Properties

Label 605.2.g.i
Level $605$
Weight $2$
Character orbit 605.g
Analytic conductor $4.831$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.324000000.3
Defining polynomial: \(x^{8} + 3 x^{6} + 9 x^{4} + 27 x^{2} + 81\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{7} q^{2} -\beta_{6} q^{3} + \beta_{4} q^{4} + ( 1 + \beta_{2} + \beta_{4} + \beta_{6} ) q^{5} -\beta_{3} q^{6} + ( \beta_{1} + \beta_{3} + \beta_{5} + \beta_{7} ) q^{7} -\beta_{1} q^{8} -2 \beta_{2} q^{9} +O(q^{10})\) \( q + \beta_{7} q^{2} -\beta_{6} q^{3} + \beta_{4} q^{4} + ( 1 + \beta_{2} + \beta_{4} + \beta_{6} ) q^{5} -\beta_{3} q^{6} + ( \beta_{1} + \beta_{3} + \beta_{5} + \beta_{7} ) q^{7} -\beta_{1} q^{8} -2 \beta_{2} q^{9} -\beta_{5} q^{10} - q^{12} + 2 \beta_{7} q^{13} -3 \beta_{6} q^{14} + \beta_{4} q^{15} + ( 5 + 5 \beta_{2} + 5 \beta_{4} + 5 \beta_{6} ) q^{16} -4 \beta_{3} q^{17} + ( 2 \beta_{1} + 2 \beta_{3} + 2 \beta_{5} + 2 \beta_{7} ) q^{18} -2 \beta_{1} q^{19} -\beta_{2} q^{20} + \beta_{5} q^{21} + \beta_{7} q^{24} + \beta_{6} q^{25} + 6 \beta_{4} q^{26} + ( -5 - 5 \beta_{2} - 5 \beta_{4} - 5 \beta_{6} ) q^{27} -\beta_{3} q^{28} + \beta_{1} q^{30} -8 \beta_{2} q^{31} -3 \beta_{5} q^{32} -12 q^{34} + \beta_{7} q^{35} -2 \beta_{6} q^{36} -8 \beta_{4} q^{37} + ( 6 + 6 \beta_{2} + 6 \beta_{4} + 6 \beta_{6} ) q^{38} -2 \beta_{3} q^{39} + ( -\beta_{1} - \beta_{3} - \beta_{5} - \beta_{7} ) q^{40} + 7 \beta_{1} q^{41} + 3 \beta_{2} q^{42} + 5 \beta_{5} q^{43} + 2 q^{45} + 9 \beta_{6} q^{47} + 5 \beta_{4} q^{48} + ( 4 + 4 \beta_{2} + 4 \beta_{4} + 4 \beta_{6} ) q^{49} + \beta_{3} q^{50} + ( -4 \beta_{1} - 4 \beta_{3} - 4 \beta_{5} - 4 \beta_{7} ) q^{51} + 2 \beta_{1} q^{52} + 6 \beta_{2} q^{53} + 5 \beta_{5} q^{54} + 3 q^{56} + 2 \beta_{7} q^{57} -12 \beta_{4} q^{59} + ( -1 - \beta_{2} - \beta_{4} - \beta_{6} ) q^{60} + 5 \beta_{3} q^{61} + ( 8 \beta_{1} + 8 \beta_{3} + 8 \beta_{5} + 8 \beta_{7} ) q^{62} + 2 \beta_{1} q^{63} + \beta_{2} q^{64} -2 \beta_{5} q^{65} -5 q^{67} -4 \beta_{7} q^{68} + 3 \beta_{4} q^{70} + ( 12 + 12 \beta_{2} + 12 \beta_{4} + 12 \beta_{6} ) q^{71} + 2 \beta_{3} q^{72} -8 \beta_{1} q^{74} -\beta_{2} q^{75} -2 \beta_{5} q^{76} -6 q^{78} -6 \beta_{7} q^{79} + 5 \beta_{6} q^{80} + \beta_{4} q^{81} + ( -21 - 21 \beta_{2} - 21 \beta_{4} - 21 \beta_{6} ) q^{82} + 2 \beta_{3} q^{83} + ( -\beta_{1} - \beta_{3} - \beta_{5} - \beta_{7} ) q^{84} + 4 \beta_{1} q^{85} + 15 \beta_{2} q^{86} + 3 q^{89} + 2 \beta_{7} q^{90} -6 \beta_{6} q^{91} + ( -8 - 8 \beta_{2} - 8 \beta_{4} - 8 \beta_{6} ) q^{93} + 9 \beta_{3} q^{94} + ( -2 \beta_{1} - 2 \beta_{3} - 2 \beta_{5} - 2 \beta_{7} ) q^{95} + 3 \beta_{1} q^{96} -10 \beta_{2} q^{97} -4 \beta_{5} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 2q^{3} - 2q^{4} + 2q^{5} + 4q^{9} + O(q^{10}) \) \( 8q + 2q^{3} - 2q^{4} + 2q^{5} + 4q^{9} - 8q^{12} + 6q^{14} - 2q^{15} + 10q^{16} + 2q^{20} - 2q^{25} - 12q^{26} - 10q^{27} + 16q^{31} - 96q^{34} + 4q^{36} + 16q^{37} + 12q^{38} - 6q^{42} + 16q^{45} - 18q^{47} - 10q^{48} + 8q^{49} - 12q^{53} + 24q^{56} + 24q^{59} - 2q^{60} - 2q^{64} - 40q^{67} - 6q^{70} + 24q^{71} + 2q^{75} - 48q^{78} - 10q^{80} - 2q^{81} - 42q^{82} - 30q^{86} + 24q^{89} + 12q^{91} - 16q^{93} + 20q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} + 3 x^{6} + 9 x^{4} + 27 x^{2} + 81\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} \)\(/3\)
\(\beta_{3}\)\(=\)\( \nu^{3} \)\(/3\)
\(\beta_{4}\)\(=\)\( \nu^{4} \)\(/9\)
\(\beta_{5}\)\(=\)\( \nu^{5} \)\(/9\)
\(\beta_{6}\)\(=\)\( \nu^{6} \)\(/27\)
\(\beta_{7}\)\(=\)\( \nu^{7} \)\(/27\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(3 \beta_{2}\)
\(\nu^{3}\)\(=\)\(3 \beta_{3}\)
\(\nu^{4}\)\(=\)\(9 \beta_{4}\)
\(\nu^{5}\)\(=\)\(9 \beta_{5}\)
\(\nu^{6}\)\(=\)\(27 \beta_{6}\)
\(\nu^{7}\)\(=\)\(27 \beta_{7}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(1\) \(\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
81.1
0.535233 1.64728i
−0.535233 + 1.64728i
1.40126 1.01807i
−1.40126 + 1.01807i
0.535233 + 1.64728i
−0.535233 1.64728i
1.40126 + 1.01807i
−1.40126 1.01807i
−1.40126 1.01807i −0.309017 + 0.951057i 0.309017 + 0.951057i 0.809017 0.587785i 1.40126 1.01807i −0.535233 1.64728i −0.535233 + 1.64728i 1.61803 + 1.17557i −1.73205
81.2 1.40126 + 1.01807i −0.309017 + 0.951057i 0.309017 + 0.951057i 0.809017 0.587785i −1.40126 + 1.01807i 0.535233 + 1.64728i 0.535233 1.64728i 1.61803 + 1.17557i 1.73205
251.1 −0.535233 + 1.64728i 0.809017 0.587785i −0.809017 0.587785i −0.309017 0.951057i 0.535233 + 1.64728i −1.40126 1.01807i −1.40126 + 1.01807i −0.618034 + 1.90211i 1.73205
251.2 0.535233 1.64728i 0.809017 0.587785i −0.809017 0.587785i −0.309017 0.951057i −0.535233 1.64728i 1.40126 + 1.01807i 1.40126 1.01807i −0.618034 + 1.90211i −1.73205
366.1 −1.40126 + 1.01807i −0.309017 0.951057i 0.309017 0.951057i 0.809017 + 0.587785i 1.40126 + 1.01807i −0.535233 + 1.64728i −0.535233 1.64728i 1.61803 1.17557i −1.73205
366.2 1.40126 1.01807i −0.309017 0.951057i 0.309017 0.951057i 0.809017 + 0.587785i −1.40126 1.01807i 0.535233 1.64728i 0.535233 + 1.64728i 1.61803 1.17557i 1.73205
511.1 −0.535233 1.64728i 0.809017 + 0.587785i −0.809017 + 0.587785i −0.309017 + 0.951057i 0.535233 1.64728i −1.40126 + 1.01807i −1.40126 1.01807i −0.618034 1.90211i 1.73205
511.2 0.535233 + 1.64728i 0.809017 + 0.587785i −0.809017 + 0.587785i −0.309017 + 0.951057i −0.535233 + 1.64728i 1.40126 1.01807i 1.40126 + 1.01807i −0.618034 1.90211i −1.73205
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 511.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner
11.c even 5 3 inner
11.d odd 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 605.2.g.i 8
11.b odd 2 1 inner 605.2.g.i 8
11.c even 5 1 605.2.a.e 2
11.c even 5 3 inner 605.2.g.i 8
11.d odd 10 1 605.2.a.e 2
11.d odd 10 3 inner 605.2.g.i 8
33.f even 10 1 5445.2.a.u 2
33.h odd 10 1 5445.2.a.u 2
44.g even 10 1 9680.2.a.bu 2
44.h odd 10 1 9680.2.a.bu 2
55.h odd 10 1 3025.2.a.l 2
55.j even 10 1 3025.2.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
605.2.a.e 2 11.c even 5 1
605.2.a.e 2 11.d odd 10 1
605.2.g.i 8 1.a even 1 1 trivial
605.2.g.i 8 11.b odd 2 1 inner
605.2.g.i 8 11.c even 5 3 inner
605.2.g.i 8 11.d odd 10 3 inner
3025.2.a.l 2 55.h odd 10 1
3025.2.a.l 2 55.j even 10 1
5445.2.a.u 2 33.f even 10 1
5445.2.a.u 2 33.h odd 10 1
9680.2.a.bu 2 44.g even 10 1
9680.2.a.bu 2 44.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(605, [\chi])\):

\( T_{2}^{8} + 3 T_{2}^{6} + 9 T_{2}^{4} + 27 T_{2}^{2} + 81 \)
\( T_{3}^{4} - T_{3}^{3} + T_{3}^{2} - T_{3} + 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 81 + 27 T^{2} + 9 T^{4} + 3 T^{6} + T^{8} \)
$3$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
$5$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
$7$ \( 81 + 27 T^{2} + 9 T^{4} + 3 T^{6} + T^{8} \)
$11$ \( T^{8} \)
$13$ \( 20736 + 1728 T^{2} + 144 T^{4} + 12 T^{6} + T^{8} \)
$17$ \( 5308416 + 110592 T^{2} + 2304 T^{4} + 48 T^{6} + T^{8} \)
$19$ \( 20736 + 1728 T^{2} + 144 T^{4} + 12 T^{6} + T^{8} \)
$23$ \( T^{8} \)
$29$ \( T^{8} \)
$31$ \( ( 4096 - 512 T + 64 T^{2} - 8 T^{3} + T^{4} )^{2} \)
$37$ \( ( 4096 - 512 T + 64 T^{2} - 8 T^{3} + T^{4} )^{2} \)
$41$ \( 466948881 + 3176523 T^{2} + 21609 T^{4} + 147 T^{6} + T^{8} \)
$43$ \( ( -75 + T^{2} )^{4} \)
$47$ \( ( 6561 + 729 T + 81 T^{2} + 9 T^{3} + T^{4} )^{2} \)
$53$ \( ( 1296 + 216 T + 36 T^{2} + 6 T^{3} + T^{4} )^{2} \)
$59$ \( ( 20736 - 1728 T + 144 T^{2} - 12 T^{3} + T^{4} )^{2} \)
$61$ \( 31640625 + 421875 T^{2} + 5625 T^{4} + 75 T^{6} + T^{8} \)
$67$ \( ( 5 + T )^{8} \)
$71$ \( ( 20736 - 1728 T + 144 T^{2} - 12 T^{3} + T^{4} )^{2} \)
$73$ \( T^{8} \)
$79$ \( 136048896 + 1259712 T^{2} + 11664 T^{4} + 108 T^{6} + T^{8} \)
$83$ \( 20736 + 1728 T^{2} + 144 T^{4} + 12 T^{6} + T^{8} \)
$89$ \( ( -3 + T )^{8} \)
$97$ \( ( 10000 - 1000 T + 100 T^{2} - 10 T^{3} + T^{4} )^{2} \)
show more
show less