 50.6666 36.8115i 1.91639 1.39234i
\(700\) −1.13003 3.47788i −0.0427111 0.131451i
\(701\) −10.0824 + 31.0305i −0.380808 + 1.17201i 0.558668 + 0.829391i \(0.311313\pi\)
−0.939476 + 0.342615i \(0.888687\pi\)
\(702\) −12.9443 9.40456i −0.488550 0.354952i
\(703\) 0 0
\(704\) 0 0
\(705\) 8.00000 0.301297
\(706\) 0.440231 + 0.319847i 0.0165683 + 0.0120376i
\(707\) 8.22832 25.3242i 0.309458 0.952414i
\(708\) 15.4327 + 47.4968i 0.579995 + 1.78504i
\(709\) 16.6879 12.1245i 0.626728 0.455345i −0.228537 0.973535i \(-0.573394\pi\)
0.855265 + 0.518190i \(0.173394\pi\)
\(710\) −3.79129 + 2.75453i −0.142285 + 0.103376i
\(711\) −6.18034 19.0211i −0.231781 0.713348i
\(712\) −4.56404 + 14.0467i −0.171045 + 0.526422i
\(713\) 0 0
\(714\) −2.74517 −0.102735
\(715\) 0 0
\(716\) 3.02944 0.113215
\(717\) −1.57040 1.14096i −0.0586478 0.0426101i
\(718\) −2.98413 + 9.18421i −0.111367 + 0.342752i
\(719\) 9.16447 + 28.2053i 0.341777 + 1.05188i 0.963287 + 0.268475i \(0.0865197\pi\)
−0.621509 + 0.783407i \(0.713480\pi\)
\(720\) 12.1353 8.81678i 0.452254 0.328582i
\(721\) −1.89564 + 1.37727i −0.0705975 + 0.0512921i
\(722\) −2.43198 7.48487i −0.0905090 0.278558i
\(723\) −5.24419 + 16.1400i −0.195034 + 0.600252i
\(724\) −1.94328 1.41187i −0.0722213 0.0524718i
\(725\) −7.65685 −0.284368
\(726\) 0 0
\(727\) −36.4853 −1.35316 −0.676582 0.736367i \(-0.736540\pi\)
−0.676582 + 0.736367i \(0.736540\pi\)
\(728\) 17.5208 + 12.7296i 0.649363 + 0.471790i
\(729\) −13.2877 + 40.8954i −0.492138 + 1.51465i
\(730\) −0.874032 2.68999i −0.0323494 0.0995611i
\(731\) 5.68693 4.13180i 0.210339 0.152820i
\(732\) −55.7031 + 40.4707i −2.05885 + 1.49584i
\(733\) −10.3384 31.8184i −0.381858 1.17524i −0.938734 0.344643i \(-0.888000\pi\)
0.556875 0.830596i \(-0.312000\pi\)
\(734\) 1.08611 3.34270i 0.0400890 0.123381i
\(735\) −6.86474 4.98752i −0.253210 0.183968i
\(736\) 12.4853 0.460214
\(737\) 0 0
\(738\) −12.4264 −0.457422
\(739\) −30.6950 22.3012i −1.12913 0.820364i −0.143566 0.989641i \(-0.545857\pi\)
−0.985569 + 0.169277i \(0.945857\pi\)
\(740\) 2.06618 6.35904i 0.0759542 0.233763i
\(741\) 0 0
\(742\) −0.229980 + 0.167090i −0.00844284 + 0.00613408i
\(743\) 23.9453 17.3973i 0.878467 0.638243i −0.0543787 0.998520i \(-0.517318\pi\)
0.932845 + 0.360277i \(0.117318\pi\)
\(744\) 0 0
\(745\) 3.60217 11.0863i 0.131973 0.406172i
\(746\) −1.27306 0.924935i −0.0466102 0.0338643i
\(747\) 30.0000 1.09764
\(748\) 0 0
\(749\) 7.31371 0.267237
\(750\) 0.947822 + 0.688633i 0.0346096 + 0.0251453i
\(751\) −4.94427 + 15.2169i −0.180419 + 0.555273i −0.999839 0.0179203i \(-0.994295\pi\)
0.819420 + 0.573193i \(0.194295\pi\)
\(752\) −2.62210 8.06998i −0.0956180 0.294282i
\(753\) −27.4589 + 19.9501i −1.00066 + 0.727022i
\(754\) 17.5208 12.7296i 0.638069 0.463584i
\(755\) −3.70820 11.4127i −0.134955 0.415350i
\(756\) −6.39242 + 19.6738i −0.232490 + 0.715530i
\(757\) 7.53495 + 5.47446i 0.273862 + 0.198973i 0.716236 0.697858i \(-0.245863\pi\)
−0.442374 + 0.896831i \(0.645863\pi\)
\(758\) 9.25483 0.336151
\(759\) 0 0
\(760\) 0 0
\(761\) −24.2705 17.6336i −0.879805 0.639216i 0.0533947 0.998573i \(-0.482996\pi\)
−0.933200 + 0.359358i \(0.882996\pi\)
\(762\) −5.66834 + 17.4454i −0.205342 + 0.631979i
\(763\) −2.26006 6.95575i −0.0818197 0.251815i
\(764\) −28.5694 + 20.7569i −1.03360 + 0.750957i
\(765\) −4.73911 + 3.44317i −0.171343 + 0.124488i
\(766\) −4.37016 13.4500i −0.157900 0.485967i
\(767\) −20.3769 + 62.7137i −0.735768 + 2.26446i
\(768\) −9.08562 6.60109i −0.327849 0.238196i
\(769\) −14.9706 −0.539852 −0.269926 0.962881i \(-0.586999\pi\)
−0.269926 + 0.962881i \(0.586999\pi\)
\(770\) 0 0
\(771\) 37.6569 1.35618
\(772\) 10.1008 + 7.33866i 0.363536 + 0.264124i
\(773\) −9.35835 + 28.8021i −0.336597 + 1.03594i 0.629334 + 0.777135i \(0.283328\pi\)
−0.965930 + 0.258803i \(0.916672\pi\)
\(774\) 3.83997 + 11.8182i 0.138025 + 0.424797i
\(775\) 0 0
\(776\) −9.82319 + 7.13697i −0.352632 + 0.256202i
\(777\) 6.39242 + 19.6738i 0.229327 + 0.705795i
\(778\) −3.15229 + 9.70174i −0.113015 + 0.347824i
\(779\) 0 0
\(780\) 35.3137 1.26443
\(781\) 0 0
\(782\) −1.37258 −0.0490835
\(783\) 35.0415 + 25.4592i 1.25228 + 0.909836i
\(784\) −2.78115 + 8.55951i −0.0993269 + 0.305697i
\(785\) 4.32624 + 13.3148i 0.154410 + 0.475225i
\(786\) 10.7234 7.79100i 0.382491 0.277896i
\(787\) 15.3475 11.1506i 0.547080 0.397477i −0.279628 0.960108i \(-0.590211\pi\)
0.826708 + 0.562632i \(0.190211\pi\)
\(788\) −2.92202 8.99304i −0.104093 0.320364i
\(789\) −20.0770 + 61.7907i −0.714760 + 2.19981i
\(790\) −1.34042 0.973874i −0.0476901 0.0346489i
\(791\) 16.6863 0.593296
\(792\) 0 0
\(793\) −90.9117 −3.22837
\(794\) −4.46150 3.24147i −0.158333 0.115035i
\(795\) −0.299920 + 0.923060i −0.0106371 + 0.0327376i
\(796\) −12.2364 37.6599i −0.433709 1.33482i
\(797\) 10.2158 7.42221i 0.361862 0.262908i −0.391966 0.919980i \(-0.628205\pi\)
0.753828 + 0.657071i \(0.228205\pi\)
\(798\) 0 0
\(799\) 1.02399 + 3.15152i 0.0362262 + 0.111493i
\(800\) 1.36407 4.19817i 0.0482271 0.148428i
\(801\) −37.6747 27.3723i −1.33117 0.967153i
\(802\) 7.17157 0.253237
\(803\) 0 0
\(804\) 23.1960 0.818058
\(805\) 4.57649 + 3.32502i 0.161300 + 0.117191i
\(806\) 0 0
\(807\) −4.64435 14.2938i −0.163489 0.503167i
\(808\) 17.0805 12.4097i 0.600891 0.436573i
\(809\) 18.5836 13.5018i 0.653364 0.474697i −0.211052 0.977475i \(-0.567689\pi\)
0.864415 + 0.502778i \(0.167689\pi\)
\(810\) −0.127999 0.393941i −0.00449743 0.0138417i
\(811\) 4.30804 13.2588i 0.151276 0.465579i −0.846489 0.532407i \(-0.821288\pi\)
0.997765 + 0.0668274i \(0.0212877\pi\)
\(812\) −22.6525 16.4580i −0.794946 0.577562i
\(813\) 43.3137 1.51908
\(814\) 0 0
\(815\) 0.485281 0.0169987
\(816\) 8.04254 + 5.84325i 0.281545 + 0.204555i
\(817\) 0 0
\(818\) −4.47620 13.7763i −0.156507 0.481678i
\(819\) −55.2431 + 40.1365i −1.93035 + 1.40248i
\(820\) 8.87537 6.44833i 0.309941 0.225186i
\(821\) 5.77438 + 17.7717i 0.201527 + 0.620237i 0.999838 + 0.0179916i \(0.00572722\pi\)
−0.798311 + 0.602246i \(0.794273\pi\)
\(822\) 8.31617 25.5945i 0.290060 0.892712i
\(823\) −29.5172 21.4455i −1.02891 0.747543i −0.0608161 0.998149i \(-0.519370\pi\)
−0.968089 + 0.250605i \(0.919370\pi\)
\(824\) −1.85786 −0.0647218
\(825\) 0 0
\(826\) −8.00000 −0.278356
\(827\) −27.7366 20.1518i −0.964495 0.700746i −0.0103044 0.999947i \(-0.503280\pi\)
−0.954190 + 0.299201i \(0.903280\pi\)
\(828\) −7.99052 + 24.5923i −0.277690 + 0.854641i
\(829\) 5.56231 + 17.1190i 0.193187 + 0.594568i 0.999993 + 0.00375172i \(0.00119421\pi\)
−0.806806 + 0.590816i \(0.798806\pi\)
\(830\) 2.01063 1.46081i 0.0697902 0.0507055i
\(831\) 2.68085 1.94775i 0.0929975 0.0675667i
\(832\) −8.80244 27.0911i −0.305170 0.939215i
\(833\) 1.08611 3.34270i 0.0376314 0.115818i
\(834\) −3.79129 2.75453i −0.131282 0.0953817i
\(835\) 10.9706 0.379652
\(836\) 0 0
\(837\) 0 0
\(838\) 4.80647 + 3.49211i 0.166037 + 0.120633i
\(839\) 11.6366 35.8138i 0.401740 1.23643i −0.521846 0.853040i \(-0.674757\pi\)
0.923587 0.383390i \(-0.125243\pi\)
\(840\) 2.77206 + 8.53151i 0.0956450 + 0.294365i
\(841\) −23.9691 + 17.4146i −0.826520 + 0.600502i
\(842\) 2.01063 1.46081i 0.0692911 0.0503429i
\(843\) 4.64435 + 14.2938i 0.159960 + 0.492306i
\(844\) −9.04024 + 27.8230i −0.311178 + 0.957707i
\(845\) 27.2052 + 19.7657i 0.935886 + 0.679961i
\(846\) −5.85786 −0.201398
\(847\) 0 0
\(848\) 1.02944 0.0353510
\(849\) −28.8946 20.9932i −0.991661 0.720484i
\(850\) −0.149960 + 0.461530i −0.00514359 + 0.0158303i
\(851\) 3.19621 + 9.83692i 0.109565 + 0.337205i
\(852\) −47.3353 + 34.3911i −1.62168 + 1.17822i
\(853\) −26.2811 + 19.0944i −0.899849 + 0.653779i −0.938427 0.345477i \(-0.887717\pi\)
0.0385780 + 0.999256i \(0.487717\pi\)
\(854\) −3.40828 10.4896i −0.116629 0.358947i
\(855\) 0 0
\(856\) 4.69148 + 3.40856i 0.160352 + 0.116502i
\(857\) 48.7696 1.66594 0.832968 0.553321i \(-0.186640\pi\)
0.832968 + 0.553321i \(0.186640\pi\)
\(858\) 0 0
\(859\) −32.2843 −1.10153 −0.550763 0.834662i \(-0.685663\pi\)
−0.550763 + 0.834662i \(0.685663\pi\)
\(860\) −8.87537 6.44833i −0.302648 0.219886i
\(861\) −10.4884 + 32.2799i −0.357443 + 1.10010i
\(862\) −1.44814 4.45693i −0.0493240 0.151804i
\(863\) 11.9964 8.71593i 0.408364 0.296694i −0.364575 0.931174i \(-0.618786\pi\)
0.772939 + 0.634480i \(0.218786\pi\)
\(864\) −20.2016 + 14.6773i −0.687273 + 0.499333i
\(865\) 1.89802 + 5.84152i 0.0645348 + 0.198618i
\(866\) 0.468074 1.44058i 0.0159058 0.0489530i
\(867\) 35.7594 + 25.9807i 1.21445 + 0.882351i
\(868\) 0 0
\(869\) 0 0
\(870\) 8.97056 0.304131
\(871\) 24.7781 + 18.0023i 0.839574 + 0.609986i
\(872\) 1.79199 5.51517i 0.0606843 0.186767i
\(873\) −11.8305 36.4105i −0.400401 1.23231i
\(874\) 0 0
\(875\) 1.61803 1.17557i 0.0546995 0.0397415i
\(876\) −10.9125 33.5853i −0.368700 1.13474i
\(877\) −0.449881 + 1.38459i −0.0151914 + 0.0467543i −0.958365 0.285546i \(-0.907825\pi\)
0.943173 + 0.332301i \(0.107825\pi\)
\(878\) −5.36169 3.89550i −0.180948 0.131467i
\(879\) 41.9411 1.41464
\(880\) 0 0
\(881\) −52.6274 −1.77306 −0.886531 0.462668i \(-0.846892\pi\)
−0.886531 + 0.462668i \(0.846892\pi\)
\(882\) 5.02659 + 3.65203i 0.169254 + 0.122970i
\(883\) 13.2347 40.7323i 0.445384 1.37075i −0.436679 0.899617i \(-0.643845\pi\)
0.882063 0.471132i \(-0.156155\pi\)
\(884\) 4.52012 + 13.9115i 0.152028 + 0.467894i
\(885\) −22.0973 + 16.0546i −0.742791 + 0.539669i
\(886\) 7.09472 5.15461i 0.238352 0.173173i
\(887\) 5.65015 + 17.3894i 0.189713 + 0.583878i 0.999998 0.00215907i \(-0.000687255\pi\)
−0.810284 + 0.586037i \(0.800687\pi\)
\(888\) −5.06850 + 15.5992i −0.170088 + 0.523476i
\(889\) 25.3333 + 18.4057i 0.849652 + 0.617309i
\(890\) −3.85786 −0.129316
\(891\) 0 0
\(892\) 9.45584 0.316605
\(893\) 0 0
\(894\) −4.22020 + 12.9884i −0.141145 + 0.434398i
\(895\) 0.511996 + 1.57576i 0.0171141 + 0.0526719i
\(896\) 17.0805 12.4097i 0.570621 0.414580i
\(897\) −44.1945 + 32.1092i −1.47561 + 1.07209i
\(898\) −2.12829 6.55021i −0.0710221 0.218583i
\(899\) 0 0
\(900\) 7.39614 + 5.37361i 0.246538 + 0.179120i
\(901\) −0.402020 −0.0133932
\(902\) 0 0
\(903\) 33.9411 1.12949
\(904\) 10.7037 + 7.77666i 0.355998 + 0.258648i
\(905\) 0.405958 1.24941i 0.0134945 0.0415318i
\(906\) 4.34443 + 13.3708i 0.144334 + 0.444215i
\(907\) 35.9893 26.1478i 1.19501 0.868223i 0.201222 0.979546i \(-0.435509\pi\)
0.993784 + 0.111322i \(0.0355086\pi\)
\(908\) −3.97364 + 2.88702i −0.131870 + 0.0958091i
\(909\) 20.5708 + 63.3104i 0.682291 + 2.09987i
\(910\) −1.74806 + 5.37999i −0.0579478 + 0.178345i
\(911\) −46.8754 34.0569i −1.55305 1.12836i −0.941432 0.337204i \(-0.890519\pi\)
−0.611618 0.791153i \(-0.709481\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 6.82843 0.225864
\(915\) −30.4650 22.1341i −1.00714 0.731732i
\(916\) 12.0426 37.0632i 0.397898 1.22460i
\(917\) −6.99226 21.5200i −0.230905 0.710651i
\(918\) 2.22089 1.61357i 0.0733002 0.0532557i
\(919\) −25.8885 + 18.8091i −0.853984 + 0.620456i −0.926242 0.376930i \(-0.876980\pi\)
0.0722574 + 0.997386i \(0.476980\pi\)
\(920\) 1.38603 + 4.26576i 0.0456960 + 0.140638i
\(921\) 24.1730 74.3968i 0.796527 2.45146i
\(922\) −10.9336 7.94375i −0.360080 0.261614i
\(923\) −77.2548 −2.54287
\(924\) 0 0
\(925\) 3.65685 0.120237
\(926\) −7.41996 5.39092i −0.243835 0.177156i
\(927\) 1.81018 5.57116i 0.0594541 0.182981i
\(928\) −10.4445 32.1447i −0.342856 1.05520i
\(929\) 14.0071 10.1767i 0.459558 0.333888i −0.333800 0.942644i \(-0.608331\pi\)
0.793358 + 0.608756i \(0.208331\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 12.5106 38.5038i 0.409800 1.26123i
\(933\) −62.5005 45.4093i −2.04617 1.48663i
\(934\) −3.79899 −0.124307
\(935\) 0 0
\(936\) −54.1421 −1.76969
\(937\) 40.0106 + 29.0694i 1.30709 + 0.949656i 0.999998 0.00202342i \(-0.000644075\pi\)
0.307092 + 0.951680i \(0.400644\pi\)
\(938\) −1.14822 + 3.53387i −0.0374908 + 0.115385i
\(939\) 18.6289 + 57.3337i 0.607930 + 1.87102i
\(940\) 4.18389 3.03977i 0.136463 0.0991465i
\(941\) −23.7153 + 17.2302i −0.773096 + 0.561687i −0.902899 0.429852i \(-0.858566\pi\)
0.129803 + 0.991540i \(0.458566\pi\)
\(942\) −5.06850 15.5992i −0.165141 0.508251i
\(943\) −5.24419 + 16.1400i −0.170774 + 0.525590i
\(944\) 23.4377 + 17.0285i 0.762831 + 0.554229i
\(945\) −11.3137 −0.368035
\(946\) 0 0
\(947\) 46.8284 1.52172 0.760860 0.648916i \(-0.224778\pi\)
0.760860 + 0.648916i \(0.224778\pi\)
\(948\) −16.7356 12.1591i −0.543546 0.394909i
\(949\) 14.4087 44.3453i 0.467725 1.43951i
\(950\) 0 0
\(951\) −48.7710 + 35.4342i −1.58151 + 1.14903i
\(952\) −3.00609 + 2.18405i −0.0974279 + 0.0707855i
\(953\) −18.1790 55.9492i −0.588875 1.81237i −0.583118 0.812388i \(-0.698167\pi\)
−0.00575724 0.999983i \(-0.501833\pi\)
\(954\) 0.219612 0.675895i 0.00711019 0.0218829i
\(955\) −15.6251 11.3523i −0.505617 0.367352i
\(956\) −1.25483 −0.0405842
\(957\) 0 0
\(958\) 14.9117 0.481775
\(959\) −37.1672 27.0035i −1.20019 0.871989i
\(960\) 3.64609 11.2215i 0.117677 0.362173i
\(961\) −9.57953 29.4828i −0.309017 0.951057i
\(962\) −8.36778 + 6.07955i −0.269788 + 0.196013i
\(963\) −14.7923 + 10.7472i −0.476675 + 0.346324i
\(964\) 3.39009 + 10.4336i 0.109187 + 0.336044i
\(965\) −2.11010 + 6.49422i −0.0679265 + 0.209056i
\(966\) −5.36169 3.89550i −0.172510 0.125336i
\(967\) −18.9706 −0.610052 −0.305026 0.952344i \(-0.598665\pi\)
−0.305026 + 0.952344i \(0.598665\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −2.56586 1.86420i −0.0823847 0.0598560i
\(971\) −9.67647 + 29.7811i −0.310533 + 0.955721i 0.667022 + 0.745038i \(0.267569\pi\)
−0.977554 + 0.210683i \(0.932431\pi\)
\(972\) 7.99052 + 24.5923i 0.256296 + 0.788798i
\(973\) −6.47214 + 4.70228i −0.207487 + 0.150748i
\(974\) 2.51823 1.82960i 0.0806892 0.0586241i
\(975\) 5.96826 + 18.3684i 0.191137 + 0.588261i
\(976\) −12.3425 + 37.9863i −0.395073 + 1.21591i
\(977\) −35.3191 25.6609i −1.12996 0.820963i −0.144270 0.989538i \(-0.546084\pi\)
−0.985689 + 0.168575i \(0.946084\pi\)
\(978\) −0.568542 −0.0181800
\(979\) 0 0
\(980\) −5.48528 −0.175221
\(981\) 14.7923 + 10.7472i 0.472281 + 0.343132i
\(982\) 2.98413 9.18421i 0.0952275 0.293080i
\(983\) −15.4948 47.6880i −0.494206 1.52101i −0.818190 0.574948i \(-0.805022\pi\)
0.323983 0.946063i \(-0.394978\pi\)
\(984\) −21.7720 + 15.8183i −0.694066 + 0.504269i
\(985\) 4.18389 3.03977i 0.133310 0.0968553i
\(986\) 1.14822 + 3.53387i 0.0365669 + 0.112541i
\(987\) −4.94427 + 15.2169i −0.157378 + 0.484359i
\(988\) 0 0
\(989\) 16.9706 0.539633
\(990\) 0 0
\(991\) 9.94113 0.315790 0.157895 0.987456i \(-0.449529\pi\)
0.157895 + 0.987456i \(0.449529\pi\)
\(992\) 0 0
\(993\) 13.3847 41.1938i 0.424750 1.30725i
\(994\) −2.89629 8.91386i −0.0918647 0.282730i
\(995\) 17.5208 12.7296i 0.555446 0.403555i
\(996\) 25.1033 18.2386i 0.795430 0.577914i
\(997\) −2.92202 8.99304i −0.0925412 0.284813i 0.894064 0.447939i \(-0.147842\pi\)
−0.986605 + 0.163127i \(0.947842\pi\)
\(998\) −0.212076 + 0.652702i −0.00671314 + 0.0206609i
\(999\) −16.7356 12.1591i −0.529490 0.384697i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.g.l.81.1 8
11.2 odd 10 605.2.g.f.511.1 8
11.3 even 5 inner 605.2.g.l.366.1 8
11.4 even 5 inner 605.2.g.l.251.2 8
11.5 even 5 605.2.a.d.1.2 2
11.6 odd 10 55.2.a.b.1.1 2
11.7 odd 10 605.2.g.f.251.1 8
11.8 odd 10 605.2.g.f.366.2 8
11.9 even 5 inner 605.2.g.l.511.2 8
11.10 odd 2 605.2.g.f.81.2 8
33.5 odd 10 5445.2.a.y.1.1 2
33.17 even 10 495.2.a.b.1.2 2
44.27 odd 10 9680.2.a.bn.1.1 2
44.39 even 10 880.2.a.m.1.1 2
55.17 even 20 275.2.b.d.199.2 4
55.28 even 20 275.2.b.d.199.3 4
55.39 odd 10 275.2.a.c.1.2 2
55.49 even 10 3025.2.a.o.1.1 2
77.6 even 10 2695.2.a.f.1.1 2
88.61 odd 10 3520.2.a.bn.1.1 2
88.83 even 10 3520.2.a.bo.1.2 2
132.83 odd 10 7920.2.a.ch.1.1 2
143.116 odd 10 9295.2.a.g.1.2 2
165.17 odd 20 2475.2.c.l.199.3 4
165.83 odd 20 2475.2.c.l.199.2 4
165.149 even 10 2475.2.a.x.1.1 2
220.39 even 10 4400.2.a.bn.1.2 2
220.83 odd 20 4400.2.b.q.4049.1 4
220.127 odd 20 4400.2.b.q.4049.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.a.b.1.1 2 11.6 odd 10
275.2.a.c.1.2 2 55.39 odd 10
275.2.b.d.199.2 4 55.17 even 20
275.2.b.d.199.3 4 55.28 even 20
495.2.a.b.1.2 2 33.17 even 10
605.2.a.d.1.2 2 11.5 even 5
605.2.g.f.81.2 8 11.10 odd 2
605.2.g.f.251.1 8 11.7 odd 10
605.2.g.f.366.2 8 11.8 odd 10
605.2.g.f.511.1 8 11.2 odd 10
605.2.g.l.81.1 8 1.1 even 1 trivial
605.2.g.l.251.2 8 11.4 even 5 inner
605.2.g.l.366.1 8 11.3 even 5 inner
605.2.g.l.511.2 8 11.9 even 5 inner
880.2.a.m.1.1 2 44.39 even 10
2475.2.a.x.1.1 2 165.149 even 10
2475.2.c.l.199.2 4 165.83 odd 20
2475.2.c.l.199.3 4 165.17 odd 20
2695.2.a.f.1.1 2 77.6 even 10
3025.2.a.o.1.1 2 55.49 even 10
3520.2.a.bn.1.1 2 88.61 odd 10
3520.2.a.bo.1.2 2 88.83 even 10
4400.2.a.bn.1.2 2 220.39 even 10
4400.2.b.q.4049.1 4 220.83 odd 20
4400.2.b.q.4049.4 4 220.127 odd 20
5445.2.a.y.1.1 2 33.5 odd 10
7920.2.a.ch.1.1 2 132.83 odd 10
9295.2.a.g.1.2 2 143.116 odd 10
9680.2.a.bn.1.1 2 44.27 odd 10