Properties

Label 605.2.g.j.511.1
Level $605$
Weight $2$
Character 605.511
Analytic conductor $4.831$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,2,Mod(81,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.159390625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} - 11x^{5} + 21x^{4} - 5x^{3} + 10x^{2} + 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 511.1
Root \(0.453245 - 1.39494i\) of defining polynomial
Character \(\chi\) \(=\) 605.511
Dual form 605.2.g.j.251.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0288961 + 0.0889332i) q^{2} +(-1.18661 - 0.862123i) q^{3} +(1.61096 - 1.17043i) q^{4} +(0.309017 - 0.951057i) q^{5} +(0.0423829 - 0.130441i) q^{6} +(-3.66042 + 2.65945i) q^{7} +(0.301943 + 0.219374i) q^{8} +(-0.262262 - 0.807160i) q^{9} +0.0935099 q^{10} -2.92064 q^{12} +(-0.353070 - 1.08664i) q^{13} +(-0.342285 - 0.248685i) q^{14} +(-1.18661 + 0.862123i) q^{15} +(1.21988 - 3.75440i) q^{16} +(1.04238 - 3.20812i) q^{17} +(0.0642049 - 0.0466476i) q^{18} +(-4.92268 - 3.57654i) q^{19} +(-0.615332 - 1.89380i) q^{20} +6.63626 q^{21} -5.45258 q^{23} +(-0.169161 - 0.520624i) q^{24} +(-0.809017 - 0.587785i) q^{25} +(0.0864358 - 0.0627993i) q^{26} +(-1.74440 + 5.36872i) q^{27} +(-2.78408 + 8.56853i) q^{28} +(-2.68661 + 1.95194i) q^{29} +(-0.110960 - 0.0806171i) q^{30} +(0.553420 + 1.70325i) q^{31} +1.11558 q^{32} +0.315430 q^{34} +(1.39815 + 4.30308i) q^{35} +(-1.36722 - 0.993342i) q^{36} +(-1.20447 + 0.875099i) q^{37} +(0.175826 - 0.541138i) q^{38} +(-0.517859 + 1.59381i) q^{39} +(0.301943 - 0.219374i) q^{40} +(1.41356 + 1.02701i) q^{41} +(0.191762 + 0.590184i) q^{42} -0.263041 q^{43} -0.848698 q^{45} +(-0.157559 - 0.484916i) q^{46} +(-5.60222 - 4.07025i) q^{47} +(-4.68428 + 3.40333i) q^{48} +(4.16287 - 12.8120i) q^{49} +(0.0288961 - 0.0889332i) q^{50} +(-4.00270 + 2.90813i) q^{51} +(-1.84062 - 1.33729i) q^{52} +(-0.444910 - 1.36929i) q^{53} -0.527864 q^{54} -1.68865 q^{56} +(2.75789 + 8.48791i) q^{57} +(-0.251225 - 0.182525i) q^{58} +(5.71821 - 4.15452i) q^{59} +(-0.902527 + 2.77769i) q^{60} +(0.773299 - 2.37997i) q^{61} +(-0.135484 + 0.0984349i) q^{62} +(3.10659 + 2.25707i) q^{63} +(-2.40752 - 7.40959i) q^{64} -1.14256 q^{65} -0.516598 q^{67} +(-2.07565 - 6.38820i) q^{68} +(6.47010 + 4.70080i) q^{69} +(-0.342285 + 0.248685i) q^{70} +(-3.31584 + 10.2051i) q^{71} +(0.0978819 - 0.301250i) q^{72} +(4.59621 - 3.33934i) q^{73} +(-0.112630 - 0.0818304i) q^{74} +(0.453245 + 1.39494i) q^{75} -12.1163 q^{76} -0.156706 q^{78} +(-3.49293 - 10.7501i) q^{79} +(-3.19369 - 2.32035i) q^{80} +(4.63859 - 3.37014i) q^{81} +(-0.0504891 + 0.155390i) q^{82} +(1.38467 - 4.26157i) q^{83} +(10.6908 - 7.76729i) q^{84} +(-2.72899 - 1.98273i) q^{85} +(-0.00760088 - 0.0233931i) q^{86} +4.87077 q^{87} +13.2676 q^{89} +(-0.0245241 - 0.0754774i) q^{90} +(4.18224 + 3.03857i) q^{91} +(-8.78389 + 6.38187i) q^{92} +(0.811719 - 2.49821i) q^{93} +(0.200098 - 0.615837i) q^{94} +(-4.92268 + 3.57654i) q^{95} +(-1.32376 - 0.961771i) q^{96} +(-1.03723 - 3.19227i) q^{97} +1.25970 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} + q^{3} - q^{4} - 2 q^{5} - 12 q^{6} - 8 q^{7} - 7 q^{8} + 5 q^{9} + 6 q^{10} - 28 q^{12} - 11 q^{13} - 14 q^{14} + q^{15} + 15 q^{16} - 4 q^{17} - 16 q^{18} - 11 q^{19} - 6 q^{20} - 12 q^{21}+ \cdots - 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0288961 + 0.0889332i 0.0204327 + 0.0628853i 0.960753 0.277405i \(-0.0894745\pi\)
−0.940320 + 0.340291i \(0.889475\pi\)
\(3\) −1.18661 0.862123i −0.685090 0.497747i 0.189952 0.981793i \(-0.439167\pi\)
−0.875042 + 0.484046i \(0.839167\pi\)
\(4\) 1.61096 1.17043i 0.805480 0.585215i
\(5\) 0.309017 0.951057i 0.138197 0.425325i
\(6\) 0.0423829 0.130441i 0.0173027 0.0532524i
\(7\) −3.66042 + 2.65945i −1.38351 + 1.00518i −0.386965 + 0.922094i \(0.626477\pi\)
−0.996543 + 0.0830826i \(0.973523\pi\)
\(8\) 0.301943 + 0.219374i 0.106753 + 0.0775605i
\(9\) −0.262262 0.807160i −0.0874207 0.269053i
\(10\) 0.0935099 0.0295704
\(11\) 0 0
\(12\) −2.92064 −0.843116
\(13\) −0.353070 1.08664i −0.0979240 0.301379i 0.890081 0.455803i \(-0.150648\pi\)
−0.988005 + 0.154424i \(0.950648\pi\)
\(14\) −0.342285 0.248685i −0.0914796 0.0664638i
\(15\) −1.18661 + 0.862123i −0.306382 + 0.222599i
\(16\) 1.21988 3.75440i 0.304970 0.938600i
\(17\) 1.04238 3.20812i 0.252815 0.778085i −0.741437 0.671022i \(-0.765856\pi\)
0.994252 0.107062i \(-0.0341445\pi\)
\(18\) 0.0642049 0.0466476i 0.0151332 0.0109949i
\(19\) −4.92268 3.57654i −1.12934 0.820514i −0.143741 0.989615i \(-0.545913\pi\)
−0.985599 + 0.169102i \(0.945913\pi\)
\(20\) −0.615332 1.89380i −0.137592 0.423466i
\(21\) 6.63626 1.44815
\(22\) 0 0
\(23\) −5.45258 −1.13694 −0.568471 0.822703i \(-0.692465\pi\)
−0.568471 + 0.822703i \(0.692465\pi\)
\(24\) −0.169161 0.520624i −0.0345298 0.106272i
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 0.0864358 0.0627993i 0.0169514 0.0123159i
\(27\) −1.74440 + 5.36872i −0.335711 + 1.03321i
\(28\) −2.78408 + 8.56853i −0.526142 + 1.61930i
\(29\) −2.68661 + 1.95194i −0.498891 + 0.362466i −0.808593 0.588368i \(-0.799771\pi\)
0.309702 + 0.950834i \(0.399771\pi\)
\(30\) −0.110960 0.0806171i −0.0202584 0.0147186i
\(31\) 0.553420 + 1.70325i 0.0993972 + 0.305913i 0.988375 0.152038i \(-0.0485835\pi\)
−0.888977 + 0.457951i \(0.848584\pi\)
\(32\) 1.11558 0.197209
\(33\) 0 0
\(34\) 0.315430 0.0540957
\(35\) 1.39815 + 4.30308i 0.236331 + 0.727353i
\(36\) −1.36722 0.993342i −0.227870 0.165557i
\(37\) −1.20447 + 0.875099i −0.198014 + 0.143865i −0.682374 0.731003i \(-0.739052\pi\)
0.484360 + 0.874869i \(0.339052\pi\)
\(38\) 0.175826 0.541138i 0.0285228 0.0877841i
\(39\) −0.517859 + 1.59381i −0.0829238 + 0.255213i
\(40\) 0.301943 0.219374i 0.0477414 0.0346861i
\(41\) 1.41356 + 1.02701i 0.220762 + 0.160393i 0.692669 0.721255i \(-0.256434\pi\)
−0.471908 + 0.881648i \(0.656434\pi\)
\(42\) 0.191762 + 0.590184i 0.0295896 + 0.0910674i
\(43\) −0.263041 −0.0401134 −0.0200567 0.999799i \(-0.506385\pi\)
−0.0200567 + 0.999799i \(0.506385\pi\)
\(44\) 0 0
\(45\) −0.848698 −0.126516
\(46\) −0.157559 0.484916i −0.0232308 0.0714969i
\(47\) −5.60222 4.07025i −0.817167 0.593707i 0.0987325 0.995114i \(-0.468521\pi\)
−0.915900 + 0.401407i \(0.868521\pi\)
\(48\) −4.68428 + 3.40333i −0.676118 + 0.491228i
\(49\) 4.16287 12.8120i 0.594695 1.83028i
\(50\) 0.0288961 0.0889332i 0.00408653 0.0125771i
\(51\) −4.00270 + 2.90813i −0.560490 + 0.407220i
\(52\) −1.84062 1.33729i −0.255247 0.185448i
\(53\) −0.444910 1.36929i −0.0611131 0.188087i 0.915839 0.401546i \(-0.131527\pi\)
−0.976952 + 0.213459i \(0.931527\pi\)
\(54\) −0.527864 −0.0718332
\(55\) 0 0
\(56\) −1.68865 −0.225656
\(57\) 2.75789 + 8.48791i 0.365291 + 1.12425i
\(58\) −0.251225 0.182525i −0.0329874 0.0239668i
\(59\) 5.71821 4.15452i 0.744447 0.540873i −0.149653 0.988739i \(-0.547816\pi\)
0.894101 + 0.447866i \(0.147816\pi\)
\(60\) −0.902527 + 2.77769i −0.116516 + 0.358599i
\(61\) 0.773299 2.37997i 0.0990108 0.304724i −0.889267 0.457388i \(-0.848785\pi\)
0.988278 + 0.152664i \(0.0487851\pi\)
\(62\) −0.135484 + 0.0984349i −0.0172065 + 0.0125012i
\(63\) 3.10659 + 2.25707i 0.391393 + 0.284364i
\(64\) −2.40752 7.40959i −0.300940 0.926199i
\(65\) −1.14256 −0.141717
\(66\) 0 0
\(67\) −0.516598 −0.0631124 −0.0315562 0.999502i \(-0.510046\pi\)
−0.0315562 + 0.999502i \(0.510046\pi\)
\(68\) −2.07565 6.38820i −0.251710 0.774683i
\(69\) 6.47010 + 4.70080i 0.778908 + 0.565910i
\(70\) −0.342285 + 0.248685i −0.0409109 + 0.0297235i
\(71\) −3.31584 + 10.2051i −0.393518 + 1.21112i 0.536592 + 0.843842i \(0.319711\pi\)
−0.930110 + 0.367281i \(0.880289\pi\)
\(72\) 0.0978819 0.301250i 0.0115355 0.0355026i
\(73\) 4.59621 3.33934i 0.537946 0.390841i −0.285376 0.958416i \(-0.592118\pi\)
0.823322 + 0.567575i \(0.192118\pi\)
\(74\) −0.112630 0.0818304i −0.0130930 0.00951259i
\(75\) 0.453245 + 1.39494i 0.0523362 + 0.161074i
\(76\) −12.1163 −1.38984
\(77\) 0 0
\(78\) −0.156706 −0.0177435
\(79\) −3.49293 10.7501i −0.392985 1.20948i −0.930520 0.366242i \(-0.880644\pi\)
0.537535 0.843241i \(-0.319356\pi\)
\(80\) −3.19369 2.32035i −0.357065 0.259423i
\(81\) 4.63859 3.37014i 0.515399 0.374460i
\(82\) −0.0504891 + 0.155390i −0.00557559 + 0.0171599i
\(83\) 1.38467 4.26157i 0.151987 0.467768i −0.845856 0.533411i \(-0.820910\pi\)
0.997843 + 0.0656431i \(0.0209099\pi\)
\(84\) 10.6908 7.76729i 1.16646 0.847481i
\(85\) −2.72899 1.98273i −0.296001 0.215057i
\(86\) −0.00760088 0.0233931i −0.000819625 0.00252254i
\(87\) 4.87077 0.522202
\(88\) 0 0
\(89\) 13.2676 1.40637 0.703183 0.711009i \(-0.251762\pi\)
0.703183 + 0.711009i \(0.251762\pi\)
\(90\) −0.0245241 0.0754774i −0.00258507 0.00795602i
\(91\) 4.18224 + 3.03857i 0.438418 + 0.318529i
\(92\) −8.78389 + 6.38187i −0.915784 + 0.665356i
\(93\) 0.811719 2.49821i 0.0841713 0.259053i
\(94\) 0.200098 0.615837i 0.0206385 0.0635188i
\(95\) −4.92268 + 3.57654i −0.505056 + 0.366945i
\(96\) −1.32376 0.961771i −0.135106 0.0981604i
\(97\) −1.03723 3.19227i −0.105315 0.324126i 0.884489 0.466560i \(-0.154507\pi\)
−0.989804 + 0.142434i \(0.954507\pi\)
\(98\) 1.25970 0.127249
\(99\) 0 0
\(100\) −1.99126 −0.199126
\(101\) −2.88467 8.87810i −0.287035 0.883404i −0.985781 0.168034i \(-0.946258\pi\)
0.698746 0.715370i \(-0.253742\pi\)
\(102\) −0.374292 0.271939i −0.0370605 0.0269260i
\(103\) 11.2583 8.17961i 1.10931 0.805960i 0.126755 0.991934i \(-0.459544\pi\)
0.982555 + 0.185974i \(0.0595439\pi\)
\(104\) 0.131773 0.405557i 0.0129214 0.0397681i
\(105\) 2.05072 6.31146i 0.200130 0.615936i
\(106\) 0.108919 0.0791345i 0.0105792 0.00768622i
\(107\) 13.5820 + 9.86792i 1.31302 + 0.953968i 0.999991 + 0.00422546i \(0.00134501\pi\)
0.313033 + 0.949742i \(0.398655\pi\)
\(108\) 3.47355 + 10.6905i 0.334243 + 1.02869i
\(109\) −3.65293 −0.349888 −0.174944 0.984578i \(-0.555974\pi\)
−0.174944 + 0.984578i \(0.555974\pi\)
\(110\) 0 0
\(111\) 2.18368 0.207266
\(112\) 5.51937 + 16.9869i 0.521532 + 1.60511i
\(113\) 9.62919 + 6.99602i 0.905838 + 0.658130i 0.939959 0.341288i \(-0.110863\pi\)
−0.0341209 + 0.999418i \(0.510863\pi\)
\(114\) −0.675165 + 0.490536i −0.0632350 + 0.0459429i
\(115\) −1.68494 + 5.18572i −0.157122 + 0.483570i
\(116\) −2.04341 + 6.28898i −0.189726 + 0.583918i
\(117\) −0.784493 + 0.569967i −0.0725264 + 0.0526935i
\(118\) 0.534709 + 0.388489i 0.0492240 + 0.0357633i
\(119\) 4.71629 + 14.5152i 0.432341 + 1.33061i
\(120\) −0.547416 −0.0499721
\(121\) 0 0
\(122\) 0.234004 0.0211857
\(123\) −0.791938 2.43733i −0.0714066 0.219767i
\(124\) 2.88508 + 2.09613i 0.259088 + 0.188238i
\(125\) −0.809017 + 0.587785i −0.0723607 + 0.0525731i
\(126\) −0.110960 + 0.341499i −0.00988509 + 0.0304232i
\(127\) 6.10700 18.7954i 0.541908 1.66782i −0.186321 0.982489i \(-0.559656\pi\)
0.728229 0.685333i \(-0.240344\pi\)
\(128\) 2.39444 1.73967i 0.211641 0.153766i
\(129\) 0.312128 + 0.226774i 0.0274813 + 0.0199664i
\(130\) −0.0330155 0.101611i −0.00289565 0.00891190i
\(131\) −1.93479 −0.169043 −0.0845215 0.996422i \(-0.526936\pi\)
−0.0845215 + 0.996422i \(0.526936\pi\)
\(132\) 0 0
\(133\) 27.5307 2.38721
\(134\) −0.0149277 0.0459427i −0.00128956 0.00396884i
\(135\) 4.56691 + 3.31805i 0.393057 + 0.285572i
\(136\) 1.01852 0.739998i 0.0873374 0.0634543i
\(137\) −3.87363 + 11.9218i −0.330947 + 1.01855i 0.637738 + 0.770254i \(0.279870\pi\)
−0.968684 + 0.248295i \(0.920130\pi\)
\(138\) −0.231096 + 0.711241i −0.0196722 + 0.0605449i
\(139\) 9.09743 6.60967i 0.771634 0.560625i −0.130822 0.991406i \(-0.541762\pi\)
0.902457 + 0.430781i \(0.141762\pi\)
\(140\) 7.28883 + 5.29564i 0.616018 + 0.447563i
\(141\) 3.13859 + 9.65960i 0.264317 + 0.813485i
\(142\) −1.00339 −0.0842024
\(143\) 0 0
\(144\) −3.35033 −0.279194
\(145\) 1.02619 + 3.15830i 0.0852208 + 0.262283i
\(146\) 0.429791 + 0.312262i 0.0355698 + 0.0258430i
\(147\) −15.9852 + 11.6139i −1.31844 + 0.957901i
\(148\) −0.916110 + 2.81950i −0.0753038 + 0.231761i
\(149\) −5.35640 + 16.4853i −0.438813 + 1.35053i 0.450315 + 0.892870i \(0.351312\pi\)
−0.889128 + 0.457658i \(0.848688\pi\)
\(150\) −0.110960 + 0.0806171i −0.00905983 + 0.00658236i
\(151\) 0.00437205 + 0.00317648i 0.000355792 + 0.000258498i 0.587963 0.808888i \(-0.299930\pi\)
−0.587607 + 0.809146i \(0.699930\pi\)
\(152\) −0.701768 2.15982i −0.0569209 0.175184i
\(153\) −2.86285 −0.231447
\(154\) 0 0
\(155\) 1.79091 0.143849
\(156\) 1.03119 + 3.17367i 0.0825612 + 0.254097i
\(157\) −0.448873 0.326125i −0.0358240 0.0260276i 0.569729 0.821832i \(-0.307048\pi\)
−0.605553 + 0.795805i \(0.707048\pi\)
\(158\) 0.855110 0.621274i 0.0680289 0.0494259i
\(159\) −0.652563 + 2.00838i −0.0517516 + 0.159275i
\(160\) 0.344735 1.06098i 0.0272537 0.0838781i
\(161\) 19.9587 14.5009i 1.57297 1.14283i
\(162\) 0.433755 + 0.315141i 0.0340790 + 0.0247598i
\(163\) −2.46110 7.57448i −0.192768 0.593279i −0.999995 0.00303852i \(-0.999033\pi\)
0.807227 0.590241i \(-0.200967\pi\)
\(164\) 3.47924 0.271683
\(165\) 0 0
\(166\) 0.419007 0.0325212
\(167\) 1.05882 + 3.25873i 0.0819343 + 0.252168i 0.983629 0.180205i \(-0.0576763\pi\)
−0.901695 + 0.432373i \(0.857676\pi\)
\(168\) 2.00377 + 1.45583i 0.154594 + 0.112319i
\(169\) 9.46110 6.87389i 0.727777 0.528761i
\(170\) 0.0974731 0.299991i 0.00747585 0.0230083i
\(171\) −1.59580 + 4.91138i −0.122034 + 0.375582i
\(172\) −0.423749 + 0.307872i −0.0323106 + 0.0234750i
\(173\) −16.6390 12.0889i −1.26504 0.919103i −0.266044 0.963961i \(-0.585717\pi\)
−0.998993 + 0.0448577i \(0.985717\pi\)
\(174\) 0.140747 + 0.433173i 0.0106700 + 0.0328388i
\(175\) 4.52452 0.342022
\(176\) 0 0
\(177\) −10.3670 −0.779231
\(178\) 0.383383 + 1.17993i 0.0287358 + 0.0884397i
\(179\) 2.07458 + 1.50727i 0.155061 + 0.112659i 0.662611 0.748964i \(-0.269448\pi\)
−0.507549 + 0.861623i \(0.669448\pi\)
\(180\) −1.36722 + 0.993342i −0.101906 + 0.0740393i
\(181\) 4.14604 12.7602i 0.308173 0.948458i −0.670302 0.742089i \(-0.733835\pi\)
0.978474 0.206369i \(-0.0661648\pi\)
\(182\) −0.149380 + 0.459743i −0.0110727 + 0.0340784i
\(183\) −2.96943 + 2.15742i −0.219507 + 0.159481i
\(184\) −1.64637 1.19616i −0.121372 0.0881819i
\(185\) 0.460067 + 1.41594i 0.0338248 + 0.104102i
\(186\) 0.245630 0.0180104
\(187\) 0 0
\(188\) −13.7889 −1.00566
\(189\) −7.89259 24.2909i −0.574102 1.76690i
\(190\) −0.460319 0.334441i −0.0333951 0.0242629i
\(191\) −14.7159 + 10.6917i −1.06480 + 0.773625i −0.974971 0.222332i \(-0.928633\pi\)
−0.0898325 + 0.995957i \(0.528633\pi\)
\(192\) −3.53119 + 10.8679i −0.254842 + 0.784322i
\(193\) 4.84806 14.9208i 0.348971 1.07402i −0.610452 0.792053i \(-0.709012\pi\)
0.959423 0.281969i \(-0.0909876\pi\)
\(194\) 0.253927 0.184489i 0.0182309 0.0132455i
\(195\) 1.35577 + 0.985026i 0.0970888 + 0.0705392i
\(196\) −8.28933 25.5119i −0.592095 1.82228i
\(197\) −21.8486 −1.55665 −0.778325 0.627862i \(-0.783930\pi\)
−0.778325 + 0.627862i \(0.783930\pi\)
\(198\) 0 0
\(199\) −4.55200 −0.322683 −0.161341 0.986899i \(-0.551582\pi\)
−0.161341 + 0.986899i \(0.551582\pi\)
\(200\) −0.115332 0.354955i −0.00815520 0.0250991i
\(201\) 0.613000 + 0.445371i 0.0432377 + 0.0314140i
\(202\) 0.706202 0.513085i 0.0496882 0.0361006i
\(203\) 4.64304 14.2898i 0.325878 1.00295i
\(204\) −3.04442 + 9.36977i −0.213152 + 0.656015i
\(205\) 1.41356 1.02701i 0.0987276 0.0717298i
\(206\) 1.05276 + 0.764874i 0.0733492 + 0.0532913i
\(207\) 1.43001 + 4.40111i 0.0993923 + 0.305898i
\(208\) −4.51038 −0.312738
\(209\) 0 0
\(210\) 0.620556 0.0428225
\(211\) 5.85910 + 18.0324i 0.403357 + 1.24140i 0.922259 + 0.386571i \(0.126341\pi\)
−0.518903 + 0.854833i \(0.673659\pi\)
\(212\) −2.31939 1.68514i −0.159297 0.115736i
\(213\) 12.7327 9.25082i 0.872428 0.633856i
\(214\) −0.485117 + 1.49304i −0.0331619 + 0.102062i
\(215\) −0.0812843 + 0.250167i −0.00554354 + 0.0170613i
\(216\) −1.70447 + 1.23837i −0.115974 + 0.0842604i
\(217\) −6.55546 4.76282i −0.445014 0.323321i
\(218\) −0.105556 0.324867i −0.00714913 0.0220028i
\(219\) −8.33284 −0.563081
\(220\) 0 0
\(221\) −3.85410 −0.259255
\(222\) 0.0630999 + 0.194202i 0.00423499 + 0.0130340i
\(223\) −3.94761 2.86811i −0.264352 0.192063i 0.447712 0.894178i \(-0.352239\pi\)
−0.712063 + 0.702115i \(0.752239\pi\)
\(224\) −4.08350 + 2.96684i −0.272841 + 0.198230i
\(225\) −0.262262 + 0.807160i −0.0174841 + 0.0538106i
\(226\) −0.343932 + 1.05851i −0.0228780 + 0.0704112i
\(227\) −13.2055 + 9.59433i −0.876477 + 0.636798i −0.932317 0.361642i \(-0.882216\pi\)
0.0558398 + 0.998440i \(0.482216\pi\)
\(228\) 14.3774 + 10.4458i 0.952164 + 0.691788i
\(229\) −1.49307 4.59519i −0.0986647 0.303659i 0.889527 0.456883i \(-0.151034\pi\)
−0.988191 + 0.153224i \(0.951034\pi\)
\(230\) −0.509871 −0.0336199
\(231\) 0 0
\(232\) −1.23941 −0.0813711
\(233\) −2.60185 8.00766i −0.170453 0.524599i 0.828944 0.559331i \(-0.188942\pi\)
−0.999397 + 0.0347325i \(0.988942\pi\)
\(234\) −0.0733578 0.0532976i −0.00479555 0.00348417i
\(235\) −5.60222 + 4.07025i −0.365448 + 0.265514i
\(236\) 4.34922 13.3855i 0.283110 0.871324i
\(237\) −5.12319 + 15.7675i −0.332787 + 1.02421i
\(238\) −1.15460 + 0.838869i −0.0748419 + 0.0543758i
\(239\) 18.3588 + 13.3385i 1.18753 + 0.862795i 0.993002 0.118101i \(-0.0376807\pi\)
0.194533 + 0.980896i \(0.437681\pi\)
\(240\) 1.78924 + 5.50670i 0.115495 + 0.355456i
\(241\) 11.6065 0.747638 0.373819 0.927502i \(-0.378048\pi\)
0.373819 + 0.927502i \(0.378048\pi\)
\(242\) 0 0
\(243\) 8.52534 0.546901
\(244\) −1.53984 4.73913i −0.0985780 0.303392i
\(245\) −10.8985 7.91824i −0.696281 0.505878i
\(246\) 0.193876 0.140859i 0.0123611 0.00898085i
\(247\) −2.14835 + 6.61193i −0.136696 + 0.420707i
\(248\) −0.206549 + 0.635691i −0.0131158 + 0.0403664i
\(249\) −5.31706 + 3.86307i −0.336955 + 0.244812i
\(250\) −0.0756511 0.0549637i −0.00478460 0.00347621i
\(251\) 1.02379 + 3.15090i 0.0646210 + 0.198883i 0.978154 0.207882i \(-0.0666569\pi\)
−0.913533 + 0.406765i \(0.866657\pi\)
\(252\) 7.64633 0.481674
\(253\) 0 0
\(254\) 1.84800 0.115954
\(255\) 1.52890 + 4.70546i 0.0957432 + 0.294667i
\(256\) −12.3820 8.99608i −0.773878 0.562255i
\(257\) 21.7194 15.7800i 1.35482 0.984332i 0.356061 0.934463i \(-0.384120\pi\)
0.998756 0.0498689i \(-0.0158803\pi\)
\(258\) −0.0111485 + 0.0343114i −0.000694073 + 0.00213614i
\(259\) 2.08158 6.40645i 0.129343 0.398077i
\(260\) −1.84062 + 1.33729i −0.114150 + 0.0829349i
\(261\) 2.28012 + 1.65660i 0.141136 + 0.102541i
\(262\) −0.0559079 0.172067i −0.00345400 0.0106303i
\(263\) 12.1682 0.750324 0.375162 0.926959i \(-0.377587\pi\)
0.375162 + 0.926959i \(0.377587\pi\)
\(264\) 0 0
\(265\) −1.43976 −0.0884436
\(266\) 0.795530 + 2.44839i 0.0487771 + 0.150120i
\(267\) −15.7435 11.4383i −0.963487 0.700015i
\(268\) −0.832218 + 0.604642i −0.0508358 + 0.0369344i
\(269\) −0.646930 + 1.99105i −0.0394440 + 0.121396i −0.968840 0.247689i \(-0.920329\pi\)
0.929396 + 0.369085i \(0.120329\pi\)
\(270\) −0.163119 + 0.502029i −0.00992710 + 0.0305525i
\(271\) −12.2508 + 8.90071i −0.744182 + 0.540680i −0.894018 0.448031i \(-0.852125\pi\)
0.149836 + 0.988711i \(0.452125\pi\)
\(272\) −10.7730 7.82705i −0.653210 0.474585i
\(273\) −2.34306 7.21121i −0.141809 0.436442i
\(274\) −1.17218 −0.0708138
\(275\) 0 0
\(276\) 15.9250 0.958574
\(277\) 2.55577 + 7.86586i 0.153562 + 0.472614i 0.998012 0.0630194i \(-0.0200730\pi\)
−0.844451 + 0.535633i \(0.820073\pi\)
\(278\) 0.850700 + 0.618070i 0.0510216 + 0.0370694i
\(279\) 1.22966 0.893397i 0.0736175 0.0534863i
\(280\) −0.521822 + 1.60600i −0.0311848 + 0.0959770i
\(281\) 0.756235 2.32745i 0.0451132 0.138844i −0.925963 0.377615i \(-0.876744\pi\)
0.971076 + 0.238771i \(0.0767444\pi\)
\(282\) −0.768366 + 0.558251i −0.0457555 + 0.0332433i
\(283\) −21.1111 15.3381i −1.25492 0.911756i −0.256428 0.966563i \(-0.582546\pi\)
−0.998497 + 0.0548072i \(0.982546\pi\)
\(284\) 6.60268 + 20.3210i 0.391797 + 1.20583i
\(285\) 8.92472 0.528655
\(286\) 0 0
\(287\) −7.90553 −0.466648
\(288\) −0.292575 0.900455i −0.0172402 0.0530598i
\(289\) 4.54779 + 3.30416i 0.267517 + 0.194362i
\(290\) −0.251225 + 0.182525i −0.0147524 + 0.0107183i
\(291\) −1.52134 + 4.68220i −0.0891825 + 0.274476i
\(292\) 3.49584 10.7591i 0.204579 0.629629i
\(293\) −10.8837 + 7.90744i −0.635830 + 0.461958i −0.858415 0.512956i \(-0.828551\pi\)
0.222585 + 0.974913i \(0.428551\pi\)
\(294\) −1.49478 1.08602i −0.0871771 0.0633379i
\(295\) −2.18416 6.72216i −0.127167 0.391379i
\(296\) −0.555655 −0.0322968
\(297\) 0 0
\(298\) −1.62087 −0.0938944
\(299\) 1.92514 + 5.92498i 0.111334 + 0.342650i
\(300\) 2.36285 + 1.71671i 0.136419 + 0.0991142i
\(301\) 0.962841 0.699545i 0.0554973 0.0403211i
\(302\) −0.000156159 0 0.000480608i −8.98595e−6 0 2.76559e-5i
\(303\) −4.23103 + 13.0218i −0.243067 + 0.748082i
\(304\) −19.4328 + 14.1188i −1.11455 + 0.809767i
\(305\) −2.02452 1.47090i −0.115924 0.0842237i
\(306\) −0.0827252 0.254602i −0.00472909 0.0145546i
\(307\) 27.1844 1.55150 0.775748 0.631042i \(-0.217373\pi\)
0.775748 + 0.631042i \(0.217373\pi\)
\(308\) 0 0
\(309\) −20.4110 −1.16114
\(310\) 0.0517503 + 0.159271i 0.00293922 + 0.00904598i
\(311\) 10.6782 + 7.75819i 0.605507 + 0.439927i 0.847829 0.530269i \(-0.177909\pi\)
−0.242322 + 0.970196i \(0.577909\pi\)
\(312\) −0.506004 + 0.367633i −0.0286468 + 0.0208131i
\(313\) 4.99739 15.3804i 0.282469 0.869352i −0.704676 0.709529i \(-0.748908\pi\)
0.987146 0.159823i \(-0.0510922\pi\)
\(314\) 0.0160327 0.0493435i 0.000904776 0.00278461i
\(315\) 3.10659 2.25707i 0.175036 0.127171i
\(316\) −18.2092 13.2298i −1.02435 0.744234i
\(317\) −1.66287 5.11778i −0.0933959 0.287443i 0.893436 0.449190i \(-0.148287\pi\)
−0.986832 + 0.161747i \(0.948287\pi\)
\(318\) −0.197469 −0.0110735
\(319\) 0 0
\(320\) −7.79091 −0.435525
\(321\) −7.60922 23.4188i −0.424705 1.30711i
\(322\) 1.86634 + 1.35597i 0.104007 + 0.0755655i
\(323\) −16.6053 + 12.0644i −0.923943 + 0.671284i
\(324\) 3.52808 10.8583i 0.196004 0.603239i
\(325\) −0.353070 + 1.08664i −0.0195848 + 0.0602758i
\(326\) 0.602507 0.437747i 0.0333698 0.0242445i
\(327\) 4.33461 + 3.14928i 0.239705 + 0.174156i
\(328\) 0.201515 + 0.620199i 0.0111268 + 0.0342448i
\(329\) 31.3311 1.72734
\(330\) 0 0
\(331\) −18.5702 −1.02071 −0.510356 0.859963i \(-0.670486\pi\)
−0.510356 + 0.859963i \(0.670486\pi\)
\(332\) −2.75723 8.48588i −0.151323 0.465723i
\(333\) 1.02223 + 0.742694i 0.0560179 + 0.0406994i
\(334\) −0.259213 + 0.188329i −0.0141835 + 0.0103049i
\(335\) −0.159637 + 0.491314i −0.00872193 + 0.0268433i
\(336\) 8.09544 24.9152i 0.441642 1.35924i
\(337\) −7.28612 + 5.29368i −0.396900 + 0.288365i −0.768277 0.640117i \(-0.778886\pi\)
0.371377 + 0.928482i \(0.378886\pi\)
\(338\) 0.884706 + 0.642777i 0.0481217 + 0.0349624i
\(339\) −5.39467 16.6031i −0.292998 0.901756i
\(340\) −6.71695 −0.364278
\(341\) 0 0
\(342\) −0.482897 −0.0261121
\(343\) 9.04790 + 27.8466i 0.488541 + 1.50357i
\(344\) −0.0794235 0.0577045i −0.00428223 0.00311122i
\(345\) 6.47010 4.70080i 0.348338 0.253083i
\(346\) 0.594304 1.82908i 0.0319500 0.0983319i
\(347\) 3.17390 9.76827i 0.170384 0.524388i −0.829009 0.559236i \(-0.811095\pi\)
0.999393 + 0.0348477i \(0.0110946\pi\)
\(348\) 7.84662 5.70090i 0.420623 0.305600i
\(349\) −13.9647 10.1459i −0.747511 0.543098i 0.147544 0.989056i \(-0.452863\pi\)
−0.895054 + 0.445957i \(0.852863\pi\)
\(350\) 0.130741 + 0.402380i 0.00698842 + 0.0215081i
\(351\) 6.44975 0.344262
\(352\) 0 0
\(353\) −22.8096 −1.21403 −0.607017 0.794689i \(-0.707634\pi\)
−0.607017 + 0.794689i \(0.707634\pi\)
\(354\) −0.299566 0.921970i −0.0159218 0.0490022i
\(355\) 8.68098 + 6.30710i 0.460738 + 0.334746i
\(356\) 21.3736 15.5288i 1.13280 0.823027i
\(357\) 6.91753 21.2900i 0.366114 1.12678i
\(358\) −0.0740990 + 0.228053i −0.00391626 + 0.0120530i
\(359\) 13.0047 9.44847i 0.686362 0.498671i −0.189100 0.981958i \(-0.560557\pi\)
0.875462 + 0.483287i \(0.160557\pi\)
\(360\) −0.256258 0.186183i −0.0135060 0.00981268i
\(361\) 5.56984 + 17.1422i 0.293149 + 0.902221i
\(362\) 1.25461 0.0659408
\(363\) 0 0
\(364\) 10.2939 0.539545
\(365\) −1.75560 5.40317i −0.0918921 0.282815i
\(366\) −0.277671 0.201740i −0.0145141 0.0105451i
\(367\) −17.7963 + 12.9298i −0.928961 + 0.674930i −0.945738 0.324930i \(-0.894659\pi\)
0.0167772 + 0.999859i \(0.494659\pi\)
\(368\) −6.65149 + 20.4712i −0.346733 + 1.06713i
\(369\) 0.458240 1.41032i 0.0238550 0.0734183i
\(370\) −0.112630 + 0.0818304i −0.00585535 + 0.00425416i
\(371\) 5.27012 + 3.82896i 0.273611 + 0.198790i
\(372\) −1.61634 4.97458i −0.0838033 0.257920i
\(373\) −20.2604 −1.04905 −0.524523 0.851396i \(-0.675756\pi\)
−0.524523 + 0.851396i \(0.675756\pi\)
\(374\) 0 0
\(375\) 1.46673 0.0757417
\(376\) −0.798641 2.45796i −0.0411868 0.126760i
\(377\) 3.06961 + 2.23020i 0.158093 + 0.114861i
\(378\) 1.93220 1.40383i 0.0993818 0.0722051i
\(379\) −1.15193 + 3.54526i −0.0591704 + 0.182108i −0.976273 0.216544i \(-0.930522\pi\)
0.917103 + 0.398651i \(0.130522\pi\)
\(380\) −3.74415 + 11.5233i −0.192071 + 0.591133i
\(381\) −23.4506 + 17.0378i −1.20141 + 0.872875i
\(382\) −1.37608 0.999781i −0.0704064 0.0511532i
\(383\) −3.39838 10.4592i −0.173649 0.534438i 0.825920 0.563787i \(-0.190656\pi\)
−0.999569 + 0.0293499i \(0.990656\pi\)
\(384\) −4.34108 −0.221530
\(385\) 0 0
\(386\) 1.46704 0.0746706
\(387\) 0.0689858 + 0.212316i 0.00350675 + 0.0107927i
\(388\) −5.40727 3.92861i −0.274513 0.199445i
\(389\) −7.59036 + 5.51472i −0.384847 + 0.279607i −0.763340 0.645996i \(-0.776442\pi\)
0.378494 + 0.925604i \(0.376442\pi\)
\(390\) −0.0484249 + 0.149037i −0.00245209 + 0.00754676i
\(391\) −5.68368 + 17.4926i −0.287436 + 0.884637i
\(392\) 4.06757 2.95526i 0.205443 0.149263i
\(393\) 2.29584 + 1.66802i 0.115810 + 0.0841407i
\(394\) −0.631341 1.94307i −0.0318065 0.0978903i
\(395\) −11.3033 −0.568733
\(396\) 0 0
\(397\) 22.3136 1.11989 0.559945 0.828530i \(-0.310822\pi\)
0.559945 + 0.828530i \(0.310822\pi\)
\(398\) −0.131535 0.404824i −0.00659327 0.0202920i
\(399\) −32.6682 23.7348i −1.63546 1.18823i
\(400\) −3.19369 + 2.32035i −0.159684 + 0.116017i
\(401\) −7.62722 + 23.4742i −0.380885 + 1.17224i 0.558536 + 0.829480i \(0.311363\pi\)
−0.939421 + 0.342764i \(0.888637\pi\)
\(402\) −0.0218949 + 0.0673856i −0.00109202 + 0.00336089i
\(403\) 1.65542 1.20273i 0.0824624 0.0599125i
\(404\) −15.0383 10.9260i −0.748182 0.543586i
\(405\) −1.77179 5.45300i −0.0880407 0.270962i
\(406\) 1.40500 0.0697292
\(407\) 0 0
\(408\) −1.84656 −0.0914182
\(409\) 9.11772 + 28.0615i 0.450842 + 1.38755i 0.875948 + 0.482406i \(0.160237\pi\)
−0.425105 + 0.905144i \(0.639763\pi\)
\(410\) 0.132182 + 0.0960360i 0.00652802 + 0.00474288i
\(411\) 14.8746 10.8070i 0.733708 0.533070i
\(412\) 8.56294 26.3540i 0.421866 1.29837i
\(413\) −9.88229 + 30.4146i −0.486276 + 1.49660i
\(414\) −0.350083 + 0.254350i −0.0172056 + 0.0125006i
\(415\) −3.62511 2.63380i −0.177950 0.129288i
\(416\) −0.393879 1.21224i −0.0193115 0.0594348i
\(417\) −16.4935 −0.807689
\(418\) 0 0
\(419\) 9.03564 0.441420 0.220710 0.975339i \(-0.429163\pi\)
0.220710 + 0.975339i \(0.429163\pi\)
\(420\) −4.08350 12.5677i −0.199255 0.613243i
\(421\) −11.5043 8.35839i −0.560687 0.407363i 0.271023 0.962573i \(-0.412638\pi\)
−0.831710 + 0.555210i \(0.812638\pi\)
\(422\) −1.43438 + 1.04214i −0.0698244 + 0.0507304i
\(423\) −1.81609 + 5.58935i −0.0883014 + 0.271764i
\(424\) 0.166050 0.511050i 0.00806410 0.0248188i
\(425\) −2.72899 + 1.98273i −0.132376 + 0.0961765i
\(426\) 1.19063 + 0.865044i 0.0576862 + 0.0419115i
\(427\) 3.49881 + 10.7682i 0.169319 + 0.521111i
\(428\) 33.4298 1.61589
\(429\) 0 0
\(430\) −0.0245970 −0.00118617
\(431\) −0.535080 1.64681i −0.0257739 0.0793239i 0.937342 0.348410i \(-0.113278\pi\)
−0.963116 + 0.269086i \(0.913278\pi\)
\(432\) 18.0284 + 13.0984i 0.867391 + 0.630196i
\(433\) −14.9244 + 10.8432i −0.717222 + 0.521092i −0.885496 0.464648i \(-0.846181\pi\)
0.168273 + 0.985740i \(0.446181\pi\)
\(434\) 0.234145 0.720625i 0.0112393 0.0345911i
\(435\) 1.50515 4.63238i 0.0721665 0.222106i
\(436\) −5.88473 + 4.27551i −0.281827 + 0.204760i
\(437\) 26.8413 + 19.5014i 1.28399 + 0.932877i
\(438\) −0.240787 0.741066i −0.0115052 0.0354095i
\(439\) −17.1704 −0.819499 −0.409750 0.912198i \(-0.634384\pi\)
−0.409750 + 0.912198i \(0.634384\pi\)
\(440\) 0 0
\(441\) −11.4331 −0.544432
\(442\) −0.111369 0.342758i −0.00529727 0.0163033i
\(443\) −29.6094 21.5125i −1.40678 1.02209i −0.993780 0.111360i \(-0.964479\pi\)
−0.413005 0.910729i \(-0.635521\pi\)
\(444\) 3.51782 2.55585i 0.166948 0.121295i
\(445\) 4.09992 12.6183i 0.194355 0.598163i
\(446\) 0.140999 0.433951i 0.00667651 0.0205482i
\(447\) 20.5683 14.9438i 0.972848 0.706815i
\(448\) 28.5180 + 20.7195i 1.34735 + 0.978905i
\(449\) −5.13059 15.7903i −0.242127 0.745191i −0.996096 0.0882804i \(-0.971863\pi\)
0.753968 0.656911i \(-0.228137\pi\)
\(450\) −0.0793616 −0.00374114
\(451\) 0 0
\(452\) 23.7006 1.11478
\(453\) −0.00244940 0.00753849i −0.000115083 0.000354189i
\(454\) −1.23484 0.897165i −0.0579540 0.0421060i
\(455\) 4.18224 3.03857i 0.196066 0.142451i
\(456\) −1.02930 + 3.16787i −0.0482016 + 0.148349i
\(457\) −9.78512 + 30.1155i −0.457728 + 1.40874i 0.410173 + 0.912008i \(0.365468\pi\)
−0.867902 + 0.496736i \(0.834532\pi\)
\(458\) 0.365521 0.265567i 0.0170797 0.0124091i
\(459\) 15.4052 + 11.1925i 0.719053 + 0.522422i
\(460\) 3.35515 + 10.3261i 0.156435 + 0.481456i
\(461\) −25.4351 −1.18463 −0.592315 0.805706i \(-0.701786\pi\)
−0.592315 + 0.805706i \(0.701786\pi\)
\(462\) 0 0
\(463\) −16.3319 −0.759007 −0.379503 0.925190i \(-0.623905\pi\)
−0.379503 + 0.925190i \(0.623905\pi\)
\(464\) 4.05102 + 12.4677i 0.188064 + 0.578801i
\(465\) −2.12511 1.54398i −0.0985495 0.0716004i
\(466\) 0.636963 0.462781i 0.0295067 0.0214379i
\(467\) 2.63564 8.11167i 0.121963 0.375363i −0.871373 0.490622i \(-0.836770\pi\)
0.993336 + 0.115259i \(0.0367697\pi\)
\(468\) −0.596679 + 1.83639i −0.0275815 + 0.0848871i
\(469\) 1.89096 1.37386i 0.0873165 0.0634392i
\(470\) −0.523863 0.380608i −0.0241640 0.0175562i
\(471\) 0.251477 + 0.773968i 0.0115875 + 0.0356626i
\(472\) 2.63797 0.121422
\(473\) 0 0
\(474\) −1.55030 −0.0712076
\(475\) 1.88030 + 5.78696i 0.0862739 + 0.265524i
\(476\) 24.5868 + 17.8634i 1.12694 + 0.818767i
\(477\) −0.988554 + 0.718226i −0.0452628 + 0.0328853i
\(478\) −0.655734 + 2.01814i −0.0299926 + 0.0923076i
\(479\) 9.25438 28.4821i 0.422844 1.30138i −0.482200 0.876061i \(-0.660162\pi\)
0.905044 0.425318i \(-0.139838\pi\)
\(480\) −1.32376 + 0.961771i −0.0604213 + 0.0438987i
\(481\) 1.37618 + 0.999851i 0.0627483 + 0.0455893i
\(482\) 0.335382 + 1.03220i 0.0152762 + 0.0470154i
\(483\) −36.1848 −1.64646
\(484\) 0 0
\(485\) −3.35655 −0.152413
\(486\) 0.246350 + 0.758186i 0.0111746 + 0.0343920i
\(487\) 15.8592 + 11.5224i 0.718650 + 0.522130i 0.885952 0.463776i \(-0.153506\pi\)
−0.167303 + 0.985906i \(0.553506\pi\)
\(488\) 0.755597 0.548973i 0.0342043 0.0248508i
\(489\) −3.60977 + 11.1097i −0.163240 + 0.502400i
\(490\) 0.389269 1.19805i 0.0175854 0.0541223i
\(491\) 12.7737 9.28061i 0.576468 0.418828i −0.260981 0.965344i \(-0.584046\pi\)
0.837449 + 0.546516i \(0.184046\pi\)
\(492\) −4.12851 2.99954i −0.186128 0.135230i
\(493\) 3.46158 + 10.6536i 0.155902 + 0.479816i
\(494\) −0.650099 −0.0292494
\(495\) 0 0
\(496\) 7.06980 0.317443
\(497\) −15.0026 46.1732i −0.672958 2.07115i
\(498\) −0.497198 0.361235i −0.0222800 0.0161873i
\(499\) −9.06757 + 6.58797i −0.405920 + 0.294918i −0.771948 0.635686i \(-0.780717\pi\)
0.366028 + 0.930604i \(0.380717\pi\)
\(500\) −0.615332 + 1.89380i −0.0275185 + 0.0846932i
\(501\) 1.55301 4.77968i 0.0693834 0.213540i
\(502\) −0.250636 + 0.182098i −0.0111864 + 0.00812742i
\(503\) 0.277419 + 0.201557i 0.0123695 + 0.00898696i 0.593953 0.804500i \(-0.297567\pi\)
−0.581583 + 0.813487i \(0.697567\pi\)
\(504\) 0.442869 + 1.36301i 0.0197270 + 0.0607133i
\(505\) −9.33498 −0.415401
\(506\) 0 0
\(507\) −17.1528 −0.761782
\(508\) −12.1606 37.4265i −0.539539 1.66053i
\(509\) 15.8265 + 11.4986i 0.701497 + 0.509667i 0.880419 0.474196i \(-0.157261\pi\)
−0.178923 + 0.983863i \(0.557261\pi\)
\(510\) −0.374292 + 0.271939i −0.0165739 + 0.0120417i
\(511\) −7.94324 + 24.4468i −0.351388 + 1.08146i
\(512\) 2.27145 6.99080i 0.100385 0.308953i
\(513\) 27.7886 20.1896i 1.22689 0.891391i
\(514\) 2.03097 + 1.47559i 0.0895825 + 0.0650855i
\(515\) −4.30027 13.2349i −0.189493 0.583198i
\(516\) 0.768249 0.0338203
\(517\) 0 0
\(518\) 0.629896 0.0276760
\(519\) 9.32184 + 28.6897i 0.409183 + 1.25934i
\(520\) −0.344987 0.250648i −0.0151287 0.0109916i
\(521\) −34.0001 + 24.7025i −1.48957 + 1.08224i −0.515260 + 0.857034i \(0.672305\pi\)
−0.974312 + 0.225203i \(0.927695\pi\)
\(522\) −0.0814404 + 0.250648i −0.00356455 + 0.0109706i
\(523\) 9.27377 28.5417i 0.405513 1.24804i −0.514952 0.857219i \(-0.672190\pi\)
0.920466 0.390823i \(-0.127810\pi\)
\(524\) −3.11686 + 2.26453i −0.136161 + 0.0989266i
\(525\) −5.36885 3.90070i −0.234316 0.170240i
\(526\) 0.351614 + 1.08216i 0.0153311 + 0.0471843i
\(527\) 6.04112 0.263155
\(528\) 0 0
\(529\) 6.73067 0.292638
\(530\) −0.0416035 0.128042i −0.00180714 0.00556180i
\(531\) −4.85303 3.52593i −0.210604 0.153012i
\(532\) 44.3508 32.2227i 1.92285 1.39703i
\(533\) 0.616905 1.89864i 0.0267211 0.0822392i
\(534\) 0.562321 1.73064i 0.0243340 0.0748923i
\(535\) 13.5820 9.86792i 0.587202 0.426627i
\(536\) −0.155983 0.113328i −0.00673744 0.00489504i
\(537\) −1.16227 3.57709i −0.0501555 0.154363i
\(538\) −0.195764 −0.00843998
\(539\) 0 0
\(540\) 11.2407 0.483721
\(541\) −3.19017 9.81832i −0.137156 0.422123i 0.858763 0.512373i \(-0.171233\pi\)
−0.995919 + 0.0902502i \(0.971233\pi\)
\(542\) −1.14557 0.832305i −0.0492064 0.0357505i
\(543\) −15.9206 + 11.5670i −0.683218 + 0.496387i
\(544\) 1.16287 3.57893i 0.0498575 0.153446i
\(545\) −1.12882 + 3.47415i −0.0483533 + 0.148816i
\(546\) 0.573611 0.416752i 0.0245483 0.0178354i
\(547\) −33.8305 24.5793i −1.44649 1.05094i −0.986636 0.162941i \(-0.947902\pi\)
−0.459853 0.887995i \(-0.652098\pi\)
\(548\) 7.71339 + 23.7394i 0.329500 + 1.01410i
\(549\) −2.12382 −0.0906426
\(550\) 0 0
\(551\) 20.2065 0.860826
\(552\) 0.922364 + 2.83875i 0.0392584 + 0.120825i
\(553\) 41.3750 + 30.0607i 1.75944 + 1.27831i
\(554\) −0.625684 + 0.454586i −0.0265828 + 0.0193135i
\(555\) 0.674794 2.07680i 0.0286434 0.0881554i
\(556\) 6.91944 21.2958i 0.293449 0.903145i
\(557\) 31.1333 22.6196i 1.31916 0.958425i 0.319216 0.947682i \(-0.396580\pi\)
0.999942 0.0107427i \(-0.00341958\pi\)
\(558\) 0.114985 + 0.0835414i 0.00486770 + 0.00353659i
\(559\) 0.0928720 + 0.285831i 0.00392807 + 0.0120893i
\(560\) 17.8611 0.754768
\(561\) 0 0
\(562\) 0.228840 0.00965303
\(563\) 9.48262 + 29.1845i 0.399645 + 1.22998i 0.925285 + 0.379273i \(0.123826\pi\)
−0.525640 + 0.850707i \(0.676174\pi\)
\(564\) 16.3620 + 11.8877i 0.688966 + 0.500563i
\(565\) 9.62919 6.99602i 0.405103 0.294325i
\(566\) 0.754038 2.32069i 0.0316946 0.0975459i
\(567\) −8.01649 + 24.6722i −0.336661 + 1.03614i
\(568\) −3.23993 + 2.35395i −0.135944 + 0.0987695i
\(569\) −10.5564 7.66970i −0.442549 0.321530i 0.344098 0.938934i \(-0.388185\pi\)
−0.786647 + 0.617403i \(0.788185\pi\)
\(570\) 0.257890 + 0.793704i 0.0108018 + 0.0332446i
\(571\) 16.1300 0.675018 0.337509 0.941322i \(-0.390416\pi\)
0.337509 + 0.941322i \(0.390416\pi\)
\(572\) 0 0
\(573\) 26.6796 1.11456
\(574\) −0.228439 0.703064i −0.00953487 0.0293453i
\(575\) 4.41123 + 3.20495i 0.183961 + 0.133656i
\(576\) −5.34932 + 3.88651i −0.222888 + 0.161938i
\(577\) −4.50282 + 13.8583i −0.187455 + 0.576927i −0.999982 0.00599662i \(-0.998091\pi\)
0.812527 + 0.582923i \(0.198091\pi\)
\(578\) −0.162436 + 0.499927i −0.00675645 + 0.0207942i
\(579\) −18.6163 + 13.5256i −0.773668 + 0.562103i
\(580\) 5.34973 + 3.88681i 0.222135 + 0.161391i
\(581\) 6.26496 + 19.2816i 0.259915 + 0.799935i
\(582\) −0.460364 −0.0190827
\(583\) 0 0
\(584\) 2.12036 0.0877411
\(585\) 0.299650 + 0.922227i 0.0123890 + 0.0381294i
\(586\) −1.01773 0.739424i −0.0420420 0.0305453i
\(587\) 22.5507 16.3840i 0.930767 0.676242i −0.0154134 0.999881i \(-0.504906\pi\)
0.946181 + 0.323639i \(0.104906\pi\)
\(588\) −12.1582 + 37.4192i −0.501397 + 1.54314i
\(589\) 3.36743 10.3639i 0.138753 0.427037i
\(590\) 0.534709 0.388489i 0.0220136 0.0159938i
\(591\) 25.9258 + 18.8362i 1.06645 + 0.774818i
\(592\) 1.81616 + 5.58958i 0.0746439 + 0.229730i
\(593\) 15.1037 0.620236 0.310118 0.950698i \(-0.399631\pi\)
0.310118 + 0.950698i \(0.399631\pi\)
\(594\) 0 0
\(595\) 15.2622 0.625690
\(596\) 10.6660 + 32.8264i 0.436894 + 1.34462i
\(597\) 5.40146 + 3.92439i 0.221067 + 0.160615i
\(598\) −0.471298 + 0.342418i −0.0192728 + 0.0140025i
\(599\) −7.99602 + 24.6092i −0.326709 + 1.00551i 0.643955 + 0.765063i \(0.277292\pi\)
−0.970663 + 0.240442i \(0.922708\pi\)
\(600\) −0.169161 + 0.520624i −0.00690597 + 0.0212544i
\(601\) 38.0455 27.6417i 1.55191 1.12753i 0.609635 0.792682i \(-0.291316\pi\)
0.942273 0.334845i \(-0.108684\pi\)
\(602\) 0.0900352 + 0.0654144i 0.00366956 + 0.00266609i
\(603\) 0.135484 + 0.416977i 0.00551733 + 0.0169806i
\(604\) 0.0107610 0.000437861
\(605\) 0 0
\(606\) −1.28033 −0.0520098
\(607\) −10.8848 33.4999i −0.441800 1.35972i −0.885955 0.463770i \(-0.846496\pi\)
0.444156 0.895950i \(-0.353504\pi\)
\(608\) −5.49166 3.98993i −0.222716 0.161813i
\(609\) −17.8291 + 12.9536i −0.722470 + 0.524905i
\(610\) 0.0723111 0.222551i 0.00292779 0.00901082i
\(611\) −2.44491 + 7.52466i −0.0989105 + 0.304415i
\(612\) −4.61193 + 3.35076i −0.186426 + 0.135447i
\(613\) 18.9405 + 13.7611i 0.764998 + 0.555804i 0.900439 0.434982i \(-0.143245\pi\)
−0.135441 + 0.990785i \(0.543245\pi\)
\(614\) 0.785525 + 2.41760i 0.0317012 + 0.0975663i
\(615\) −2.56276 −0.103341
\(616\) 0 0
\(617\) 22.8910 0.921557 0.460778 0.887515i \(-0.347570\pi\)
0.460778 + 0.887515i \(0.347570\pi\)
\(618\) −0.589799 1.81522i −0.0237252 0.0730187i
\(619\) −1.72120 1.25053i −0.0691810 0.0502629i 0.552657 0.833409i \(-0.313614\pi\)
−0.621838 + 0.783146i \(0.713614\pi\)
\(620\) 2.88508 2.09613i 0.115867 0.0841826i
\(621\) 9.51150 29.2734i 0.381684 1.17470i
\(622\) −0.381401 + 1.17383i −0.0152928 + 0.0470664i
\(623\) −48.5650 + 35.2846i −1.94572 + 1.41365i
\(624\) 5.35206 + 3.88850i 0.214254 + 0.155665i
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 1.51223 0.0604410
\(627\) 0 0
\(628\) −1.10482 −0.0440873
\(629\) 1.55191 + 4.77628i 0.0618786 + 0.190443i
\(630\) 0.290497 + 0.211058i 0.0115737 + 0.00840876i
\(631\) −12.5064 + 9.08644i −0.497872 + 0.361725i −0.808204 0.588903i \(-0.799560\pi\)
0.310331 + 0.950628i \(0.399560\pi\)
\(632\) 1.30364 4.01218i 0.0518559 0.159596i
\(633\) 8.59372 26.4488i 0.341570 1.05124i
\(634\) 0.407090 0.295768i 0.0161676 0.0117464i
\(635\) −15.9883 11.6162i −0.634477 0.460975i
\(636\) 1.29942 + 3.99921i 0.0515254 + 0.158579i
\(637\) −15.3918 −0.609844
\(638\) 0 0
\(639\) 9.10676 0.360258
\(640\) −0.914596 2.81484i −0.0361526 0.111266i
\(641\) −11.4723 8.33508i −0.453127 0.329216i 0.337702 0.941253i \(-0.390350\pi\)
−0.790829 + 0.612037i \(0.790350\pi\)
\(642\) 1.86283 1.35342i 0.0735200 0.0534154i
\(643\) −3.82997 + 11.7874i −0.151039 + 0.464851i −0.997738 0.0672213i \(-0.978587\pi\)
0.846699 + 0.532073i \(0.178587\pi\)
\(644\) 15.1805 46.7206i 0.598194 1.84105i
\(645\) 0.312128 0.226774i 0.0122900 0.00892923i
\(646\) −1.55276 1.12815i −0.0610925 0.0443863i
\(647\) 10.2737 + 31.6193i 0.403902 + 1.24308i 0.921809 + 0.387645i \(0.126711\pi\)
−0.517907 + 0.855437i \(0.673289\pi\)
\(648\) 2.13991 0.0840637
\(649\) 0 0
\(650\) −0.106840 −0.00419063
\(651\) 3.67264 + 11.3032i 0.143942 + 0.443009i
\(652\) −12.8301 9.32164i −0.502467 0.365064i
\(653\) 28.1591 20.4588i 1.10195 0.800615i 0.120574 0.992704i \(-0.461526\pi\)
0.981377 + 0.192090i \(0.0615265\pi\)
\(654\) −0.154822 + 0.476493i −0.00605402 + 0.0186323i
\(655\) −0.597882 + 1.84009i −0.0233612 + 0.0718983i
\(656\) 5.58020 4.05425i 0.217870 0.158292i
\(657\) −3.90080 2.83409i −0.152185 0.110569i
\(658\) 0.905347 + 2.78637i 0.0352941 + 0.108624i
\(659\) −34.4953 −1.34375 −0.671873 0.740666i \(-0.734510\pi\)
−0.671873 + 0.740666i \(0.734510\pi\)
\(660\) 0 0
\(661\) 1.77827 0.0691668 0.0345834 0.999402i \(-0.488990\pi\)
0.0345834 + 0.999402i \(0.488990\pi\)
\(662\) −0.536608 1.65151i −0.0208559 0.0641878i
\(663\) 4.57332 + 3.32271i 0.177613 + 0.129043i
\(664\) 1.35297 0.982990i 0.0525054 0.0381474i
\(665\) 8.50744 26.1832i 0.329905 1.01534i
\(666\) −0.0365116 + 0.112371i −0.00141480 + 0.00435430i
\(667\) 14.6490 10.6431i 0.567210 0.412102i
\(668\) 5.51984 + 4.01040i 0.213569 + 0.155167i
\(669\) 2.21162 + 6.80666i 0.0855060 + 0.263161i
\(670\) −0.0483070 −0.00186626
\(671\) 0 0
\(672\) 7.40331 0.285589
\(673\) 5.96292 + 18.3520i 0.229854 + 0.707417i 0.997762 + 0.0668581i \(0.0212975\pi\)
−0.767909 + 0.640559i \(0.778703\pi\)
\(674\) −0.681325 0.495011i −0.0262436 0.0190671i
\(675\) 4.56691 3.31805i 0.175780 0.127712i
\(676\) 7.19604 22.1471i 0.276771 0.851812i
\(677\) −5.22550 + 16.0824i −0.200832 + 0.618098i 0.799027 + 0.601296i \(0.205349\pi\)
−0.999859 + 0.0168023i \(0.994651\pi\)
\(678\) 1.32068 0.959531i 0.0507205 0.0368506i
\(679\) 12.2864 + 8.92658i 0.471508 + 0.342571i
\(680\) −0.389040 1.19734i −0.0149190 0.0459160i
\(681\) 23.9412 0.917430
\(682\) 0 0
\(683\) 4.14018 0.158420 0.0792098 0.996858i \(-0.474760\pi\)
0.0792098 + 0.996858i \(0.474760\pi\)
\(684\) 3.17765 + 9.77981i 0.121501 + 0.373940i
\(685\) 10.1413 + 7.36808i 0.387479 + 0.281520i
\(686\) −2.21504 + 1.60932i −0.0845705 + 0.0614441i
\(687\) −2.18993 + 6.73991i −0.0835510 + 0.257144i
\(688\) −0.320879 + 0.987563i −0.0122334 + 0.0376505i
\(689\) −1.33084 + 0.966911i −0.0507009 + 0.0368364i
\(690\) 0.605018 + 0.439571i 0.0230326 + 0.0167342i
\(691\) −14.3236 44.0834i −0.544894 1.67701i −0.721242 0.692683i \(-0.756429\pi\)
0.176348 0.984328i \(-0.443571\pi\)
\(692\) −40.9539 −1.55684
\(693\) 0 0
\(694\) 0.960437 0.0364577
\(695\) −3.47491 10.6947i −0.131811 0.405672i
\(696\) 1.47070 + 1.06852i 0.0557466 + 0.0405022i
\(697\) 4.76827 3.46435i 0.180611 0.131222i
\(698\) 0.498784 1.53510i 0.0188792 0.0581044i
\(699\) −3.81621 + 11.7451i −0.144342 + 0.444240i
\(700\) 7.28883 5.29564i 0.275492 0.200156i
\(701\) 36.7741 + 26.7180i 1.38894 + 1.00912i 0.995981 + 0.0895673i \(0.0285484\pi\)
0.392959 + 0.919556i \(0.371452\pi\)
\(702\) 0.186373 + 0.573597i 0.00703419 + 0.0216490i
\(703\) 9.05904 0.341668
\(704\) 0 0
\(705\) 10.1567 0.382524
\(706\) −0.659111 2.02853i −0.0248060 0.0763449i
\(707\) 34.1699 + 24.8259i 1.28509 + 0.933674i
\(708\) −16.7008 + 12.1339i −0.627655 + 0.456018i
\(709\) −4.33370 + 13.3377i −0.162755 + 0.500910i −0.998864 0.0476545i \(-0.984825\pi\)
0.836108 + 0.548564i \(0.184825\pi\)
\(710\) −0.310064 + 0.954278i −0.0116365 + 0.0358134i
\(711\) −7.76100 + 5.63870i −0.291060 + 0.211468i
\(712\) 4.00607 + 2.91058i 0.150134 + 0.109078i
\(713\) −3.01757 9.28713i −0.113009 0.347806i
\(714\) 2.09327 0.0783388
\(715\) 0 0
\(716\) 5.10622 0.190829
\(717\) −10.2854 31.6552i −0.384115 1.18218i
\(718\) 1.21607 + 0.883525i 0.0453833 + 0.0329729i
\(719\) −10.6292 + 7.72256i −0.396402 + 0.288003i −0.768074 0.640361i \(-0.778785\pi\)
0.371672 + 0.928364i \(0.378785\pi\)
\(720\) −1.03531 + 3.18635i −0.0385837 + 0.118748i
\(721\) −19.4567 + 59.8815i −0.724605 + 2.23010i
\(722\) −1.36356 + 0.990687i −0.0507466 + 0.0368696i
\(723\) −13.7723 10.0062i −0.512199 0.372134i
\(724\) −8.25583 25.4088i −0.306825 0.944311i
\(725\) 3.32083 0.123333
\(726\) 0 0
\(727\) −18.3635 −0.681063 −0.340532 0.940233i \(-0.610607\pi\)
−0.340532 + 0.940233i \(0.610607\pi\)
\(728\) 0.596212 + 1.83495i 0.0220971 + 0.0680078i
\(729\) −24.0320 17.4603i −0.890076 0.646678i
\(730\) 0.429791 0.312262i 0.0159073 0.0115573i
\(731\) −0.274190 + 0.843870i −0.0101413 + 0.0312117i
\(732\) −2.25853 + 6.95103i −0.0834776 + 0.256918i
\(733\) 29.9318 21.7467i 1.10555 0.803232i 0.123597 0.992333i \(-0.460557\pi\)
0.981958 + 0.189100i \(0.0605571\pi\)
\(734\) −1.66413 1.20906i −0.0614243 0.0446274i
\(735\) 6.10581 + 18.7917i 0.225216 + 0.693144i
\(736\) −6.08282 −0.224216
\(737\) 0 0
\(738\) 0.138666 0.00510435
\(739\) 3.04392 + 9.36822i 0.111972 + 0.344616i 0.991304 0.131595i \(-0.0420099\pi\)
−0.879331 + 0.476211i \(0.842010\pi\)
\(740\) 2.39841 + 1.74255i 0.0881672 + 0.0640572i
\(741\) 8.24955 5.99365i 0.303055 0.220182i
\(742\) −0.188236 + 0.579330i −0.00691036 + 0.0212679i
\(743\) 8.48162 26.1037i 0.311161 0.957654i −0.666146 0.745822i \(-0.732057\pi\)
0.977306 0.211832i \(-0.0679429\pi\)
\(744\) 0.793137 0.576248i 0.0290778 0.0211263i
\(745\) 14.0232 + 10.1885i 0.513771 + 0.373277i
\(746\) −0.585449 1.80183i −0.0214348 0.0659695i
\(747\) −3.80291 −0.139141
\(748\) 0 0
\(749\) −75.9591 −2.77549
\(750\) 0.0423829 + 0.130441i 0.00154760 + 0.00476304i
\(751\) −11.1065 8.06936i −0.405283 0.294455i 0.366406 0.930455i \(-0.380588\pi\)
−0.771689 + 0.636000i \(0.780588\pi\)
\(752\) −22.1154 + 16.0678i −0.806465 + 0.585931i
\(753\) 1.50162 4.62153i 0.0547223 0.168418i
\(754\) −0.109639 + 0.337434i −0.00399282 + 0.0122886i
\(755\) 0.00437205 0.00317648i 0.000159115 0.000115604i
\(756\) −41.1455 29.8939i −1.49645 1.08723i
\(757\) −7.08573 21.8076i −0.257535 0.792612i −0.993320 0.115396i \(-0.963186\pi\)
0.735784 0.677216i \(-0.236814\pi\)
\(758\) −0.348578 −0.0126609
\(759\) 0 0
\(760\) −2.27097 −0.0823767
\(761\) −6.39104 19.6696i −0.231675 0.713022i −0.997545 0.0700268i \(-0.977692\pi\)
0.765870 0.642995i \(-0.222308\pi\)
\(762\) −2.19286 1.59321i −0.0794390 0.0577158i
\(763\) 13.3713 9.71479i 0.484072 0.351699i
\(764\) −11.1928 + 34.4478i −0.404941 + 1.24628i
\(765\) −0.884668 + 2.72273i −0.0319852 + 0.0984405i
\(766\) 0.831965 0.604458i 0.0300601 0.0218400i
\(767\) −6.53339 4.74678i −0.235907 0.171396i
\(768\) 6.93694 + 21.3497i 0.250315 + 0.770391i
\(769\) 38.4306 1.38584 0.692922 0.721013i \(-0.256323\pi\)
0.692922 + 0.721013i \(0.256323\pi\)
\(770\) 0 0
\(771\) −39.3768 −1.41812
\(772\) −9.65373 29.7111i −0.347445 1.06933i
\(773\) −40.4028 29.3544i −1.45319 1.05580i −0.985073 0.172136i \(-0.944933\pi\)
−0.468115 0.883667i \(-0.655067\pi\)
\(774\) −0.0168886 + 0.0122703i −0.000607047 + 0.000441045i
\(775\) 0.553420 1.70325i 0.0198794 0.0611826i
\(776\) 0.387117 1.19143i 0.0138967 0.0427697i
\(777\) −7.99318 + 5.80738i −0.286754 + 0.208339i
\(778\) −0.709774 0.515681i −0.0254466 0.0184881i
\(779\) −3.28537 10.1113i −0.117711 0.362276i
\(780\) 3.33700 0.119484
\(781\) 0 0
\(782\) −1.71991 −0.0615037
\(783\) −5.79287 17.8286i −0.207020 0.637143i
\(784\) −43.0231 31.2581i −1.53654 1.11636i
\(785\) −0.448873 + 0.326125i −0.0160210 + 0.0116399i
\(786\) −0.0820019 + 0.252376i −0.00292491 + 0.00900195i
\(787\) −4.80645 + 14.7927i −0.171331 + 0.527304i −0.999447 0.0332537i \(-0.989413\pi\)
0.828116 + 0.560557i \(0.189413\pi\)
\(788\) −35.1973 + 25.5723i −1.25385 + 0.910975i
\(789\) −14.4389 10.4905i −0.514040 0.373472i
\(790\) −0.326623 1.00524i −0.0116207 0.0357649i
\(791\) −53.8524 −1.91477
\(792\) 0 0
\(793\) −2.85919 −0.101533
\(794\) 0.644778 + 1.98442i 0.0228823 + 0.0704246i
\(795\) 1.70843 + 1.24125i 0.0605919 + 0.0440226i
\(796\) −7.33309 + 5.32780i −0.259915 + 0.188839i
\(797\) 14.2478 43.8501i 0.504682 1.55325i −0.296622 0.954995i \(-0.595860\pi\)
0.801304 0.598257i \(-0.204140\pi\)
\(798\) 1.16683 3.59113i 0.0413053 0.127125i
\(799\) −18.8975 + 13.7298i −0.668546 + 0.485727i
\(800\) −0.902527 0.655724i −0.0319091 0.0231834i
\(801\) −3.47960 10.7091i −0.122945 0.378387i
\(802\) −2.30803 −0.0814994
\(803\) 0 0
\(804\) 1.50879 0.0532111
\(805\) −7.62356 23.4629i −0.268695 0.826958i
\(806\) 0.154798 + 0.112468i 0.00545254 + 0.00396150i
\(807\) 2.48418 1.80486i 0.0874473 0.0635342i
\(808\) 1.07662 3.31350i 0.0378754 0.116569i
\(809\) −11.6003 + 35.7021i −0.407845 + 1.25522i 0.510651 + 0.859788i \(0.329404\pi\)
−0.918496 + 0.395430i \(0.870596\pi\)
\(810\) 0.433755 0.315141i 0.0152406 0.0110729i
\(811\) −5.82935 4.23527i −0.204696 0.148720i 0.480715 0.876877i \(-0.340377\pi\)
−0.685411 + 0.728157i \(0.740377\pi\)
\(812\) −9.24548 28.4547i −0.324453 0.998563i
\(813\) 22.2104 0.778953
\(814\) 0 0
\(815\) −7.96428 −0.278977
\(816\) 6.03549 + 18.5753i 0.211284 + 0.650266i
\(817\) 1.29487 + 0.940777i 0.0453017 + 0.0329136i
\(818\) −2.23213 + 1.62174i −0.0780445 + 0.0567027i
\(819\) 1.35577 4.17264i 0.0473745 0.145804i
\(820\) 1.07515 3.30896i 0.0375457 0.115554i
\(821\) 6.98510 5.07497i 0.243782 0.177118i −0.459185 0.888341i \(-0.651858\pi\)
0.702966 + 0.711223i \(0.251858\pi\)
\(822\) 1.39092 + 1.01056i 0.0485139 + 0.0352474i
\(823\) −7.72915 23.7879i −0.269421 0.829193i −0.990642 0.136488i \(-0.956419\pi\)
0.721221 0.692706i \(-0.243581\pi\)
\(824\) 5.19375 0.180933
\(825\) 0 0
\(826\) −2.99042 −0.104050
\(827\) 15.1024 + 46.4805i 0.525163 + 1.61629i 0.763993 + 0.645224i \(0.223236\pi\)
−0.238830 + 0.971061i \(0.576764\pi\)
\(828\) 7.45487 + 5.41628i 0.259075 + 0.188229i
\(829\) −4.28107 + 3.11038i −0.148688 + 0.108028i −0.659642 0.751580i \(-0.729292\pi\)
0.510954 + 0.859608i \(0.329292\pi\)
\(830\) 0.129480 0.398499i 0.00449432 0.0138321i
\(831\) 3.74863 11.5371i 0.130039 0.400218i
\(832\) −7.20152 + 5.23221i −0.249668 + 0.181394i
\(833\) −36.7631 26.7100i −1.27377 0.925446i
\(834\) −0.476598 1.46682i −0.0165032 0.0507917i
\(835\) 3.42643 0.118576
\(836\) 0 0
\(837\) −10.1097 −0.349441
\(838\) 0.261095 + 0.803568i 0.00901938 + 0.0277588i
\(839\) 10.7129 + 7.78337i 0.369850 + 0.268712i 0.757149 0.653243i \(-0.226592\pi\)
−0.387299 + 0.921954i \(0.626592\pi\)
\(840\) 2.00377 1.45583i 0.0691367 0.0502308i
\(841\) −5.55367 + 17.0924i −0.191506 + 0.589395i
\(842\) 0.410907 1.26464i 0.0141608 0.0435825i
\(843\) −2.90391 + 2.10981i −0.100016 + 0.0726658i
\(844\) 30.5445 + 22.1919i 1.05139 + 0.763876i
\(845\) −3.61382 11.1222i −0.124319 0.382615i
\(846\) −0.549557 −0.0188942
\(847\) 0 0
\(848\) −5.68361 −0.195176
\(849\) 11.8273 + 36.4007i 0.405913 + 1.24927i
\(850\) −0.255188 0.185405i −0.00875287 0.00635933i
\(851\) 6.56747 4.77155i 0.225130 0.163567i
\(852\) 9.68436 29.8054i 0.331781 1.02112i
\(853\) 0.685662 2.11025i 0.0234766 0.0722536i −0.938632 0.344921i \(-0.887906\pi\)
0.962108 + 0.272667i \(0.0879058\pi\)
\(854\) −0.856551 + 0.622321i −0.0293106 + 0.0212954i
\(855\) 4.17787 + 3.03540i 0.142880 + 0.103808i
\(856\) 1.93623 + 5.95910i 0.0661789 + 0.203678i
\(857\) 31.4625 1.07474 0.537368 0.843348i \(-0.319418\pi\)
0.537368 + 0.843348i \(0.319418\pi\)
\(858\) 0 0
\(859\) 9.07676 0.309695 0.154848 0.987938i \(-0.450511\pi\)
0.154848 + 0.987938i \(0.450511\pi\)
\(860\) 0.161858 + 0.498147i 0.00551931 + 0.0169867i
\(861\) 9.38078 + 6.81554i 0.319696 + 0.232273i
\(862\) 0.130994 0.0951727i 0.00446167 0.00324159i
\(863\) 13.1283 40.4049i 0.446894 1.37540i −0.433500 0.901154i \(-0.642721\pi\)
0.880393 0.474244i \(-0.157279\pi\)
\(864\) −1.94603 + 5.98926i −0.0662053 + 0.203759i
\(865\) −16.6390 + 12.0889i −0.565742 + 0.411035i
\(866\) −1.39558 1.01395i −0.0474238 0.0344554i
\(867\) −2.54786 7.84151i −0.0865299 0.266312i
\(868\) −16.1351 −0.547662
\(869\) 0 0
\(870\) 0.455465 0.0154417
\(871\) 0.182395 + 0.561354i 0.00618022 + 0.0190208i
\(872\) −1.10298 0.801360i −0.0373515 0.0271375i
\(873\) −2.30464 + 1.67442i −0.0780004 + 0.0566706i
\(874\) −0.958707 + 2.95060i −0.0324288 + 0.0998055i
\(875\) 1.39815 4.30308i 0.0472663 0.145471i
\(876\) −13.4239 + 9.75301i −0.453551 + 0.329524i
\(877\) 25.3304 + 18.4036i 0.855348 + 0.621447i 0.926615 0.376010i \(-0.122704\pi\)
−0.0712673 + 0.997457i \(0.522704\pi\)
\(878\) −0.496159 1.52702i −0.0167446 0.0515344i
\(879\) 19.7319 0.665539
\(880\) 0 0
\(881\) 21.5189 0.724990 0.362495 0.931986i \(-0.381925\pi\)
0.362495 + 0.931986i \(0.381925\pi\)
\(882\) −0.330372 1.01678i −0.0111242 0.0342368i
\(883\) 0.527926 + 0.383561i 0.0177661 + 0.0129078i 0.596633 0.802514i \(-0.296505\pi\)
−0.578867 + 0.815422i \(0.696505\pi\)
\(884\) −6.20880 + 4.51096i −0.208825 + 0.151720i
\(885\) −3.20358 + 9.85960i −0.107687 + 0.331427i
\(886\) 1.05758 3.25489i 0.0355300 0.109350i
\(887\) 11.8490 8.60882i 0.397851 0.289056i −0.370814 0.928707i \(-0.620921\pi\)
0.768665 + 0.639651i \(0.220921\pi\)
\(888\) 0.659347 + 0.479043i 0.0221262 + 0.0160756i
\(889\) 27.6313 + 85.0403i 0.926722 + 2.85216i
\(890\) 1.24065 0.0415868
\(891\) 0 0
\(892\) −9.71637 −0.325328
\(893\) 13.0205 + 40.0730i 0.435715 + 1.34099i
\(894\) 1.92334 + 1.39739i 0.0643261 + 0.0467357i
\(895\) 2.07458 1.50727i 0.0693456 0.0503825i
\(896\) −4.13811 + 12.7358i −0.138245 + 0.425473i
\(897\) 2.82367 8.69036i 0.0942795 0.290163i
\(898\) 1.25603 0.912559i 0.0419142 0.0304525i
\(899\) −4.81147 3.49573i −0.160471 0.116589i
\(900\) 0.522231 + 1.60726i 0.0174077 + 0.0535754i
\(901\) −4.85662 −0.161798
\(902\) 0 0
\(903\) −1.74561 −0.0580903
\(904\) 1.37272 + 4.22479i 0.0456559 + 0.140515i
\(905\) −10.8545 7.88624i −0.360815 0.262147i
\(906\) 0.000599644 0 0.000435667i 1.99218e−5 0 1.44741e-5i
\(907\) 8.88269 27.3381i 0.294945 0.907747i −0.688295 0.725431i \(-0.741641\pi\)
0.983240 0.182316i \(-0.0583594\pi\)
\(908\) −10.0440 + 30.9122i −0.333321 + 1.02586i
\(909\) −6.40950 + 4.65678i −0.212590 + 0.154455i
\(910\) 0.391081 + 0.284137i 0.0129642 + 0.00941904i
\(911\) 5.34039 + 16.4360i 0.176935 + 0.544550i 0.999717 0.0238080i \(-0.00757903\pi\)
−0.822782 + 0.568358i \(0.807579\pi\)
\(912\) 35.2313 1.16663
\(913\) 0 0
\(914\) −2.96102 −0.0979418
\(915\) 1.13422 + 3.49078i 0.0374962 + 0.115402i
\(916\) −7.78362 5.65513i −0.257178 0.186851i
\(917\) 7.08213 5.14547i 0.233872 0.169918i
\(918\) −0.550236 + 1.69345i −0.0181605 + 0.0558923i
\(919\) −0.679359 + 2.09085i −0.0224100 + 0.0689709i −0.961636 0.274328i \(-0.911544\pi\)
0.939226 + 0.343299i \(0.111544\pi\)
\(920\) −1.64637 + 1.19616i −0.0542792 + 0.0394361i
\(921\) −32.2573 23.4363i −1.06292 0.772253i
\(922\) −0.734976 2.26202i −0.0242052 0.0744958i
\(923\) 12.2600 0.403542
\(924\) 0 0
\(925\) 1.48881 0.0489517
\(926\) −0.471928 1.45245i −0.0155085 0.0477303i
\(927\) −9.55486 6.94201i −0.313823 0.228006i
\(928\) −2.99714 + 2.17755i −0.0983860 + 0.0714816i
\(929\) 7.48142 23.0254i 0.245457 0.755440i −0.750103 0.661321i \(-0.769996\pi\)
0.995561 0.0941198i \(-0.0300037\pi\)
\(930\) 0.0759038 0.233608i 0.00248898 0.00766030i
\(931\) −66.3150 + 48.1806i −2.17339 + 1.57906i
\(932\) −13.5639 9.85473i −0.444300 0.322802i
\(933\) −5.98239 18.4119i −0.195855 0.602779i
\(934\) 0.797556 0.0260968
\(935\) 0 0
\(936\) −0.361908 −0.0118293
\(937\) −6.43458 19.8036i −0.210209 0.646955i −0.999459 0.0328841i \(-0.989531\pi\)
0.789251 0.614071i \(-0.210469\pi\)
\(938\) 0.176824 + 0.128470i 0.00577350 + 0.00419469i
\(939\) −19.1898 + 13.9422i −0.626234 + 0.454986i
\(940\) −4.26100 + 13.1140i −0.138979 + 0.427732i
\(941\) 10.5723 32.5383i 0.344648 1.06072i −0.617124 0.786866i \(-0.711702\pi\)
0.961772 0.273852i \(-0.0882978\pi\)
\(942\) −0.0615647 + 0.0447294i −0.00200589 + 0.00145736i
\(943\) −7.70758 5.59988i −0.250993 0.182357i
\(944\) −8.62222 26.5365i −0.280629 0.863689i
\(945\) −25.5410 −0.830848
\(946\) 0 0
\(947\) 33.8128 1.09877 0.549383 0.835570i \(-0.314863\pi\)
0.549383 + 0.835570i \(0.314863\pi\)
\(948\) 10.2016 + 31.3972i 0.331332 + 1.01973i
\(949\) −5.25144 3.81539i −0.170469 0.123853i
\(950\) −0.460319 + 0.334441i −0.0149347 + 0.0108507i
\(951\) −2.43898 + 7.50641i −0.0790893 + 0.243412i
\(952\) −1.76022 + 5.41740i −0.0570491 + 0.175579i
\(953\) −20.7094 + 15.0462i −0.670842 + 0.487395i −0.870307 0.492510i \(-0.836080\pi\)
0.199465 + 0.979905i \(0.436080\pi\)
\(954\) −0.0924396 0.0671613i −0.00299284 0.00217443i
\(955\) 5.62097 + 17.2996i 0.181890 + 0.559800i
\(956\) 45.1871 1.46146
\(957\) 0 0
\(958\) 2.80042 0.0904774
\(959\) −17.5263 53.9405i −0.565955 1.74183i
\(960\) 9.24477 + 6.71672i 0.298374 + 0.216781i
\(961\) 22.4847 16.3361i 0.725314 0.526971i
\(962\) −0.0491537 + 0.151280i −0.00158478 + 0.00487745i
\(963\) 4.40294 13.5508i 0.141883 0.436670i
\(964\) 18.6975 13.5846i 0.602207 0.437529i
\(965\) −12.6924 9.22156i −0.408582 0.296852i
\(966\) −1.04560 3.21803i −0.0336417 0.103538i
\(967\) 43.8942 1.41154 0.705772 0.708439i \(-0.250600\pi\)
0.705772 + 0.708439i \(0.250600\pi\)
\(968\) 0 0
\(969\) 30.1051 0.967114
\(970\) −0.0969914 0.298509i −0.00311421 0.00958454i
\(971\) −29.4245 21.3782i −0.944278 0.686058i 0.00516893 0.999987i \(-0.498355\pi\)
−0.949447 + 0.313929i \(0.898355\pi\)
\(972\) 13.7340 9.97832i 0.440518 0.320055i
\(973\) −15.7223 + 48.3883i −0.504034 + 1.55126i
\(974\) −0.566453 + 1.74336i −0.0181503 + 0.0558610i
\(975\) 1.35577 0.985026i 0.0434195 0.0315461i
\(976\) −7.99204 5.80655i −0.255819 0.185863i
\(977\) 3.19882 + 9.84496i 0.102339 + 0.314968i 0.989097 0.147267i \(-0.0470476\pi\)
−0.886757 + 0.462235i \(0.847048\pi\)
\(978\) −1.09233 −0.0349289
\(979\) 0 0
\(980\) −26.8248 −0.856888
\(981\) 0.958026 + 2.94850i 0.0305874 + 0.0941384i
\(982\) 1.19446 + 0.867829i 0.0381169 + 0.0276935i
\(983\) 17.8921 12.9994i 0.570669 0.414615i −0.264679 0.964336i \(-0.585266\pi\)
0.835348 + 0.549721i \(0.185266\pi\)
\(984\) 0.295568 0.909666i 0.00942238 0.0289991i
\(985\) −6.75160 + 20.7793i −0.215124 + 0.662083i
\(986\) −0.847437 + 0.615699i −0.0269879 + 0.0196078i
\(987\) −37.1778 27.0112i −1.18338 0.859777i
\(988\) 4.27791 + 13.1661i 0.136098 + 0.418868i
\(989\) 1.43426 0.0456067
\(990\) 0 0
\(991\) −55.5911 −1.76591 −0.882955 0.469457i \(-0.844450\pi\)
−0.882955 + 0.469457i \(0.844450\pi\)
\(992\) 0.617387 + 1.90012i 0.0196021 + 0.0603289i
\(993\) 22.0356 + 16.0098i 0.699280 + 0.508057i
\(994\) 3.67282 2.66846i 0.116495 0.0846383i
\(995\) −1.40665 + 4.32921i −0.0445937 + 0.137245i
\(996\) −4.04411 + 12.4465i −0.128143 + 0.394383i
\(997\) −8.73022 + 6.34287i −0.276489 + 0.200881i −0.717384 0.696678i \(-0.754661\pi\)
0.440896 + 0.897558i \(0.354661\pi\)
\(998\) −0.847907 0.616041i −0.0268400 0.0195004i
\(999\) −2.59708 7.99299i −0.0821679 0.252887i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.g.j.511.1 8
11.2 odd 10 605.2.g.g.251.2 8
11.3 even 5 605.2.a.l.1.2 4
11.4 even 5 55.2.g.a.36.2 yes 8
11.5 even 5 55.2.g.a.26.2 8
11.6 odd 10 605.2.g.n.81.1 8
11.7 odd 10 605.2.g.n.366.1 8
11.8 odd 10 605.2.a.i.1.3 4
11.9 even 5 inner 605.2.g.j.251.1 8
11.10 odd 2 605.2.g.g.511.2 8
33.5 odd 10 495.2.n.f.136.1 8
33.8 even 10 5445.2.a.bu.1.2 4
33.14 odd 10 5445.2.a.bg.1.3 4
33.26 odd 10 495.2.n.f.91.1 8
44.3 odd 10 9680.2.a.cs.1.1 4
44.15 odd 10 880.2.bo.e.641.1 8
44.19 even 10 9680.2.a.cv.1.1 4
44.27 odd 10 880.2.bo.e.81.1 8
55.4 even 10 275.2.h.b.201.1 8
55.14 even 10 3025.2.a.v.1.3 4
55.19 odd 10 3025.2.a.be.1.2 4
55.27 odd 20 275.2.z.b.224.3 16
55.37 odd 20 275.2.z.b.124.2 16
55.38 odd 20 275.2.z.b.224.2 16
55.48 odd 20 275.2.z.b.124.3 16
55.49 even 10 275.2.h.b.26.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.g.a.26.2 8 11.5 even 5
55.2.g.a.36.2 yes 8 11.4 even 5
275.2.h.b.26.1 8 55.49 even 10
275.2.h.b.201.1 8 55.4 even 10
275.2.z.b.124.2 16 55.37 odd 20
275.2.z.b.124.3 16 55.48 odd 20
275.2.z.b.224.2 16 55.38 odd 20
275.2.z.b.224.3 16 55.27 odd 20
495.2.n.f.91.1 8 33.26 odd 10
495.2.n.f.136.1 8 33.5 odd 10
605.2.a.i.1.3 4 11.8 odd 10
605.2.a.l.1.2 4 11.3 even 5
605.2.g.g.251.2 8 11.2 odd 10
605.2.g.g.511.2 8 11.10 odd 2
605.2.g.j.251.1 8 11.9 even 5 inner
605.2.g.j.511.1 8 1.1 even 1 trivial
605.2.g.n.81.1 8 11.6 odd 10
605.2.g.n.366.1 8 11.7 odd 10
880.2.bo.e.81.1 8 44.27 odd 10
880.2.bo.e.641.1 8 44.15 odd 10
3025.2.a.v.1.3 4 55.14 even 10
3025.2.a.be.1.2 4 55.19 odd 10
5445.2.a.bg.1.3 4 33.14 odd 10
5445.2.a.bu.1.2 4 33.8 even 10
9680.2.a.cs.1.1 4 44.3 odd 10
9680.2.a.cv.1.1 4 44.19 even 10