Properties

Label 605.2.g.l.366.1
Level $605$
Weight $2$
Character 605.366
Analytic conductor $4.831$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.64000000.2
Defining polynomial: \( x^{8} + 2x^{6} + 4x^{4} + 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 366.1
Root \(0.437016 + 1.34500i\) of defining polynomial
Character \(\chi\) \(=\) 605.366
Dual form 605.2.g.l.81.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.335106 + 0.243469i) q^{2} +(0.874032 + 2.68999i) q^{3} +(-0.565015 + 1.73894i) q^{4} +(0.809017 + 0.587785i) q^{5} +(-0.947822 - 0.688633i) q^{6} +(0.618034 - 1.90211i) q^{7} +(-0.490035 - 1.50817i) q^{8} +(-4.04508 + 2.93893i) q^{9} +O(q^{10})\) \(q+(-0.335106 + 0.243469i) q^{2} +(0.874032 + 2.68999i) q^{3} +(-0.565015 + 1.73894i) q^{4} +(0.809017 + 0.587785i) q^{5} +(-0.947822 - 0.688633i) q^{6} +(0.618034 - 1.90211i) q^{7} +(-0.490035 - 1.50817i) q^{8} +(-4.04508 + 2.93893i) q^{9} -0.414214 q^{10} -5.17157 q^{12} +(-5.52431 + 4.01365i) q^{13} +(0.255998 + 0.787881i) q^{14} +(-0.874032 + 2.68999i) q^{15} +(-2.42705 - 1.76336i) q^{16} +(0.947822 + 0.688633i) q^{17} +(0.639995 - 1.96970i) q^{18} +(-1.47923 + 1.07472i) q^{20} +5.65685 q^{21} +2.82843 q^{23} +(3.62867 - 2.63638i) q^{24} +(0.309017 + 0.951057i) q^{25} +(0.874032 - 2.68999i) q^{26} +(-4.57649 - 3.32502i) q^{27} +(2.95846 + 2.14944i) q^{28} +(-2.36610 + 7.28210i) q^{29} +(-0.362036 - 1.11423i) q^{30} +4.41421 q^{32} -0.485281 q^{34} +(1.61803 - 1.17557i) q^{35} +(-2.82508 - 8.69469i) q^{36} +(1.13003 - 3.47788i) q^{37} +(-15.6251 - 11.3523i) q^{39} +(0.490035 - 1.50817i) q^{40} +(-1.85410 - 5.70634i) q^{41} +(-1.89564 + 1.37727i) q^{42} +6.00000 q^{43} -5.00000 q^{45} +(-0.947822 + 0.688633i) q^{46} +(-0.874032 - 2.68999i) q^{47} +(2.62210 - 8.06998i) q^{48} +(2.42705 + 1.76336i) q^{49} +(-0.335106 - 0.243469i) q^{50} +(-1.02399 + 3.15152i) q^{51} +(-3.85816 - 11.8742i) q^{52} +(-0.277611 + 0.201696i) q^{53} +2.34315 q^{54} -3.17157 q^{56} +(-0.980070 - 3.01635i) q^{58} +(-2.98413 + 9.18421i) q^{59} +(-4.18389 - 3.03977i) q^{60} +(10.7710 + 7.82560i) q^{61} +(3.09017 + 9.51057i) q^{63} +(3.37487 - 2.45199i) q^{64} -6.82843 q^{65} -4.48528 q^{67} +(-1.73302 + 1.25912i) q^{68} +(2.47214 + 7.60845i) q^{69} +(-0.255998 + 0.787881i) q^{70} +(9.15298 + 6.65003i) q^{71} +(6.41464 + 4.66051i) q^{72} +(2.11010 - 6.49422i) q^{73} +(0.468074 + 1.44058i) q^{74} +(-2.28825 + 1.66251i) q^{75} +8.00000 q^{78} +(3.23607 - 2.35114i) q^{79} +(-0.927051 - 2.85317i) q^{80} +(0.309017 - 0.951057i) q^{81} +(2.01063 + 1.46081i) q^{82} +(-4.85410 - 3.52671i) q^{83} +(-3.19621 + 9.83692i) q^{84} +(0.362036 + 1.11423i) q^{85} +(-2.01063 + 1.46081i) q^{86} -21.6569 q^{87} +9.31371 q^{89} +(1.67553 - 1.21734i) q^{90} +(4.22020 + 12.9884i) q^{91} +(-1.59810 + 4.91846i) q^{92} +(0.947822 + 0.688633i) q^{94} +(3.85816 + 11.8742i) q^{96} +(6.19453 - 4.50059i) q^{97} -1.24264 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{4} + 2 q^{5} - 8 q^{6} - 4 q^{7} + 6 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} - 2 q^{4} + 2 q^{5} - 8 q^{6} - 4 q^{7} + 6 q^{8} - 10 q^{9} + 8 q^{10} - 64 q^{12} - 8 q^{13} + 4 q^{14} - 6 q^{16} + 8 q^{17} + 10 q^{18} + 2 q^{20} - 8 q^{24} - 2 q^{25} - 4 q^{28} + 4 q^{29} + 8 q^{30} + 24 q^{32} + 64 q^{34} + 4 q^{35} - 10 q^{36} + 4 q^{37} - 16 q^{39} - 6 q^{40} + 12 q^{41} - 16 q^{42} + 48 q^{43} - 40 q^{45} - 8 q^{46} + 6 q^{49} + 2 q^{50} - 16 q^{51} + 8 q^{52} - 12 q^{53} + 64 q^{54} - 48 q^{56} + 12 q^{58} + 8 q^{59} - 16 q^{60} + 4 q^{61} - 20 q^{63} + 14 q^{64} - 32 q^{65} + 32 q^{67} + 24 q^{68} - 16 q^{69} - 4 q^{70} + 30 q^{72} - 8 q^{73} - 20 q^{74} + 64 q^{78} + 8 q^{79} + 6 q^{80} - 2 q^{81} - 12 q^{82} - 12 q^{83} + 32 q^{84} - 8 q^{85} + 12 q^{86} - 128 q^{87} - 16 q^{89} - 10 q^{90} - 16 q^{91} + 16 q^{92} + 8 q^{94} - 8 q^{96} + 4 q^{97} + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.335106 + 0.243469i −0.236956 + 0.172158i −0.699926 0.714215i \(-0.746784\pi\)
0.462970 + 0.886374i \(0.346784\pi\)
\(3\) 0.874032 + 2.68999i 0.504623 + 1.55307i 0.801404 + 0.598123i \(0.204087\pi\)
−0.296781 + 0.954945i \(0.595913\pi\)
\(4\) −0.565015 + 1.73894i −0.282508 + 0.869469i
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) −0.947822 0.688633i −0.386947 0.281133i
\(7\) 0.618034 1.90211i 0.233595 0.718931i −0.763710 0.645560i \(-0.776624\pi\)
0.997305 0.0733714i \(-0.0233759\pi\)
\(8\) −0.490035 1.50817i −0.173254 0.533220i
\(9\) −4.04508 + 2.93893i −1.34836 + 0.979642i
\(10\) −0.414214 −0.130986
\(11\) 0 0
\(12\) −5.17157 −1.49290
\(13\) −5.52431 + 4.01365i −1.53217 + 1.11319i −0.577151 + 0.816637i \(0.695836\pi\)
−0.955018 + 0.296549i \(0.904164\pi\)
\(14\) 0.255998 + 0.787881i 0.0684184 + 0.210570i
\(15\) −0.874032 + 2.68999i −0.225674 + 0.694553i
\(16\) −2.42705 1.76336i −0.606763 0.440839i
\(17\) 0.947822 + 0.688633i 0.229881 + 0.167018i 0.696763 0.717301i \(-0.254623\pi\)
−0.466882 + 0.884319i \(0.654623\pi\)
\(18\) 0.639995 1.96970i 0.150848 0.464263i
\(19\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(20\) −1.47923 + 1.07472i −0.330766 + 0.240315i
\(21\) 5.65685 1.23443
\(22\) 0 0
\(23\) 2.82843 0.589768 0.294884 0.955533i \(-0.404719\pi\)
0.294884 + 0.955533i \(0.404719\pi\)
\(24\) 3.62867 2.63638i 0.740699 0.538149i
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0.874032 2.68999i 0.171412 0.527551i
\(27\) −4.57649 3.32502i −0.880746 0.639900i
\(28\) 2.95846 + 2.14944i 0.559096 + 0.406207i
\(29\) −2.36610 + 7.28210i −0.439373 + 1.35225i 0.449165 + 0.893449i \(0.351722\pi\)
−0.888538 + 0.458803i \(0.848278\pi\)
\(30\) −0.362036 1.11423i −0.0660984 0.203430i
\(31\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(32\) 4.41421 0.780330
\(33\) 0 0
\(34\) −0.485281 −0.0832251
\(35\) 1.61803 1.17557i 0.273498 0.198708i
\(36\) −2.82508 8.69469i −0.470846 1.44911i
\(37\) 1.13003 3.47788i 0.185776 0.571759i −0.814185 0.580605i \(-0.802816\pi\)
0.999961 + 0.00884630i \(0.00281590\pi\)
\(38\) 0 0
\(39\) −15.6251 11.3523i −2.50202 1.81782i
\(40\) 0.490035 1.50817i 0.0774813 0.238463i
\(41\) −1.85410 5.70634i −0.289562 0.891180i −0.984994 0.172588i \(-0.944787\pi\)
0.695432 0.718592i \(-0.255213\pi\)
\(42\) −1.89564 + 1.37727i −0.292504 + 0.212517i
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) −5.00000 −0.745356
\(46\) −0.947822 + 0.688633i −0.139749 + 0.101533i
\(47\) −0.874032 2.68999i −0.127491 0.392376i 0.866856 0.498559i \(-0.166137\pi\)
−0.994347 + 0.106183i \(0.966137\pi\)
\(48\) 2.62210 8.06998i 0.378467 1.16480i
\(49\) 2.42705 + 1.76336i 0.346722 + 0.251908i
\(50\) −0.335106 0.243469i −0.0473911 0.0344317i
\(51\) −1.02399 + 3.15152i −0.143388 + 0.441302i
\(52\) −3.85816 11.8742i −0.535031 1.64666i
\(53\) −0.277611 + 0.201696i −0.0381328 + 0.0277051i −0.606688 0.794940i \(-0.707502\pi\)
0.568556 + 0.822645i \(0.307502\pi\)
\(54\) 2.34315 0.318862
\(55\) 0 0
\(56\) −3.17157 −0.423819
\(57\) 0 0
\(58\) −0.980070 3.01635i −0.128689 0.396066i
\(59\) −2.98413 + 9.18421i −0.388501 + 1.19568i 0.545408 + 0.838171i \(0.316375\pi\)
−0.933909 + 0.357512i \(0.883625\pi\)
\(60\) −4.18389 3.03977i −0.540138 0.392433i
\(61\) 10.7710 + 7.82560i 1.37909 + 1.00197i 0.996965 + 0.0778539i \(0.0248068\pi\)
0.382123 + 0.924112i \(0.375193\pi\)
\(62\) 0 0
\(63\) 3.09017 + 9.51057i 0.389325 + 1.19822i
\(64\) 3.37487 2.45199i 0.421859 0.306499i
\(65\) −6.82843 −0.846962
\(66\) 0 0
\(67\) −4.48528 −0.547964 −0.273982 0.961735i \(-0.588341\pi\)
−0.273982 + 0.961735i \(0.588341\pi\)
\(68\) −1.73302 + 1.25912i −0.210160 + 0.152690i
\(69\) 2.47214 + 7.60845i 0.297610 + 0.915950i
\(70\) −0.255998 + 0.787881i −0.0305976 + 0.0941698i
\(71\) 9.15298 + 6.65003i 1.08626 + 0.789213i 0.978764 0.204992i \(-0.0657169\pi\)
0.107496 + 0.994206i \(0.465717\pi\)
\(72\) 6.41464 + 4.66051i 0.755973 + 0.549246i
\(73\) 2.11010 6.49422i 0.246969 0.760091i −0.748338 0.663318i \(-0.769148\pi\)
0.995306 0.0967733i \(-0.0308522\pi\)
\(74\) 0.468074 + 1.44058i 0.0544125 + 0.167464i
\(75\) −2.28825 + 1.66251i −0.264224 + 0.191970i
\(76\) 0 0
\(77\) 0 0
\(78\) 8.00000 0.905822
\(79\) 3.23607 2.35114i 0.364086 0.264524i −0.390668 0.920532i \(-0.627756\pi\)
0.754754 + 0.656007i \(0.227756\pi\)
\(80\) −0.927051 2.85317i −0.103647 0.318994i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 2.01063 + 1.46081i 0.222037 + 0.161320i
\(83\) −4.85410 3.52671i −0.532807 0.387107i 0.288600 0.957450i \(-0.406810\pi\)
−0.821407 + 0.570343i \(0.806810\pi\)
\(84\) −3.19621 + 9.83692i −0.348735 + 1.07330i
\(85\) 0.362036 + 1.11423i 0.0392683 + 0.120855i
\(86\) −2.01063 + 1.46081i −0.216812 + 0.157523i
\(87\) −21.6569 −2.32186
\(88\) 0 0
\(89\) 9.31371 0.987251 0.493626 0.869675i \(-0.335671\pi\)
0.493626 + 0.869675i \(0.335671\pi\)
\(90\) 1.67553 1.21734i 0.176616 0.128319i
\(91\) 4.22020 + 12.9884i 0.442397 + 1.36156i
\(92\) −1.59810 + 4.91846i −0.166614 + 0.512785i
\(93\) 0 0
\(94\) 0.947822 + 0.688633i 0.0977604 + 0.0710271i
\(95\) 0 0
\(96\) 3.85816 + 11.8742i 0.393772 + 1.21191i
\(97\) 6.19453 4.50059i 0.628959 0.456965i −0.227081 0.973876i \(-0.572918\pi\)
0.856039 + 0.516911i \(0.172918\pi\)
\(98\) −1.24264 −0.125526
\(99\) 0 0
\(100\) −1.82843 −0.182843
\(101\) −10.7710 + 7.82560i −1.07176 + 0.778676i −0.976227 0.216750i \(-0.930454\pi\)
−0.0955291 + 0.995427i \(0.530454\pi\)
\(102\) −0.424151 1.30540i −0.0419973 0.129254i
\(103\) 0.362036 1.11423i 0.0356725 0.109789i −0.931635 0.363396i \(-0.881617\pi\)
0.967307 + 0.253608i \(0.0816172\pi\)
\(104\) 8.76038 + 6.36479i 0.859026 + 0.624119i
\(105\) 4.57649 + 3.32502i 0.446620 + 0.324488i
\(106\) 0.0439223 0.135179i 0.00426611 0.0131297i
\(107\) 1.13003 + 3.47788i 0.109244 + 0.336219i 0.990703 0.136042i \(-0.0434381\pi\)
−0.881459 + 0.472261i \(0.843438\pi\)
\(108\) 8.36778 6.07955i 0.805190 0.585005i
\(109\) −3.65685 −0.350263 −0.175132 0.984545i \(-0.556035\pi\)
−0.175132 + 0.984545i \(0.556035\pi\)
\(110\) 0 0
\(111\) 10.3431 0.981728
\(112\) −4.85410 + 3.52671i −0.458670 + 0.333243i
\(113\) 2.57817 + 7.93480i 0.242534 + 0.746443i 0.996032 + 0.0889933i \(0.0283650\pi\)
−0.753498 + 0.657450i \(0.771635\pi\)
\(114\) 0 0
\(115\) 2.28825 + 1.66251i 0.213380 + 0.155030i
\(116\) −11.3262 8.22899i −1.05161 0.764043i
\(117\) 10.5505 32.4711i 0.975394 3.00195i
\(118\) −1.23607 3.80423i −0.113789 0.350207i
\(119\) 1.89564 1.37727i 0.173773 0.126254i
\(120\) 4.48528 0.409448
\(121\) 0 0
\(122\) −5.51472 −0.499279
\(123\) 13.7295 9.97505i 1.23794 0.899420i
\(124\) 0 0
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) −3.35106 2.43469i −0.298536 0.216899i
\(127\) 12.6667 + 9.20287i 1.12398 + 0.816622i 0.984808 0.173645i \(-0.0555546\pi\)
0.139176 + 0.990268i \(0.455555\pi\)
\(128\) −3.26209 + 10.0397i −0.288331 + 0.887391i
\(129\) 5.24419 + 16.1400i 0.461725 + 1.42104i
\(130\) 2.28825 1.66251i 0.200692 0.145812i
\(131\) −11.3137 −0.988483 −0.494242 0.869325i \(-0.664554\pi\)
−0.494242 + 0.869325i \(0.664554\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.50304 1.09203i 0.129843 0.0943366i
\(135\) −1.74806 5.37999i −0.150449 0.463036i
\(136\) 0.574112 1.76693i 0.0492297 0.151513i
\(137\) −18.5836 13.5018i −1.58770 1.15353i −0.907129 0.420853i \(-0.861731\pi\)
−0.680573 0.732680i \(-0.738269\pi\)
\(138\) −2.68085 1.94775i −0.228209 0.165803i
\(139\) 1.23607 3.80423i 0.104842 0.322670i −0.884851 0.465873i \(-0.845740\pi\)
0.989693 + 0.143203i \(0.0457402\pi\)
\(140\) 1.13003 + 3.47788i 0.0955050 + 0.293934i
\(141\) 6.47214 4.70228i 0.545052 0.396004i
\(142\) −4.68629 −0.393265
\(143\) 0 0
\(144\) 15.0000 1.25000
\(145\) −6.19453 + 4.50059i −0.514427 + 0.373753i
\(146\) 0.874032 + 2.68999i 0.0723354 + 0.222625i
\(147\) −2.62210 + 8.06998i −0.216267 + 0.665601i
\(148\) 5.40932 + 3.93010i 0.444644 + 0.323053i
\(149\) 9.43059 + 6.85173i 0.772584 + 0.561315i 0.902744 0.430178i \(-0.141549\pi\)
−0.130160 + 0.991493i \(0.541549\pi\)
\(150\) 0.362036 1.11423i 0.0295601 0.0909767i
\(151\) 3.70820 + 11.4127i 0.301769 + 0.928751i 0.980863 + 0.194699i \(0.0623730\pi\)
−0.679094 + 0.734052i \(0.737627\pi\)
\(152\) 0 0
\(153\) −5.85786 −0.473580
\(154\) 0 0
\(155\) 0 0
\(156\) 28.5694 20.7569i 2.28738 1.66188i
\(157\) −4.32624 13.3148i −0.345271 1.06264i −0.961438 0.275020i \(-0.911315\pi\)
0.616167 0.787616i \(-0.288685\pi\)
\(158\) −0.511996 + 1.57576i −0.0407322 + 0.125361i
\(159\) −0.785202 0.570482i −0.0622705 0.0452422i
\(160\) 3.57117 + 2.59461i 0.282326 + 0.205122i
\(161\) 1.74806 5.37999i 0.137767 0.424002i
\(162\) 0.127999 + 0.393941i 0.0100566 + 0.0309509i
\(163\) 0.392601 0.285241i 0.0307509 0.0223418i −0.572304 0.820042i \(-0.693950\pi\)
0.603055 + 0.797700i \(0.293950\pi\)
\(164\) 10.9706 0.856657
\(165\) 0 0
\(166\) 2.48528 0.192895
\(167\) 8.87537 6.44833i 0.686797 0.498987i −0.188809 0.982014i \(-0.560463\pi\)
0.875606 + 0.483027i \(0.160463\pi\)
\(168\) −2.77206 8.53151i −0.213869 0.658220i
\(169\) 10.3914 31.9816i 0.799342 2.46012i
\(170\) −0.392601 0.285241i −0.0301111 0.0218770i
\(171\) 0 0
\(172\) −3.39009 + 10.4336i −0.258492 + 0.795556i
\(173\) −1.89802 5.84152i −0.144304 0.444122i 0.852617 0.522537i \(-0.175014\pi\)
−0.996921 + 0.0784144i \(0.975014\pi\)
\(174\) 7.25734 5.27276i 0.550177 0.399727i
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) −27.3137 −2.05302
\(178\) −3.12108 + 2.26760i −0.233935 + 0.169963i
\(179\) −0.511996 1.57576i −0.0382684 0.117778i 0.930097 0.367313i \(-0.119722\pi\)
−0.968366 + 0.249535i \(0.919722\pi\)
\(180\) 2.82508 8.69469i 0.210569 0.648064i
\(181\) 1.06281 + 0.772178i 0.0789982 + 0.0573956i 0.626583 0.779354i \(-0.284453\pi\)
−0.547585 + 0.836750i \(0.684453\pi\)
\(182\) −4.57649 3.32502i −0.339232 0.246467i
\(183\) −11.6366 + 35.8138i −0.860203 + 2.64743i
\(184\) −1.38603 4.26576i −0.102179 0.314476i
\(185\) 2.95846 2.14944i 0.217510 0.158030i
\(186\) 0 0
\(187\) 0 0
\(188\) 5.17157 0.377176
\(189\) −9.15298 + 6.65003i −0.665782 + 0.483719i
\(190\) 0 0
\(191\) −5.96826 + 18.3684i −0.431848 + 1.32909i 0.464433 + 0.885608i \(0.346258\pi\)
−0.896282 + 0.443485i \(0.853742\pi\)
\(192\) 9.54558 + 6.93527i 0.688893 + 0.500510i
\(193\) −5.52431 4.01365i −0.397649 0.288909i 0.370934 0.928659i \(-0.379038\pi\)
−0.768583 + 0.639751i \(0.779038\pi\)
\(194\) −0.980070 + 3.01635i −0.0703649 + 0.216561i
\(195\) −5.96826 18.3684i −0.427396 1.31539i
\(196\) −4.43769 + 3.22417i −0.316978 + 0.230298i
\(197\) 5.17157 0.368459 0.184230 0.982883i \(-0.441021\pi\)
0.184230 + 0.982883i \(0.441021\pi\)
\(198\) 0 0
\(199\) 21.6569 1.53521 0.767607 0.640921i \(-0.221447\pi\)
0.767607 + 0.640921i \(0.221447\pi\)
\(200\) 1.28293 0.932102i 0.0907167 0.0659096i
\(201\) −3.92028 12.0654i −0.276515 0.851026i
\(202\) 1.70414 5.24481i 0.119903 0.369023i
\(203\) 12.3891 + 9.00117i 0.869541 + 0.631758i
\(204\) −4.90173 3.56132i −0.343190 0.249342i
\(205\) 1.85410 5.70634i 0.129496 0.398548i
\(206\) 0.149960 + 0.461530i 0.0104482 + 0.0321563i
\(207\) −11.4412 + 8.31254i −0.795220 + 0.577761i
\(208\) 20.4853 1.42040
\(209\) 0 0
\(210\) −2.34315 −0.161692
\(211\) −12.9443 + 9.40456i −0.891120 + 0.647437i −0.936170 0.351548i \(-0.885655\pi\)
0.0450495 + 0.998985i \(0.485655\pi\)
\(212\) −0.193883 0.596709i −0.0133159 0.0409821i
\(213\) −9.88854 + 30.4338i −0.677552 + 2.08529i
\(214\) −1.22543 0.890329i −0.0837689 0.0608617i
\(215\) 4.85410 + 3.52671i 0.331047 + 0.240520i
\(216\) −2.77206 + 8.53151i −0.188615 + 0.580496i
\(217\) 0 0
\(218\) 1.22543 0.890329i 0.0829968 0.0603007i
\(219\) 19.3137 1.30510
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) −3.46605 + 2.51823i −0.232626 + 0.169013i
\(223\) −1.59810 4.91846i −0.107017 0.329364i 0.883182 0.469031i \(-0.155397\pi\)
−0.990199 + 0.139667i \(0.955397\pi\)
\(224\) 2.72813 8.39633i 0.182281 0.561004i
\(225\) −4.04508 2.93893i −0.269672 0.195928i
\(226\) −2.79584 2.03129i −0.185976 0.135120i
\(227\) −0.830110 + 2.55482i −0.0550963 + 0.169569i −0.974818 0.223002i \(-0.928414\pi\)
0.919722 + 0.392571i \(0.128414\pi\)
\(228\) 0 0
\(229\) 17.2432 12.5279i 1.13946 0.827866i 0.152416 0.988316i \(-0.451295\pi\)
0.987044 + 0.160451i \(0.0512947\pi\)
\(230\) −1.17157 −0.0772512
\(231\) 0 0
\(232\) 12.1421 0.797170
\(233\) 17.9134 13.0148i 1.17354 0.852629i 0.182115 0.983277i \(-0.441706\pi\)
0.991429 + 0.130648i \(0.0417058\pi\)
\(234\) 4.37016 + 13.4500i 0.285686 + 0.879252i
\(235\) 0.874032 2.68999i 0.0570156 0.175476i
\(236\) −14.2847 10.3784i −0.929854 0.675579i
\(237\) 9.15298 + 6.65003i 0.594550 + 0.431966i
\(238\) −0.299920 + 0.923060i −0.0194410 + 0.0598331i
\(239\) 0.212076 + 0.652702i 0.0137180 + 0.0422198i 0.957681 0.287831i \(-0.0929341\pi\)
−0.943963 + 0.330051i \(0.892934\pi\)
\(240\) 6.86474 4.98752i 0.443117 0.321943i
\(241\) −6.00000 −0.386494 −0.193247 0.981150i \(-0.561902\pi\)
−0.193247 + 0.981150i \(0.561902\pi\)
\(242\) 0 0
\(243\) −14.1421 −0.907218
\(244\) −19.6940 + 14.3085i −1.26078 + 0.916011i
\(245\) 0.927051 + 2.85317i 0.0592271 + 0.182282i
\(246\) −2.17222 + 6.68539i −0.138495 + 0.426245i
\(247\) 0 0
\(248\) 0 0
\(249\) 5.24419 16.1400i 0.332337 1.02283i
\(250\) −0.127999 0.393941i −0.00809537 0.0249150i
\(251\) −9.70820 + 7.05342i −0.612776 + 0.445208i −0.850391 0.526151i \(-0.823635\pi\)
0.237614 + 0.971360i \(0.423635\pi\)
\(252\) −18.2843 −1.15180
\(253\) 0 0
\(254\) −6.48528 −0.406923
\(255\) −2.68085 + 1.94775i −0.167881 + 0.121973i
\(256\) 1.22697 + 3.77623i 0.0766857 + 0.236014i
\(257\) 4.11416 12.6621i 0.256634 0.789839i −0.736869 0.676036i \(-0.763696\pi\)
0.993503 0.113804i \(-0.0363035\pi\)
\(258\) −5.68693 4.13180i −0.354053 0.257235i
\(259\) −5.91691 4.29889i −0.367659 0.267120i
\(260\) 3.85816 11.8742i 0.239273 0.736407i
\(261\) −11.8305 36.4105i −0.732289 2.25375i
\(262\) 3.79129 2.75453i 0.234227 0.170176i
\(263\) −22.9706 −1.41643 −0.708213 0.705999i \(-0.750498\pi\)
−0.708213 + 0.705999i \(0.750498\pi\)
\(264\) 0 0
\(265\) −0.343146 −0.0210793
\(266\) 0 0
\(267\) 8.14048 + 25.0538i 0.498189 + 1.53327i
\(268\) 2.53425 7.79962i 0.154804 0.476438i
\(269\) 4.29888 + 3.12332i 0.262107 + 0.190432i 0.711076 0.703116i \(-0.248208\pi\)
−0.448968 + 0.893548i \(0.648208\pi\)
\(270\) 1.89564 + 1.37727i 0.115365 + 0.0838178i
\(271\) 4.73220 14.5642i 0.287460 0.884712i −0.698190 0.715913i \(-0.746011\pi\)
0.985650 0.168800i \(-0.0539891\pi\)
\(272\) −1.08611 3.34270i −0.0658550 0.202681i
\(273\) −31.2502 + 22.7046i −1.89135 + 1.37415i
\(274\) 9.51472 0.574805
\(275\) 0 0
\(276\) −14.6274 −0.880467
\(277\) 0.947822 0.688633i 0.0569491 0.0413760i −0.558947 0.829204i \(-0.688794\pi\)
0.615896 + 0.787828i \(0.288794\pi\)
\(278\) 0.511996 + 1.57576i 0.0307075 + 0.0945079i
\(279\) 0 0
\(280\) −2.56586 1.86420i −0.153339 0.111407i
\(281\) −4.29888 3.12332i −0.256450 0.186322i 0.452131 0.891952i \(-0.350664\pi\)
−0.708580 + 0.705630i \(0.750664\pi\)
\(282\) −1.02399 + 3.15152i −0.0609779 + 0.187671i
\(283\) 3.90209 + 12.0094i 0.231955 + 0.713884i 0.997511 + 0.0705145i \(0.0224641\pi\)
−0.765556 + 0.643370i \(0.777536\pi\)
\(284\) −16.7356 + 12.1591i −0.993073 + 0.721510i
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) −17.8559 + 12.9730i −1.05217 + 0.764444i
\(289\) −4.82914 14.8626i −0.284067 0.874268i
\(290\) 0.980070 3.01635i 0.0575517 0.177126i
\(291\) 17.5208 + 12.7296i 1.02709 + 0.746221i
\(292\) 10.1008 + 7.33866i 0.591105 + 0.429463i
\(293\) 4.58224 14.1027i 0.267697 0.823887i −0.723363 0.690468i \(-0.757405\pi\)
0.991060 0.133419i \(-0.0425955\pi\)
\(294\) −1.08611 3.34270i −0.0633431 0.194950i
\(295\) −7.81256 + 5.67616i −0.454865 + 0.330479i
\(296\) −5.79899 −0.337059
\(297\) 0 0
\(298\) −4.82843 −0.279703
\(299\) −15.6251 + 11.3523i −0.903624 + 0.656521i
\(300\) −1.59810 4.91846i −0.0922666 0.283967i
\(301\) 3.70820 11.4127i 0.213737 0.657816i
\(302\) −4.02127 2.92162i −0.231398 0.168121i
\(303\) −30.4650 22.1341i −1.75017 1.27157i
\(304\) 0 0
\(305\) 4.11416 + 12.6621i 0.235576 + 0.725029i
\(306\) 1.96300 1.42621i 0.112217 0.0815308i
\(307\) 27.6569 1.57846 0.789230 0.614098i \(-0.210480\pi\)
0.789230 + 0.614098i \(0.210480\pi\)
\(308\) 0 0
\(309\) 3.31371 0.188510
\(310\) 0 0
\(311\) 8.44040 + 25.9769i 0.478611 + 1.47301i 0.841025 + 0.540996i \(0.181953\pi\)
−0.362414 + 0.932017i \(0.618047\pi\)
\(312\) −9.46439 + 29.1284i −0.535816 + 1.64907i
\(313\) −17.2432 12.5279i −0.974641 0.708118i −0.0181361 0.999836i \(-0.505773\pi\)
−0.956504 + 0.291718i \(0.905773\pi\)
\(314\) 4.69148 + 3.40856i 0.264756 + 0.192356i
\(315\) −3.09017 + 9.51057i −0.174111 + 0.535860i
\(316\) 2.26006 + 6.95575i 0.127138 + 0.391292i
\(317\) −17.2432 + 12.5279i −0.968472 + 0.703636i −0.955103 0.296275i \(-0.904256\pi\)
−0.0133691 + 0.999911i \(0.504256\pi\)
\(318\) 0.402020 0.0225442
\(319\) 0 0
\(320\) 4.17157 0.233198
\(321\) −8.36778 + 6.07955i −0.467044 + 0.339327i
\(322\) 0.724072 + 2.22846i 0.0403509 + 0.124187i
\(323\) 0 0
\(324\) 1.47923 + 1.07472i 0.0821794 + 0.0597068i
\(325\) −5.52431 4.01365i −0.306434 0.222637i
\(326\) −0.0621155 + 0.191172i −0.00344026 + 0.0105880i
\(327\) −3.19621 9.83692i −0.176751 0.543983i
\(328\) −7.69757 + 5.59261i −0.425027 + 0.308800i
\(329\) −5.65685 −0.311872
\(330\) 0 0
\(331\) 15.3137 0.841718 0.420859 0.907126i \(-0.361729\pi\)
0.420859 + 0.907126i \(0.361729\pi\)
\(332\) 8.87537 6.44833i 0.487099 0.353898i
\(333\) 5.65015 + 17.3894i 0.309626 + 0.952932i
\(334\) −1.40422 + 4.32175i −0.0768356 + 0.236476i
\(335\) −3.62867 2.63638i −0.198255 0.144041i
\(336\) −13.7295 9.97505i −0.749004 0.544183i
\(337\) 1.08611 3.34270i 0.0591641 0.182088i −0.917107 0.398642i \(-0.869482\pi\)
0.976271 + 0.216554i \(0.0694816\pi\)
\(338\) 4.30428 + 13.2472i 0.234122 + 0.720553i
\(339\) −19.0912 + 13.8705i −1.03689 + 0.753345i
\(340\) −2.14214 −0.116174
\(341\) 0 0
\(342\) 0 0
\(343\) 16.1803 11.7557i 0.873656 0.634748i
\(344\) −2.94021 9.04904i −0.158525 0.487891i
\(345\) −2.47214 + 7.60845i −0.133095 + 0.409625i
\(346\) 2.05827 + 1.49542i 0.110653 + 0.0803941i
\(347\) −18.5836 13.5018i −0.997619 0.724812i −0.0360423 0.999350i \(-0.511475\pi\)
−0.961576 + 0.274538i \(0.911475\pi\)
\(348\) 12.2364 37.6599i 0.655943 2.01878i
\(349\) 2.15402 + 6.62940i 0.115302 + 0.354864i 0.992010 0.126160i \(-0.0402652\pi\)
−0.876708 + 0.481023i \(0.840265\pi\)
\(350\) −0.670212 + 0.486937i −0.0358243 + 0.0260279i
\(351\) 38.6274 2.06178
\(352\) 0 0
\(353\) −1.31371 −0.0699216 −0.0349608 0.999389i \(-0.511131\pi\)
−0.0349608 + 0.999389i \(0.511131\pi\)
\(354\) 9.15298 6.65003i 0.486476 0.353445i
\(355\) 3.49613 + 10.7600i 0.185555 + 0.571080i
\(356\) −5.26239 + 16.1960i −0.278906 + 0.858384i
\(357\) 5.36169 + 3.89550i 0.283771 + 0.206172i
\(358\) 0.555221 + 0.403392i 0.0293444 + 0.0213199i
\(359\) −7.20433 + 22.1727i −0.380230 + 1.17023i 0.559652 + 0.828728i \(0.310935\pi\)
−0.939882 + 0.341500i \(0.889065\pi\)
\(360\) 2.45017 + 7.54086i 0.129136 + 0.397438i
\(361\) 15.3713 11.1679i 0.809017 0.587785i
\(362\) −0.544156 −0.0286002
\(363\) 0 0
\(364\) −24.9706 −1.30881
\(365\) 5.52431 4.01365i 0.289156 0.210084i
\(366\) −4.82004 14.8346i −0.251948 0.775415i
\(367\) 2.62210 8.06998i 0.136872 0.421250i −0.859004 0.511968i \(-0.828916\pi\)
0.995877 + 0.0907188i \(0.0289165\pi\)
\(368\) −6.86474 4.98752i −0.357849 0.259993i
\(369\) 24.2705 + 17.6336i 1.26347 + 0.917966i
\(370\) −0.468074 + 1.44058i −0.0243340 + 0.0748923i
\(371\) 0.212076 + 0.652702i 0.0110104 + 0.0338866i
\(372\) 0 0
\(373\) 3.79899 0.196704 0.0983521 0.995152i \(-0.468643\pi\)
0.0983521 + 0.995152i \(0.468643\pi\)
\(374\) 0 0
\(375\) −2.82843 −0.146059
\(376\) −3.62867 + 2.63638i −0.187134 + 0.135961i
\(377\) −16.1567 49.7253i −0.832114 2.56098i
\(378\) 1.44814 4.45693i 0.0744845 0.229240i
\(379\) −18.0760 13.1330i −0.928501 0.674595i 0.0171244 0.999853i \(-0.494549\pi\)
−0.945625 + 0.325258i \(0.894549\pi\)
\(380\) 0 0
\(381\) −13.6846 + 42.1168i −0.701083 + 2.15771i
\(382\) −2.47214 7.60845i −0.126485 0.389282i
\(383\) 27.6216 20.0682i 1.41140 1.02544i 0.418278 0.908319i \(-0.362634\pi\)
0.993118 0.117121i \(-0.0373664\pi\)
\(384\) −29.8579 −1.52368
\(385\) 0 0
\(386\) 2.82843 0.143963
\(387\) −24.2705 + 17.6336i −1.23374 + 0.896364i
\(388\) 4.32624 + 13.3148i 0.219631 + 0.675956i
\(389\) −7.61029 + 23.4221i −0.385857 + 1.18755i 0.550000 + 0.835165i \(0.314628\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(390\) 6.47214 + 4.70228i 0.327729 + 0.238109i
\(391\) 2.68085 + 1.94775i 0.135576 + 0.0985019i
\(392\) 1.47010 4.52452i 0.0742515 0.228523i
\(393\) −9.88854 30.4338i −0.498811 1.53518i
\(394\) −1.73302 + 1.25912i −0.0873085 + 0.0634333i
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) 13.3137 0.668196 0.334098 0.942538i \(-0.391568\pi\)
0.334098 + 0.942538i \(0.391568\pi\)
\(398\) −7.25734 + 5.27276i −0.363777 + 0.264300i
\(399\) 0 0
\(400\) 0.927051 2.85317i 0.0463525 0.142658i
\(401\) −14.0071 10.1767i −0.699480 0.508202i 0.180283 0.983615i \(-0.442299\pi\)
−0.879763 + 0.475413i \(0.842299\pi\)
\(402\) 4.25125 + 3.08871i 0.212033 + 0.154051i
\(403\) 0 0
\(404\) −7.52245 23.1517i −0.374256 1.15184i
\(405\) 0.809017 0.587785i 0.0402004 0.0292073i
\(406\) −6.34315 −0.314805
\(407\) 0 0
\(408\) 5.25483 0.260153
\(409\) 28.2918 20.5552i 1.39894 1.01639i 0.404122 0.914705i \(-0.367577\pi\)
0.994817 0.101683i \(-0.0324227\pi\)
\(410\) 0.767994 + 2.36364i 0.0379285 + 0.116732i
\(411\) 20.0770 61.7907i 0.990326 3.04791i
\(412\) 1.73302 + 1.25912i 0.0853800 + 0.0620322i
\(413\) 15.6251 + 11.3523i 0.768862 + 0.558611i
\(414\) 1.81018 5.57116i 0.0889655 0.273808i
\(415\) −1.85410 5.70634i −0.0910143 0.280113i
\(416\) −24.3855 + 17.7171i −1.19560 + 0.868652i
\(417\) 11.3137 0.554035
\(418\) 0 0
\(419\) −14.3431 −0.700709 −0.350354 0.936617i \(-0.613939\pi\)
−0.350354 + 0.936617i \(0.613939\pi\)
\(420\) −8.36778 + 6.07955i −0.408306 + 0.296652i
\(421\) −1.85410 5.70634i −0.0903634 0.278110i 0.895654 0.444751i \(-0.146708\pi\)
−0.986018 + 0.166641i \(0.946708\pi\)
\(422\) 2.04798 6.30305i 0.0996943 0.306828i
\(423\) 11.4412 + 8.31254i 0.556292 + 0.404169i
\(424\) 0.440231 + 0.319847i 0.0213795 + 0.0155331i
\(425\) −0.362036 + 1.11423i −0.0175613 + 0.0540482i
\(426\) −4.09597 12.6061i −0.198450 0.610767i
\(427\) 21.5420 15.6512i 1.04249 0.757415i
\(428\) −6.68629 −0.323194
\(429\) 0 0
\(430\) −2.48528 −0.119851
\(431\) 9.15298 6.65003i 0.440884 0.320321i −0.345102 0.938565i \(-0.612156\pi\)
0.785986 + 0.618244i \(0.212156\pi\)
\(432\) 5.24419 + 16.1400i 0.252311 + 0.776534i
\(433\) 1.13003 3.47788i 0.0543058 0.167136i −0.920225 0.391390i \(-0.871994\pi\)
0.974531 + 0.224254i \(0.0719944\pi\)
\(434\) 0 0
\(435\) −17.5208 12.7296i −0.840056 0.610337i
\(436\) 2.06618 6.35904i 0.0989520 0.304543i
\(437\) 0 0
\(438\) −6.47214 + 4.70228i −0.309251 + 0.224684i
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) −15.0000 −0.714286
\(442\) 2.68085 1.94775i 0.127515 0.0926450i
\(443\) −6.54238 20.1354i −0.310838 0.956660i −0.977434 0.211241i \(-0.932249\pi\)
0.666596 0.745419i \(-0.267751\pi\)
\(444\) −5.84403 + 17.9861i −0.277346 + 0.853582i
\(445\) 7.53495 + 5.47446i 0.357191 + 0.259514i
\(446\) 1.73302 + 1.25912i 0.0820611 + 0.0596209i
\(447\) −10.1885 + 31.3569i −0.481898 + 1.48313i
\(448\) −2.57817 7.93480i −0.121807 0.374884i
\(449\) 13.4519 9.77335i 0.634833 0.461233i −0.223238 0.974764i \(-0.571663\pi\)
0.858071 + 0.513531i \(0.171663\pi\)
\(450\) 2.07107 0.0976311
\(451\) 0 0
\(452\) −15.2548 −0.717527
\(453\) −27.4589 + 19.9501i −1.29013 + 0.937337i
\(454\) −0.343843 1.05824i −0.0161373 0.0496656i
\(455\) −4.22020 + 12.9884i −0.197846 + 0.608907i
\(456\) 0 0
\(457\) −13.3369 9.68981i −0.623873 0.453270i 0.230399 0.973096i \(-0.425997\pi\)
−0.854272 + 0.519826i \(0.825997\pi\)
\(458\) −2.72813 + 8.39633i −0.127477 + 0.392335i
\(459\) −2.04798 6.30305i −0.0955917 0.294201i
\(460\) −4.18389 + 3.03977i −0.195075 + 0.141730i
\(461\) 32.6274 1.51961 0.759805 0.650151i \(-0.225294\pi\)
0.759805 + 0.650151i \(0.225294\pi\)
\(462\) 0 0
\(463\) 22.1421 1.02903 0.514516 0.857481i \(-0.327972\pi\)
0.514516 + 0.857481i \(0.327972\pi\)
\(464\) 18.5836 13.5018i 0.862721 0.626803i
\(465\) 0 0
\(466\) −2.83417 + 8.72268i −0.131290 + 0.404071i
\(467\) 7.41996 + 5.39092i 0.343355 + 0.249462i 0.746076 0.665861i \(-0.231936\pi\)
−0.402721 + 0.915323i \(0.631936\pi\)
\(468\) 50.5040 + 36.6933i 2.33455 + 1.69615i
\(469\) −2.77206 + 8.53151i −0.128002 + 0.393949i
\(470\) 0.362036 + 1.11423i 0.0166995 + 0.0513957i
\(471\) 32.0354 23.2751i 1.47612 1.07246i
\(472\) 15.3137 0.704871
\(473\) 0 0
\(474\) −4.68629 −0.215248
\(475\) 0 0
\(476\) 1.32391 + 4.07458i 0.0606814 + 0.186758i
\(477\) 0.530189 1.63176i 0.0242757 0.0747129i
\(478\) −0.229980 0.167090i −0.0105191 0.00764254i
\(479\) −29.1246 21.1603i −1.33074 0.966837i −0.999731 0.0232090i \(-0.992612\pi\)
−0.331007 0.943628i \(-0.607388\pi\)
\(480\) −3.85816 + 11.8742i −0.176100 + 0.541981i
\(481\) 7.71633 + 23.7484i 0.351834 + 1.08283i
\(482\) 2.01063 1.46081i 0.0915819 0.0665382i
\(483\) 16.0000 0.728025
\(484\) 0 0
\(485\) 7.65685 0.347680
\(486\) 4.73911 3.44317i 0.214970 0.156185i
\(487\) −2.32218 7.14692i −0.105228 0.323858i 0.884556 0.466434i \(-0.154461\pi\)
−0.989784 + 0.142576i \(0.954461\pi\)
\(488\) 6.52418 20.0794i 0.295336 0.908950i
\(489\) 1.11044 + 0.806784i 0.0502160 + 0.0364840i
\(490\) −1.00532 0.730406i −0.0454156 0.0329964i
\(491\) 7.20433 22.1727i 0.325127 1.00064i −0.646256 0.763120i \(-0.723666\pi\)
0.971383 0.237517i \(-0.0763337\pi\)
\(492\) 9.58862 + 29.5107i 0.432289 + 1.33045i
\(493\) −7.25734 + 5.27276i −0.326854 + 0.237473i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 18.3060 13.3001i 0.821135 0.596589i
\(498\) 2.17222 + 6.68539i 0.0973393 + 0.299580i
\(499\) −0.511996 + 1.57576i −0.0229201 + 0.0705408i −0.961862 0.273534i \(-0.911807\pi\)
0.938942 + 0.344075i \(0.111807\pi\)
\(500\) −1.47923 1.07472i −0.0661531 0.0480631i
\(501\) 25.1033 + 18.2386i 1.12153 + 0.814843i
\(502\) 1.53599 4.72729i 0.0685545 0.210989i
\(503\) 8.84636 + 27.2263i 0.394440 + 1.21396i 0.929397 + 0.369081i \(0.120328\pi\)
−0.534957 + 0.844879i \(0.679672\pi\)
\(504\) 12.8293 9.32102i 0.571462 0.415191i
\(505\) −13.3137 −0.592452
\(506\) 0 0
\(507\) 95.1127 4.22410
\(508\) −23.1601 + 16.8268i −1.02756 + 0.746567i
\(509\) 2.87809 + 8.85786i 0.127569 + 0.392618i 0.994360 0.106053i \(-0.0338215\pi\)
−0.866791 + 0.498671i \(0.833821\pi\)
\(510\) 0.424151 1.30540i 0.0187817 0.0578043i
\(511\) −11.0486 8.02730i −0.488762 0.355107i
\(512\) −18.4111 13.3764i −0.813663 0.591161i
\(513\) 0 0
\(514\) 1.70414 + 5.24481i 0.0751665 + 0.231339i
\(515\) 0.947822 0.688633i 0.0417660 0.0303448i
\(516\) −31.0294 −1.36599
\(517\) 0 0
\(518\) 3.02944 0.133106
\(519\) 14.0547 10.2113i 0.616934 0.448228i
\(520\) 3.34617 + 10.2984i 0.146739 + 0.451617i
\(521\) 0.830110 2.55482i 0.0363678 0.111928i −0.931225 0.364446i \(-0.881258\pi\)
0.967592 + 0.252517i \(0.0812585\pi\)
\(522\) 12.8293 + 9.32102i 0.561522 + 0.407970i
\(523\) 30.4174 + 22.0995i 1.33006 + 0.966345i 0.999747 + 0.0224738i \(0.00715424\pi\)
0.330313 + 0.943872i \(0.392846\pi\)
\(524\) 6.39242 19.6738i 0.279254 0.859455i
\(525\) 1.74806 + 5.37999i 0.0762918 + 0.234802i
\(526\) 7.69757 5.59261i 0.335630 0.243849i
\(527\) 0 0
\(528\) 0 0
\(529\) −15.0000 −0.652174
\(530\) 0.114990 0.0835452i 0.00499485 0.00362897i
\(531\) −14.9207 45.9211i −0.647502 1.99280i
\(532\) 0 0
\(533\) 33.1459 + 24.0819i 1.43571 + 1.04310i
\(534\) −8.82774 6.41373i −0.382014 0.277549i
\(535\) −1.13003 + 3.47788i −0.0488555 + 0.150362i
\(536\) 2.19794 + 6.76458i 0.0949368 + 0.292185i
\(537\) 3.79129 2.75453i 0.163606 0.118867i
\(538\) −2.20101 −0.0948923
\(539\) 0 0
\(540\) 10.3431 0.445098
\(541\) 4.85410 3.52671i 0.208694 0.151625i −0.478529 0.878072i \(-0.658830\pi\)
0.687223 + 0.726447i \(0.258830\pi\)
\(542\) 1.96014 + 6.03269i 0.0841952 + 0.259126i
\(543\) −1.14822 + 3.53387i −0.0492750 + 0.151653i
\(544\) 4.18389 + 3.03977i 0.179383 + 0.130329i
\(545\) −2.95846 2.14944i −0.126726 0.0920721i
\(546\) 4.94427 15.2169i 0.211595 0.651223i
\(547\) 10.5066 + 32.3359i 0.449229 + 1.38258i 0.877779 + 0.479066i \(0.159025\pi\)
−0.428550 + 0.903518i \(0.640975\pi\)
\(548\) 33.9787 24.6870i 1.45150 1.05458i
\(549\) −66.5685 −2.84108
\(550\) 0 0
\(551\) 0 0
\(552\) 10.2634 7.45682i 0.436840 0.317383i
\(553\) −2.47214 7.60845i −0.105126 0.323544i
\(554\) −0.149960 + 0.461530i −0.00637120 + 0.0196085i
\(555\) 8.36778 + 6.07955i 0.355193 + 0.258062i
\(556\) 5.91691 + 4.29889i 0.250933 + 0.182314i
\(557\) −11.7866 + 36.2753i −0.499413 + 1.53703i 0.310552 + 0.950556i \(0.399486\pi\)
−0.809965 + 0.586478i \(0.800514\pi\)
\(558\) 0 0
\(559\) −33.1459 + 24.0819i −1.40192 + 1.01856i
\(560\) −6.00000 −0.253546
\(561\) 0 0
\(562\) 2.20101 0.0928440
\(563\) 9.43059 6.85173i 0.397452 0.288766i −0.371050 0.928613i \(-0.621002\pi\)
0.768502 + 0.639847i \(0.221002\pi\)
\(564\) 4.52012 + 13.9115i 0.190331 + 0.585780i
\(565\) −2.57817 + 7.93480i −0.108465 + 0.333820i
\(566\) −4.23152 3.07438i −0.177864 0.129226i
\(567\) −1.61803 1.17557i −0.0679510 0.0493693i
\(568\) 5.54411 17.0630i 0.232626 0.715949i
\(569\) −6.28638 19.3475i −0.263539 0.811089i −0.992026 0.126030i \(-0.959776\pi\)
0.728488 0.685059i \(-0.240224\pi\)
\(570\) 0 0
\(571\) −45.9411 −1.92258 −0.961288 0.275545i \(-0.911142\pi\)
−0.961288 + 0.275545i \(0.911142\pi\)
\(572\) 0 0
\(573\) −54.6274 −2.28209
\(574\) 4.02127 2.92162i 0.167845 0.121946i
\(575\) 0.874032 + 2.68999i 0.0364497 + 0.112181i
\(576\) −6.44543 + 19.8370i −0.268560 + 0.826542i
\(577\) −5.63930 4.09719i −0.234767 0.170568i 0.464182 0.885740i \(-0.346349\pi\)
−0.698949 + 0.715172i \(0.746349\pi\)
\(578\) 5.23684 + 3.80479i 0.217824 + 0.158258i
\(579\) 5.96826 18.3684i 0.248033 0.763366i
\(580\) −4.32624 13.3148i −0.179637 0.552867i
\(581\) −9.70820 + 7.05342i −0.402764 + 0.292625i
\(582\) −8.97056 −0.371842
\(583\) 0 0
\(584\) −10.8284 −0.448084
\(585\) 27.6216 20.0682i 1.14201 0.829720i
\(586\) 1.89802 + 5.84152i 0.0784067 + 0.241311i
\(587\) 8.07836 24.8626i 0.333430 1.02619i −0.634061 0.773283i \(-0.718613\pi\)
0.967490 0.252908i \(-0.0813870\pi\)
\(588\) −12.5517 9.11932i −0.517622 0.376075i
\(589\) 0 0
\(590\) 1.23607 3.80423i 0.0508881 0.156618i
\(591\) 4.52012 + 13.9115i 0.185933 + 0.572243i
\(592\) −8.87537 + 6.44833i −0.364776 + 0.265025i
\(593\) −20.4853 −0.841230 −0.420615 0.907239i \(-0.638186\pi\)
−0.420615 + 0.907239i \(0.638186\pi\)
\(594\) 0 0
\(595\) 2.34315 0.0960596
\(596\) −17.2432 + 12.5279i −0.706307 + 0.513162i
\(597\) 18.9288 + 58.2568i 0.774704 + 2.38429i
\(598\) 2.47214 7.60845i 0.101093 0.311133i
\(599\) −4.57649 3.32502i −0.186990 0.135856i 0.490352 0.871525i \(-0.336868\pi\)
−0.677342 + 0.735668i \(0.736868\pi\)
\(600\) 3.62867 + 2.63638i 0.148140 + 0.107630i
\(601\) 13.5786 41.7905i 0.553881 1.70467i −0.145000 0.989432i \(-0.546318\pi\)
0.698881 0.715238i \(-0.253682\pi\)
\(602\) 1.53599 + 4.72729i 0.0626022 + 0.192670i
\(603\) 18.1433 13.1819i 0.738854 0.536809i
\(604\) −21.9411 −0.892772
\(605\) 0 0
\(606\) 15.5980 0.633625
\(607\) −14.7923 + 10.7472i −0.600400 + 0.436216i −0.846021 0.533150i \(-0.821008\pi\)
0.245621 + 0.969366i \(0.421008\pi\)
\(608\) 0 0
\(609\) −13.3847 + 41.1938i −0.542374 + 1.66926i
\(610\) −4.46150 3.24147i −0.180641 0.131243i
\(611\) 15.6251 + 11.3523i 0.632125 + 0.459265i
\(612\) 3.30978 10.1865i 0.133790 0.411763i
\(613\) −7.86629 24.2099i −0.317716 0.977831i −0.974622 0.223858i \(-0.928135\pi\)
0.656905 0.753973i \(-0.271865\pi\)
\(614\) −9.26797 + 6.73358i −0.374025 + 0.271745i
\(615\) 16.9706 0.684319
\(616\) 0 0
\(617\) 11.6569 0.469287 0.234644 0.972081i \(-0.424608\pi\)
0.234644 + 0.972081i \(0.424608\pi\)
\(618\) −1.11044 + 0.806784i −0.0446686 + 0.0324536i
\(619\) −7.92840 24.4011i −0.318669 0.980764i −0.974218 0.225610i \(-0.927562\pi\)
0.655548 0.755153i \(-0.272438\pi\)
\(620\) 0 0
\(621\) −12.9443 9.40456i −0.519436 0.377392i
\(622\) −9.15298 6.65003i −0.367001 0.266642i
\(623\) 5.75619 17.7157i 0.230617 0.709766i
\(624\) 17.9048 + 55.1053i 0.716765 + 2.20598i
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 8.82843 0.352855
\(627\) 0 0
\(628\) 25.5980 1.02147
\(629\) 3.46605 2.51823i 0.138200 0.100408i
\(630\) −1.27999 3.93941i −0.0509960 0.156950i
\(631\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(632\) −5.13171 3.72841i −0.204129 0.148308i
\(633\) −36.6119 26.6001i −1.45519 1.05726i
\(634\) 2.72813 8.39633i 0.108348 0.333461i
\(635\) 4.83823 + 14.8906i 0.191999 + 0.590914i
\(636\) 1.43568 1.04309i 0.0569286 0.0413610i
\(637\) −20.4853 −0.811656
\(638\) 0 0
\(639\) −56.5685 −2.23782
\(640\) −8.54027 + 6.20487i −0.337584 + 0.245269i
\(641\) 9.27051 + 28.5317i 0.366163 + 1.12693i 0.949250 + 0.314524i \(0.101845\pi\)
−0.583086 + 0.812410i \(0.698155\pi\)
\(642\) 1.32391 4.07458i 0.0522507 0.160811i
\(643\) −40.0106 29.0694i −1.57786 1.14639i −0.919091 0.394044i \(-0.871076\pi\)
−0.658773 0.752341i \(-0.728924\pi\)
\(644\) 8.36778 + 6.07955i 0.329737 + 0.239568i
\(645\) −5.24419 + 16.1400i −0.206490 + 0.635510i
\(646\) 0 0
\(647\) 28.4068 20.6387i 1.11679 0.811392i 0.133067 0.991107i \(-0.457518\pi\)
0.983719 + 0.179715i \(0.0575176\pi\)
\(648\) −1.58579 −0.0622956
\(649\) 0 0
\(650\) 2.82843 0.110940
\(651\) 0 0
\(652\) 0.274191 + 0.843874i 0.0107382 + 0.0330487i
\(653\) 0.106038 0.326351i 0.00414958 0.0127711i −0.948960 0.315396i \(-0.897863\pi\)
0.953110 + 0.302624i \(0.0978628\pi\)
\(654\) 3.46605 + 2.51823i 0.135533 + 0.0984706i
\(655\) −9.15298 6.65003i −0.357637 0.259838i
\(656\) −5.56231 + 17.1190i −0.217172 + 0.668385i
\(657\) 10.5505 + 32.4711i 0.411614 + 1.26682i
\(658\) 1.89564 1.37727i 0.0738999 0.0536914i
\(659\) 21.9411 0.854705 0.427352 0.904085i \(-0.359446\pi\)
0.427352 + 0.904085i \(0.359446\pi\)
\(660\) 0 0
\(661\) −0.627417 −0.0244037 −0.0122018 0.999926i \(-0.503884\pi\)
−0.0122018 + 0.999926i \(0.503884\pi\)
\(662\) −5.13171 + 3.72841i −0.199450 + 0.144909i
\(663\) −6.99226 21.5200i −0.271557 0.835766i
\(664\) −2.94021 + 9.04904i −0.114102 + 0.351171i
\(665\) 0 0
\(666\) −6.12717 4.45165i −0.237423 0.172498i
\(667\) −6.69234 + 20.5969i −0.259128 + 0.797515i
\(668\) 6.19853 + 19.0771i 0.239828 + 0.738116i
\(669\) 11.8338 8.59778i 0.457522 0.332409i
\(670\) 1.85786 0.0717756
\(671\) 0 0
\(672\) 24.9706 0.963260
\(673\) 3.62867 2.63638i 0.139875 0.101625i −0.515647 0.856801i \(-0.672449\pi\)
0.655522 + 0.755176i \(0.272449\pi\)
\(674\) 0.449881 + 1.38459i 0.0173288 + 0.0533324i
\(675\) 1.74806 5.37999i 0.0672830 0.207076i
\(676\) 49.7426 + 36.1401i 1.91318 + 1.39001i
\(677\) 13.8921 + 10.0932i 0.533917 + 0.387913i 0.821821 0.569746i \(-0.192958\pi\)
−0.287904 + 0.957659i \(0.592958\pi\)
\(678\) 3.02052 9.29620i 0.116002 0.357018i
\(679\) −4.73220 14.5642i −0.181605 0.558923i
\(680\) 1.50304 1.09203i 0.0576391 0.0418773i
\(681\) −7.59798 −0.291155
\(682\) 0 0
\(683\) 31.7990 1.21675 0.608377 0.793648i \(-0.291821\pi\)
0.608377 + 0.793648i \(0.291821\pi\)
\(684\) 0 0
\(685\) −7.09829 21.8463i −0.271212 0.834704i
\(686\) −2.55998 + 7.87881i −0.0977405 + 0.300814i
\(687\) 48.7710 + 35.4342i 1.86073 + 1.35190i
\(688\) −14.5623 10.5801i −0.555183 0.403364i
\(689\) 0.724072 2.22846i 0.0275849 0.0848977i
\(690\) −1.02399 3.15152i −0.0389827 0.119976i
\(691\) 13.4995 9.80796i 0.513545 0.373112i −0.300622 0.953743i \(-0.597194\pi\)
0.814167 + 0.580631i \(0.197194\pi\)
\(692\) 11.2304 0.426918
\(693\) 0 0
\(694\) 9.51472 0.361174
\(695\) 3.23607 2.35114i 0.122751 0.0891839i
\(696\) 10.6126 + 32.6623i 0.402270 + 1.23806i
\(697\) 2.17222 6.68539i 0.0822785 0.253227i
\(698\) −2.33588 1.69711i −0.0884142 0.0642367i
\(699\) 50.6666 + 36.8115i 1.91639 + 1.39234i
\(700\) −1.13003 + 3.47788i −0.0427111 + 0.131451i
\(701\) −10.0824 31.0305i −0.380808 1.17201i −0.939476 0.342615i \(-0.888687\pi\)
0.558668 0.829391i \(-0.311313\pi\)
\(702\) −12.9443 + 9.40456i −0.488550 + 0.354952i
\(703\) 0 0
\(704\) 0 0
\(705\) 8.00000 0.301297
\(706\) 0.440231 0.319847i 0.0165683 0.0120376i
\(707\) 8.22832 + 25.3242i 0.309458 + 0.952414i
\(708\) 15.4327 47.4968i 0.579995 1.78504i
\(709\) 16.6879 + 12.1245i 0.626728 + 0.455345i 0.855265 0.518190i \(-0.173394\pi\)
−0.228537 + 0.973535i \(0.573394\pi\)
\(710\) −3.79129 2.75453i −0.142285 0.103376i
\(711\) −6.18034 + 19.0211i −0.231781 + 0.713348i
\(712\) −4.56404 14.0467i −0.171045 0.526422i
\(713\) 0 0
\(714\) −2.74517 −0.102735
\(715\) 0 0
\(716\) 3.02944 0.113215
\(717\) −1.57040 + 1.14096i −0.0586478 + 0.0426101i
\(718\) −2.98413 9.18421i −0.111367 0.342752i
\(719\) 9.16447 28.2053i 0.341777 1.05188i −0.621509 0.783407i \(-0.713480\pi\)
0.963287 0.268475i \(-0.0865197\pi\)
\(720\) 12.1353 + 8.81678i 0.452254 + 0.328582i
\(721\) −1.89564 1.37727i −0.0705975 0.0512921i
\(722\) −2.43198 + 7.48487i −0.0905090 + 0.278558i
\(723\) −5.24419 16.1400i −0.195034 0.600252i
\(724\) −1.94328 + 1.41187i −0.0722213 + 0.0524718i
\(725\) −7.65685 −0.284368
\(726\) 0 0
\(727\) −36.4853 −1.35316 −0.676582 0.736367i \(-0.736540\pi\)
−0.676582 + 0.736367i \(0.736540\pi\)
\(728\) 17.5208 12.7296i 0.649363 0.471790i
\(729\) −13.2877 40.8954i −0.492138 1.51465i
\(730\) −0.874032 + 2.68999i −0.0323494 + 0.0995611i
\(731\) 5.68693 + 4.13180i 0.210339 + 0.152820i
\(732\) −55.7031 40.4707i −2.05885 1.49584i
\(733\) −10.3384 + 31.8184i −0.381858 + 1.17524i 0.556875 + 0.830596i \(0.312000\pi\)
−0.938734 + 0.344643i \(0.888000\pi\)
\(734\) 1.08611 + 3.34270i 0.0400890 + 0.123381i
\(735\) −6.86474 + 4.98752i −0.253210 + 0.183968i
\(736\) 12.4853 0.460214
\(737\) 0 0
\(738\) −12.4264 −0.457422
\(739\) −30.6950 + 22.3012i −1.12913 + 0.820364i −0.985569 0.169277i \(-0.945857\pi\)
−0.143566 + 0.989641i \(0.545857\pi\)
\(740\) 2.06618 + 6.35904i 0.0759542 + 0.233763i
\(741\) 0 0
\(742\) −0.229980 0.167090i −0.00844284 0.00613408i
\(743\) 23.9453 + 17.3973i 0.878467 + 0.638243i 0.932845 0.360277i \(-0.117318\pi\)
−0.0543787 + 0.998520i \(0.517318\pi\)
\(744\) 0 0
\(745\) 3.60217 + 11.0863i 0.131973 + 0.406172i
\(746\) −1.27306 + 0.924935i −0.0466102 + 0.0338643i
\(747\) 30.0000 1.09764
\(748\) 0 0
\(749\) 7.31371 0.267237
\(750\) 0.947822 0.688633i 0.0346096 0.0251453i
\(751\) −4.94427 15.2169i −0.180419 0.555273i 0.819420 0.573193i \(-0.194295\pi\)
−0.999839 + 0.0179203i \(0.994295\pi\)
\(752\) −2.62210 + 8.06998i −0.0956180 + 0.294282i
\(753\) −27.4589 19.9501i −1.00066 0.727022i
\(754\) 17.5208 + 12.7296i 0.638069 + 0.463584i
\(755\) −3.70820 + 11.4127i −0.134955 + 0.415350i
\(756\) −6.39242 19.6738i −0.232490 0.715530i
\(757\) 7.53495 5.47446i 0.273862 0.198973i −0.442374 0.896831i \(-0.645863\pi\)
0.716236 + 0.697858i \(0.245863\pi\)
\(758\) 9.25483 0.336151
\(759\) 0 0
\(760\) 0 0
\(761\) −24.2705 + 17.6336i −0.879805 + 0.639216i −0.933200 0.359358i \(-0.882996\pi\)
0.0533947 + 0.998573i \(0.482996\pi\)
\(762\) −5.66834 17.4454i −0.205342 0.631979i
\(763\) −2.26006 + 6.95575i −0.0818197 + 0.251815i
\(764\) −28.5694 20.7569i −1.03360 0.750957i
\(765\) −4.73911 3.44317i −0.171343 0.124488i
\(766\) −4.37016 + 13.4500i −0.157900 + 0.485967i
\(767\) −20.3769 62.7137i −0.735768 2.26446i
\(768\) −9.08562 + 6.60109i −0.327849 + 0.238196i
\(769\) −14.9706 −0.539852 −0.269926 0.962881i \(-0.586999\pi\)
−0.269926 + 0.962881i \(0.586999\pi\)
\(770\) 0 0
\(771\) 37.6569 1.35618
\(772\) 10.1008 7.33866i 0.363536 0.264124i
\(773\) −9.35835 28.8021i −0.336597 1.03594i −0.965930 0.258803i \(-0.916672\pi\)
0.629334 0.777135i \(-0.283328\pi\)
\(774\) 3.83997 11.8182i 0.138025 0.424797i
\(775\) 0 0
\(776\) −9.82319 7.13697i −0.352632 0.256202i
\(777\) 6.39242 19.6738i 0.229327 0.705795i
\(778\)