Properties

Label 605.2.g.e.511.1
Level $605$
Weight $2$
Character 605.511
Analytic conductor $4.831$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.13140625.1
Defining polynomial: \(x^{8} - 3 x^{7} + 5 x^{6} - 3 x^{5} + 4 x^{4} + 3 x^{3} + 5 x^{2} + 3 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 511.1
Root \(0.418926 - 1.28932i\) of defining polynomial
Character \(\chi\) \(=\) 605.511
Dual form 605.2.g.e.251.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.418926 - 1.28932i) q^{2} +(-0.465584 - 0.338266i) q^{3} +(0.131180 - 0.0953077i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(-0.241089 + 0.741996i) q^{6} +(-2.95244 + 2.14507i) q^{7} +(-2.37136 - 1.72290i) q^{8} +(-0.824707 - 2.53819i) q^{9} +O(q^{10})\) \(q+(-0.418926 - 1.28932i) q^{2} +(-0.465584 - 0.338266i) q^{3} +(0.131180 - 0.0953077i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(-0.241089 + 0.741996i) q^{6} +(-2.95244 + 2.14507i) q^{7} +(-2.37136 - 1.72290i) q^{8} +(-0.824707 - 2.53819i) q^{9} +1.35567 q^{10} -0.0933146 q^{12} +(0.874813 + 2.69240i) q^{13} +(4.00254 + 2.90802i) q^{14} +(0.465584 - 0.338266i) q^{15} +(-1.12773 + 3.47080i) q^{16} +(-1.14088 + 3.51126i) q^{17} +(-2.92705 + 2.12663i) q^{18} +(-0.0769572 - 0.0559127i) q^{19} +(0.0501062 + 0.154211i) q^{20} +2.10021 q^{21} +1.16215 q^{23} +(0.521270 + 1.60431i) q^{24} +(-0.809017 - 0.587785i) q^{25} +(3.10489 - 2.25583i) q^{26} +(-1.00812 + 3.10269i) q^{27} +(-0.182858 + 0.562780i) q^{28} +(-5.46401 + 3.96984i) q^{29} +(-0.631180 - 0.458579i) q^{30} +(2.09463 + 6.44661i) q^{31} -0.914918 q^{32} +5.00509 q^{34} +(-1.12773 - 3.47080i) q^{35} +(-0.350094 - 0.254358i) q^{36} +(-7.96056 + 5.78369i) q^{37} +(-0.0398501 + 0.122646i) q^{38} +(0.503449 - 1.54946i) q^{39} +(2.37136 - 1.72290i) q^{40} +(-6.72958 - 4.88933i) q^{41} +(-0.879834 - 2.70785i) q^{42} +2.96862 q^{43} +2.66881 q^{45} +(-0.486854 - 1.49838i) q^{46} +(1.79999 + 1.30777i) q^{47} +(1.69911 - 1.23447i) q^{48} +(1.95244 - 6.00899i) q^{49} +(-0.418926 + 1.28932i) q^{50} +(1.71891 - 1.24886i) q^{51} +(0.371364 + 0.269812i) q^{52} +(0.925174 + 2.84739i) q^{53} +4.42270 q^{54} +10.6970 q^{56} +(0.0169166 + 0.0520641i) q^{57} +(7.40742 + 5.38181i) q^{58} +(6.88361 - 5.00123i) q^{59} +(0.0288358 - 0.0887475i) q^{60} +(2.62058 - 8.06531i) q^{61} +(7.43427 - 5.40131i) q^{62} +(7.87949 + 5.72478i) q^{63} +(2.63875 + 8.12122i) q^{64} -2.83095 q^{65} -13.4153 q^{67} +(0.184990 + 0.569341i) q^{68} +(-0.541077 - 0.393115i) q^{69} +(-4.00254 + 2.90802i) q^{70} +(2.56580 - 7.89671i) q^{71} +(-2.41735 + 7.43985i) q^{72} +(-1.06793 + 0.775895i) q^{73} +(10.7919 + 7.84080i) q^{74} +(0.177837 + 0.547326i) q^{75} -0.0154241 q^{76} -2.20866 q^{78} +(4.28486 + 13.1874i) q^{79} +(-2.95244 - 2.14507i) q^{80} +(-4.95843 + 3.60251i) q^{81} +(-3.48472 + 10.7249i) q^{82} +(3.28932 - 10.1235i) q^{83} +(0.275506 - 0.200167i) q^{84} +(-2.98685 - 2.17008i) q^{85} +(-1.24363 - 3.82751i) q^{86} +3.88682 q^{87} -12.1612 q^{89} +(-1.11803 - 3.44095i) q^{90} +(-8.35822 - 6.07260i) q^{91} +(0.152450 - 0.110762i) q^{92} +(1.20545 - 3.70998i) q^{93} +(0.932072 - 2.86862i) q^{94} +(0.0769572 - 0.0559127i) q^{95} +(0.425971 + 0.309486i) q^{96} +(-1.33845 - 4.11934i) q^{97} -8.56545 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 3q^{2} + 5q^{3} + 3q^{4} + 2q^{5} - 8q^{6} - 4q^{7} + q^{8} + 5q^{9} + O(q^{10}) \) \( 8q - 3q^{2} + 5q^{3} + 3q^{4} + 2q^{5} - 8q^{6} - 4q^{7} + q^{8} + 5q^{9} - 2q^{10} + 16q^{12} - 3q^{13} + 14q^{14} - 5q^{15} - q^{16} - 12q^{17} - 10q^{18} - 5q^{19} + 2q^{20} + 20q^{21} + 10q^{23} + 2q^{24} - 2q^{25} + 5q^{26} + 5q^{27} - 19q^{28} - 21q^{29} - 7q^{30} + 15q^{31} - 16q^{32} + 4q^{34} - q^{35} + 15q^{36} - 31q^{37} - 20q^{38} + 14q^{39} - q^{40} - 3q^{41} - 21q^{42} + 38q^{43} + 7q^{46} - 5q^{47} + 5q^{48} - 4q^{49} - 3q^{50} - 6q^{51} - 17q^{52} - 2q^{53} - 16q^{54} + 22q^{56} - 40q^{57} + 2q^{58} + 18q^{59} + 4q^{60} - 6q^{61} + 5q^{62} + 30q^{63} + 29q^{64} - 2q^{65} - 38q^{67} + 14q^{68} + 9q^{69} - 14q^{70} + 15q^{71} - 5q^{72} + 2q^{73} + 20q^{74} - 5q^{75} - 16q^{78} + 3q^{79} - 4q^{80} - 12q^{81} - 22q^{82} + 38q^{83} + 17q^{84} - 13q^{85} + 2q^{86} - 38q^{87} - 16q^{89} - 36q^{91} + q^{92} + 40q^{93} + 18q^{94} + 5q^{95} + 17q^{96} - 56q^{97} - 16q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.418926 1.28932i −0.296226 0.911689i −0.982807 0.184636i \(-0.940889\pi\)
0.686581 0.727053i \(-0.259111\pi\)
\(3\) −0.465584 0.338266i −0.268805 0.195298i 0.445215 0.895424i \(-0.353127\pi\)
−0.714020 + 0.700126i \(0.753127\pi\)
\(4\) 0.131180 0.0953077i 0.0655899 0.0476539i
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) −0.241089 + 0.741996i −0.0984243 + 0.302919i
\(7\) −2.95244 + 2.14507i −1.11592 + 0.810761i −0.983585 0.180445i \(-0.942246\pi\)
−0.132331 + 0.991206i \(0.542246\pi\)
\(8\) −2.37136 1.72290i −0.838404 0.609136i
\(9\) −0.824707 2.53819i −0.274902 0.846062i
\(10\) 1.35567 0.428702
\(11\) 0 0
\(12\) −0.0933146 −0.0269376
\(13\) 0.874813 + 2.69240i 0.242630 + 0.746737i 0.996017 + 0.0891604i \(0.0284184\pi\)
−0.753388 + 0.657577i \(0.771582\pi\)
\(14\) 4.00254 + 2.90802i 1.06972 + 0.777201i
\(15\) 0.465584 0.338266i 0.120213 0.0873400i
\(16\) −1.12773 + 3.47080i −0.281933 + 0.867700i
\(17\) −1.14088 + 3.51126i −0.276703 + 0.851605i 0.712060 + 0.702118i \(0.247762\pi\)
−0.988764 + 0.149487i \(0.952238\pi\)
\(18\) −2.92705 + 2.12663i −0.689913 + 0.501251i
\(19\) −0.0769572 0.0559127i −0.0176552 0.0128272i 0.578923 0.815382i \(-0.303473\pi\)
−0.596578 + 0.802555i \(0.703473\pi\)
\(20\) 0.0501062 + 0.154211i 0.0112041 + 0.0344827i
\(21\) 2.10021 0.458304
\(22\) 0 0
\(23\) 1.16215 0.242324 0.121162 0.992633i \(-0.461338\pi\)
0.121162 + 0.992633i \(0.461338\pi\)
\(24\) 0.521270 + 1.60431i 0.106404 + 0.327477i
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 3.10489 2.25583i 0.608919 0.442405i
\(27\) −1.00812 + 3.10269i −0.194014 + 0.597113i
\(28\) −0.182858 + 0.562780i −0.0345570 + 0.106355i
\(29\) −5.46401 + 3.96984i −1.01464 + 0.737180i −0.965178 0.261596i \(-0.915751\pi\)
−0.0494639 + 0.998776i \(0.515751\pi\)
\(30\) −0.631180 0.458579i −0.115237 0.0837247i
\(31\) 2.09463 + 6.44661i 0.376207 + 1.15785i 0.942661 + 0.333753i \(0.108315\pi\)
−0.566454 + 0.824094i \(0.691685\pi\)
\(32\) −0.914918 −0.161736
\(33\) 0 0
\(34\) 5.00509 0.858366
\(35\) −1.12773 3.47080i −0.190621 0.586672i
\(36\) −0.350094 0.254358i −0.0583490 0.0423930i
\(37\) −7.96056 + 5.78369i −1.30871 + 0.950832i −1.00000 0.000324402i \(-0.999897\pi\)
−0.308708 + 0.951157i \(0.599897\pi\)
\(38\) −0.0398501 + 0.122646i −0.00646454 + 0.0198958i
\(39\) 0.503449 1.54946i 0.0806163 0.248112i
\(40\) 2.37136 1.72290i 0.374946 0.272414i
\(41\) −6.72958 4.88933i −1.05098 0.763585i −0.0785849 0.996907i \(-0.525040\pi\)
−0.972399 + 0.233323i \(0.925040\pi\)
\(42\) −0.879834 2.70785i −0.135761 0.417831i
\(43\) 2.96862 0.452710 0.226355 0.974045i \(-0.427319\pi\)
0.226355 + 0.974045i \(0.427319\pi\)
\(44\) 0 0
\(45\) 2.66881 0.397842
\(46\) −0.486854 1.49838i −0.0717827 0.220925i
\(47\) 1.79999 + 1.30777i 0.262555 + 0.190757i 0.711273 0.702916i \(-0.248119\pi\)
−0.448718 + 0.893674i \(0.648119\pi\)
\(48\) 1.69911 1.23447i 0.245245 0.178181i
\(49\) 1.95244 6.00899i 0.278920 0.858427i
\(50\) −0.418926 + 1.28932i −0.0592451 + 0.182338i
\(51\) 1.71891 1.24886i 0.240696 0.174876i
\(52\) 0.371364 + 0.269812i 0.0514990 + 0.0374162i
\(53\) 0.925174 + 2.84739i 0.127082 + 0.391120i 0.994275 0.106854i \(-0.0340777\pi\)
−0.867192 + 0.497973i \(0.834078\pi\)
\(54\) 4.42270 0.601853
\(55\) 0 0
\(56\) 10.6970 1.42945
\(57\) 0.0169166 + 0.0520641i 0.00224066 + 0.00689605i
\(58\) 7.40742 + 5.38181i 0.972642 + 0.706666i
\(59\) 6.88361 5.00123i 0.896169 0.651105i −0.0413101 0.999146i \(-0.513153\pi\)
0.937479 + 0.348041i \(0.113153\pi\)
\(60\) 0.0288358 0.0887475i 0.00372269 0.0114572i
\(61\) 2.62058 8.06531i 0.335531 1.03266i −0.630929 0.775840i \(-0.717326\pi\)
0.966460 0.256817i \(-0.0826737\pi\)
\(62\) 7.43427 5.40131i 0.944153 0.685968i
\(63\) 7.87949 + 5.72478i 0.992722 + 0.721255i
\(64\) 2.63875 + 8.12122i 0.329843 + 1.01515i
\(65\) −2.83095 −0.351137
\(66\) 0 0
\(67\) −13.4153 −1.63894 −0.819469 0.573123i \(-0.805732\pi\)
−0.819469 + 0.573123i \(0.805732\pi\)
\(68\) 0.184990 + 0.569341i 0.0224333 + 0.0690427i
\(69\) −0.541077 0.393115i −0.0651380 0.0473255i
\(70\) −4.00254 + 2.90802i −0.478396 + 0.347575i
\(71\) 2.56580 7.89671i 0.304504 0.937167i −0.675358 0.737490i \(-0.736011\pi\)
0.979862 0.199677i \(-0.0639892\pi\)
\(72\) −2.41735 + 7.43985i −0.284888 + 0.876795i
\(73\) −1.06793 + 0.775895i −0.124991 + 0.0908116i −0.648525 0.761194i \(-0.724614\pi\)
0.523533 + 0.852005i \(0.324614\pi\)
\(74\) 10.7919 + 7.84080i 1.25454 + 0.911474i
\(75\) 0.177837 + 0.547326i 0.0205349 + 0.0631998i
\(76\) −0.0154241 −0.00176927
\(77\) 0 0
\(78\) −2.20866 −0.250081
\(79\) 4.28486 + 13.1874i 0.482084 + 1.48370i 0.836160 + 0.548486i \(0.184795\pi\)
−0.354076 + 0.935217i \(0.615205\pi\)
\(80\) −2.95244 2.14507i −0.330093 0.239826i
\(81\) −4.95843 + 3.60251i −0.550937 + 0.400279i
\(82\) −3.48472 + 10.7249i −0.384823 + 1.18436i
\(83\) 3.28932 10.1235i 0.361050 1.11120i −0.591368 0.806402i \(-0.701412\pi\)
0.952418 0.304795i \(-0.0985879\pi\)
\(84\) 0.275506 0.200167i 0.0300601 0.0218400i
\(85\) −2.98685 2.17008i −0.323970 0.235378i
\(86\) −1.24363 3.82751i −0.134104 0.412731i
\(87\) 3.88682 0.416710
\(88\) 0 0
\(89\) −12.1612 −1.28908 −0.644540 0.764570i \(-0.722951\pi\)
−0.644540 + 0.764570i \(0.722951\pi\)
\(90\) −1.11803 3.44095i −0.117851 0.362708i
\(91\) −8.35822 6.07260i −0.876179 0.636582i
\(92\) 0.152450 0.110762i 0.0158940 0.0115477i
\(93\) 1.20545 3.70998i 0.124999 0.384707i
\(94\) 0.932072 2.86862i 0.0961359 0.295876i
\(95\) 0.0769572 0.0559127i 0.00789564 0.00573652i
\(96\) 0.425971 + 0.309486i 0.0434755 + 0.0315868i
\(97\) −1.33845 4.11934i −0.135899 0.418255i 0.859829 0.510581i \(-0.170570\pi\)
−0.995729 + 0.0923261i \(0.970570\pi\)
\(98\) −8.56545 −0.865241
\(99\) 0 0
\(100\) −0.162147 −0.0162147
\(101\) −3.06103 9.42088i −0.304584 0.937413i −0.979832 0.199822i \(-0.935964\pi\)
0.675248 0.737590i \(-0.264036\pi\)
\(102\) −2.33029 1.69305i −0.230733 0.167637i
\(103\) −3.28939 + 2.38988i −0.324113 + 0.235482i −0.737928 0.674879i \(-0.764196\pi\)
0.413816 + 0.910361i \(0.364196\pi\)
\(104\) 2.56422 7.89187i 0.251443 0.773861i
\(105\) −0.649001 + 1.99742i −0.0633360 + 0.194928i
\(106\) 3.28363 2.38570i 0.318934 0.231719i
\(107\) 1.56834 + 1.13947i 0.151617 + 0.110156i 0.661008 0.750379i \(-0.270129\pi\)
−0.509390 + 0.860536i \(0.670129\pi\)
\(108\) 0.163465 + 0.503092i 0.0157294 + 0.0484101i
\(109\) −6.12664 −0.586825 −0.293413 0.955986i \(-0.594791\pi\)
−0.293413 + 0.955986i \(0.594791\pi\)
\(110\) 0 0
\(111\) 5.66273 0.537483
\(112\) −4.11556 12.6664i −0.388884 1.19686i
\(113\) −4.68038 3.40050i −0.440293 0.319892i 0.345458 0.938434i \(-0.387724\pi\)
−0.785751 + 0.618542i \(0.787724\pi\)
\(114\) 0.0600406 0.0436220i 0.00562331 0.00408558i
\(115\) −0.359123 + 1.10527i −0.0334884 + 0.103067i
\(116\) −0.338412 + 1.04153i −0.0314208 + 0.0967032i
\(117\) 6.11235 4.44088i 0.565087 0.410559i
\(118\) −9.33193 6.78004i −0.859073 0.624153i
\(119\) −4.16353 12.8140i −0.381670 1.17466i
\(120\) −1.68687 −0.153989
\(121\) 0 0
\(122\) −11.4966 −1.04085
\(123\) 1.47929 + 4.55278i 0.133383 + 0.410511i
\(124\) 0.889186 + 0.646031i 0.0798512 + 0.0580153i
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 4.08017 12.5575i 0.363490 1.11871i
\(127\) −0.753330 + 2.31851i −0.0668472 + 0.205735i −0.978901 0.204337i \(-0.934496\pi\)
0.912053 + 0.410071i \(0.134496\pi\)
\(128\) 7.88507 5.72884i 0.696948 0.506363i
\(129\) −1.38214 1.00418i −0.121691 0.0884135i
\(130\) 1.18596 + 3.65001i 0.104016 + 0.320127i
\(131\) −7.04156 −0.615224 −0.307612 0.951512i \(-0.599530\pi\)
−0.307612 + 0.951512i \(0.599530\pi\)
\(132\) 0 0
\(133\) 0.347148 0.0301016
\(134\) 5.62002 + 17.2966i 0.485496 + 1.49420i
\(135\) −2.63930 1.91757i −0.227155 0.165038i
\(136\) 8.75497 6.36086i 0.750732 0.545439i
\(137\) −2.95818 + 9.10433i −0.252734 + 0.777835i 0.741534 + 0.670916i \(0.234099\pi\)
−0.994268 + 0.106920i \(0.965901\pi\)
\(138\) −0.280181 + 0.862309i −0.0238506 + 0.0734046i
\(139\) 0.417050 0.303004i 0.0353737 0.0257005i −0.569958 0.821674i \(-0.693041\pi\)
0.605332 + 0.795973i \(0.293041\pi\)
\(140\) −0.478730 0.347817i −0.0404600 0.0293959i
\(141\) −0.395671 1.21775i −0.0333215 0.102553i
\(142\) −11.2563 −0.944607
\(143\) 0 0
\(144\) 9.73958 0.811632
\(145\) −2.08707 6.42333i −0.173321 0.533429i
\(146\) 1.44776 + 1.05186i 0.119818 + 0.0870526i
\(147\) −2.94166 + 2.13724i −0.242624 + 0.176277i
\(148\) −0.493035 + 1.51741i −0.0405272 + 0.124730i
\(149\) 2.52153 7.76046i 0.206571 0.635761i −0.793074 0.609126i \(-0.791521\pi\)
0.999645 0.0266359i \(-0.00847946\pi\)
\(150\) 0.631180 0.458579i 0.0515356 0.0374428i
\(151\) 1.56968 + 1.14044i 0.127738 + 0.0928073i 0.649820 0.760088i \(-0.274844\pi\)
−0.522082 + 0.852896i \(0.674844\pi\)
\(152\) 0.0861618 + 0.265179i 0.00698864 + 0.0215088i
\(153\) 9.85312 0.796577
\(154\) 0 0
\(155\) −6.77837 −0.544452
\(156\) −0.0816328 0.251240i −0.00653586 0.0201153i
\(157\) −17.2114 12.5048i −1.37362 0.997994i −0.997445 0.0714455i \(-0.977239\pi\)
−0.376176 0.926548i \(-0.622761\pi\)
\(158\) 15.2078 11.0491i 1.20987 0.879021i
\(159\) 0.532431 1.63866i 0.0422246 0.129954i
\(160\) 0.282725 0.870139i 0.0223514 0.0687905i
\(161\) −3.43117 + 2.49289i −0.270414 + 0.196467i
\(162\) 6.72202 + 4.88383i 0.528132 + 0.383710i
\(163\) −4.93839 15.1988i −0.386804 1.19046i −0.935163 0.354218i \(-0.884747\pi\)
0.548359 0.836243i \(-0.315253\pi\)
\(164\) −1.34878 −0.105322
\(165\) 0 0
\(166\) −14.4304 −1.12002
\(167\) −5.47239 16.8423i −0.423466 1.30330i −0.904455 0.426569i \(-0.859722\pi\)
0.480989 0.876727i \(-0.340278\pi\)
\(168\) −4.98037 3.61845i −0.384244 0.279169i
\(169\) 4.03351 2.93052i 0.310270 0.225424i
\(170\) −1.54666 + 4.76012i −0.118623 + 0.365085i
\(171\) −0.0784497 + 0.241443i −0.00599920 + 0.0184636i
\(172\) 0.389423 0.282932i 0.0296932 0.0215734i
\(173\) 12.8516 + 9.33725i 0.977091 + 0.709898i 0.957057 0.289901i \(-0.0936224\pi\)
0.0200344 + 0.999799i \(0.493622\pi\)
\(174\) −1.62829 5.01136i −0.123440 0.379910i
\(175\) 3.64941 0.275870
\(176\) 0 0
\(177\) −4.89664 −0.368054
\(178\) 5.09463 + 15.6797i 0.381859 + 1.17524i
\(179\) 13.6570 + 9.92242i 1.02078 + 0.741637i 0.966442 0.256886i \(-0.0826965\pi\)
0.0543338 + 0.998523i \(0.482696\pi\)
\(180\) 0.350094 0.254358i 0.0260945 0.0189587i
\(181\) −7.44341 + 22.9085i −0.553264 + 1.70277i 0.147220 + 0.989104i \(0.452968\pi\)
−0.700484 + 0.713668i \(0.747032\pi\)
\(182\) −4.32807 + 13.3204i −0.320818 + 0.987375i
\(183\) −3.94832 + 2.86862i −0.291868 + 0.212055i
\(184\) −2.75587 2.00226i −0.203166 0.147609i
\(185\) −3.04066 9.35820i −0.223554 0.688029i
\(186\) −5.28836 −0.387761
\(187\) 0 0
\(188\) 0.360762 0.0263113
\(189\) −3.67906 11.3230i −0.267613 0.823627i
\(190\) −0.104329 0.0757994i −0.00756881 0.00549906i
\(191\) −4.35477 + 3.16393i −0.315100 + 0.228934i −0.734082 0.679061i \(-0.762387\pi\)
0.418982 + 0.907995i \(0.362387\pi\)
\(192\) 1.51858 4.67371i 0.109594 0.337296i
\(193\) −5.65008 + 17.3892i −0.406702 + 1.25170i 0.512764 + 0.858530i \(0.328622\pi\)
−0.919466 + 0.393170i \(0.871378\pi\)
\(194\) −4.75044 + 3.45140i −0.341062 + 0.247796i
\(195\) 1.31805 + 0.957617i 0.0943873 + 0.0685764i
\(196\) −0.316582 0.974340i −0.0226130 0.0695957i
\(197\) −2.64566 −0.188496 −0.0942478 0.995549i \(-0.530045\pi\)
−0.0942478 + 0.995549i \(0.530045\pi\)
\(198\) 0 0
\(199\) 6.52800 0.462757 0.231379 0.972864i \(-0.425676\pi\)
0.231379 + 0.972864i \(0.425676\pi\)
\(200\) 0.905781 + 2.78771i 0.0640484 + 0.197121i
\(201\) 6.24594 + 4.53794i 0.440555 + 0.320082i
\(202\) −10.8642 + 7.89331i −0.764403 + 0.555371i
\(203\) 7.61657 23.4414i 0.534578 1.64526i
\(204\) 0.106460 0.327652i 0.00745372 0.0229402i
\(205\) 6.72958 4.88933i 0.470014 0.341485i
\(206\) 4.45934 + 3.23990i 0.310697 + 0.225734i
\(207\) −0.958431 2.94975i −0.0666155 0.205022i
\(208\) −10.3313 −0.716349
\(209\) 0 0
\(210\) 2.84720 0.196476
\(211\) 8.48183 + 26.1044i 0.583913 + 1.79710i 0.603591 + 0.797294i \(0.293736\pi\)
−0.0196771 + 0.999806i \(0.506264\pi\)
\(212\) 0.392743 + 0.285344i 0.0269737 + 0.0195975i
\(213\) −3.86578 + 2.80866i −0.264879 + 0.192446i
\(214\) 0.812120 2.49945i 0.0555154 0.170859i
\(215\) −0.917354 + 2.82333i −0.0625630 + 0.192549i
\(216\) 7.73624 5.62071i 0.526385 0.382441i
\(217\) −20.0127 14.5401i −1.35855 0.987046i
\(218\) 2.56661 + 7.89921i 0.173833 + 0.535002i
\(219\) 0.759669 0.0513337
\(220\) 0 0
\(221\) −10.4518 −0.703061
\(222\) −2.37227 7.30109i −0.159216 0.490017i
\(223\) 4.11137 + 2.98709i 0.275318 + 0.200030i 0.716873 0.697204i \(-0.245573\pi\)
−0.441555 + 0.897234i \(0.645573\pi\)
\(224\) 2.70124 1.96257i 0.180484 0.131129i
\(225\) −0.824707 + 2.53819i −0.0549805 + 0.169212i
\(226\) −2.42360 + 7.45908i −0.161216 + 0.496171i
\(227\) 3.02556 2.19820i 0.200814 0.145900i −0.482834 0.875712i \(-0.660393\pi\)
0.683648 + 0.729812i \(0.260393\pi\)
\(228\) 0.00718123 + 0.00521747i 0.000475589 + 0.000345535i
\(229\) 8.32001 + 25.6064i 0.549802 + 1.69212i 0.709291 + 0.704916i \(0.249015\pi\)
−0.159490 + 0.987200i \(0.550985\pi\)
\(230\) 1.57549 0.103885
\(231\) 0 0
\(232\) 19.7968 1.29972
\(233\) −5.66017 17.4202i −0.370810 1.14124i −0.946262 0.323401i \(-0.895174\pi\)
0.575452 0.817836i \(-0.304826\pi\)
\(234\) −8.28635 6.02039i −0.541696 0.393565i
\(235\) −1.79999 + 1.30777i −0.117418 + 0.0853093i
\(236\) 0.426334 1.31212i 0.0277520 0.0854118i
\(237\) 2.46591 7.58928i 0.160178 0.492977i
\(238\) −14.7772 + 10.7363i −0.957864 + 0.695929i
\(239\) −8.86348 6.43970i −0.573331 0.416549i 0.262983 0.964801i \(-0.415294\pi\)
−0.836314 + 0.548251i \(0.815294\pi\)
\(240\) 0.649001 + 1.99742i 0.0418929 + 0.128933i
\(241\) 9.99444 0.643798 0.321899 0.946774i \(-0.395679\pi\)
0.321899 + 0.946774i \(0.395679\pi\)
\(242\) 0 0
\(243\) 13.3143 0.854110
\(244\) −0.424919 1.30777i −0.0272027 0.0837212i
\(245\) 5.11155 + 3.71376i 0.326565 + 0.237263i
\(246\) 5.25029 3.81456i 0.334747 0.243208i
\(247\) 0.0832160 0.256113i 0.00529491 0.0162961i
\(248\) 6.13972 18.8961i 0.389872 1.19990i
\(249\) −4.95589 + 3.60066i −0.314067 + 0.228183i
\(250\) −1.09676 0.796845i −0.0693654 0.0503969i
\(251\) 2.98431 + 9.18476i 0.188368 + 0.579737i 0.999990 0.00444573i \(-0.00141513\pi\)
−0.811622 + 0.584183i \(0.801415\pi\)
\(252\) 1.57925 0.0994832
\(253\) 0 0
\(254\) 3.30490 0.207368
\(255\) 0.656567 + 2.02070i 0.0411158 + 0.126541i
\(256\) 3.12706 + 2.27194i 0.195441 + 0.141997i
\(257\) −8.43608 + 6.12917i −0.526228 + 0.382327i −0.818945 0.573872i \(-0.805441\pi\)
0.292717 + 0.956199i \(0.405441\pi\)
\(258\) −0.715702 + 2.20271i −0.0445577 + 0.137134i
\(259\) 11.0966 34.1520i 0.689512 2.12210i
\(260\) −0.371364 + 0.269812i −0.0230310 + 0.0167330i
\(261\) 14.5824 + 10.5947i 0.902628 + 0.655797i
\(262\) 2.94989 + 9.07884i 0.182245 + 0.560893i
\(263\) 10.9619 0.675937 0.337968 0.941157i \(-0.390260\pi\)
0.337968 + 0.941157i \(0.390260\pi\)
\(264\) 0 0
\(265\) −2.99393 −0.183915
\(266\) −0.145429 0.447586i −0.00891685 0.0274433i
\(267\) 5.66204 + 4.11371i 0.346511 + 0.251755i
\(268\) −1.75982 + 1.27858i −0.107498 + 0.0781018i
\(269\) −0.0276091 + 0.0849721i −0.00168336 + 0.00518084i −0.951895 0.306425i \(-0.900867\pi\)
0.950211 + 0.311606i \(0.100867\pi\)
\(270\) −1.36669 + 4.20623i −0.0831740 + 0.255983i
\(271\) −10.8405 + 7.87606i −0.658511 + 0.478436i −0.866160 0.499767i \(-0.833419\pi\)
0.207649 + 0.978203i \(0.433419\pi\)
\(272\) −10.9003 7.91951i −0.660926 0.480191i
\(273\) 1.83729 + 5.65461i 0.111198 + 0.342232i
\(274\) 12.9777 0.784010
\(275\) 0 0
\(276\) −0.108445 −0.00652764
\(277\) 1.20723 + 3.71548i 0.0725356 + 0.223241i 0.980751 0.195261i \(-0.0625553\pi\)
−0.908216 + 0.418502i \(0.862555\pi\)
\(278\) −0.565384 0.410775i −0.0339095 0.0246367i
\(279\) 14.6353 10.6331i 0.876190 0.636589i
\(280\) −3.30557 + 10.1735i −0.197545 + 0.607982i
\(281\) 0.475093 1.46218i 0.0283416 0.0872266i −0.935885 0.352305i \(-0.885398\pi\)
0.964227 + 0.265079i \(0.0853979\pi\)
\(282\) −1.40432 + 1.02030i −0.0836258 + 0.0607577i
\(283\) −4.37815 3.18091i −0.260254 0.189086i 0.450005 0.893026i \(-0.351422\pi\)
−0.710259 + 0.703940i \(0.751422\pi\)
\(284\) −0.416037 1.28043i −0.0246872 0.0759795i
\(285\) −0.0547434 −0.00324272
\(286\) 0 0
\(287\) 30.3566 1.79190
\(288\) 0.754539 + 2.32223i 0.0444617 + 0.136839i
\(289\) 2.72596 + 1.98052i 0.160351 + 0.116501i
\(290\) −7.40742 + 5.38181i −0.434979 + 0.316030i
\(291\) −0.770271 + 2.37065i −0.0451541 + 0.138970i
\(292\) −0.0661418 + 0.203564i −0.00387066 + 0.0119127i
\(293\) 9.23613 6.71044i 0.539581 0.392028i −0.284349 0.958721i \(-0.591777\pi\)
0.823929 + 0.566693i \(0.191777\pi\)
\(294\) 3.98793 + 2.89740i 0.232581 + 0.168980i
\(295\) 2.62930 + 8.09216i 0.153084 + 0.471144i
\(296\) 28.8421 1.67641
\(297\) 0 0
\(298\) −11.0621 −0.640808
\(299\) 1.01666 + 3.12896i 0.0587951 + 0.180953i
\(300\) 0.0754931 + 0.0548489i 0.00435860 + 0.00316671i
\(301\) −8.76467 + 6.36790i −0.505187 + 0.367040i
\(302\) 0.812812 2.50158i 0.0467720 0.143950i
\(303\) −1.76160 + 5.42165i −0.101201 + 0.311466i
\(304\) 0.280849 0.204048i 0.0161078 0.0117030i
\(305\) 6.86076 + 4.98464i 0.392846 + 0.285419i
\(306\) −4.12773 12.7038i −0.235967 0.726231i
\(307\) 4.25008 0.242565 0.121282 0.992618i \(-0.461299\pi\)
0.121282 + 0.992618i \(0.461299\pi\)
\(308\) 0 0
\(309\) 2.33990 0.133112
\(310\) 2.83964 + 8.73951i 0.161281 + 0.496371i
\(311\) 13.4454 + 9.76868i 0.762420 + 0.553931i 0.899652 0.436608i \(-0.143820\pi\)
−0.137231 + 0.990539i \(0.543820\pi\)
\(312\) −3.86341 + 2.80694i −0.218723 + 0.158911i
\(313\) −8.21273 + 25.2762i −0.464211 + 1.42869i 0.395761 + 0.918354i \(0.370481\pi\)
−0.859972 + 0.510341i \(0.829519\pi\)
\(314\) −8.91244 + 27.4297i −0.502958 + 1.54795i
\(315\) −7.87949 + 5.72478i −0.443959 + 0.322555i
\(316\) 1.81895 + 1.32155i 0.102324 + 0.0743427i
\(317\) 1.79135 + 5.51322i 0.100612 + 0.309653i 0.988676 0.150068i \(-0.0479493\pi\)
−0.888063 + 0.459721i \(0.847949\pi\)
\(318\) −2.33581 −0.130985
\(319\) 0 0
\(320\) −8.53916 −0.477353
\(321\) −0.344751 1.06103i −0.0192421 0.0592211i
\(322\) 4.65155 + 3.37955i 0.259220 + 0.188335i
\(323\) 0.284122 0.206427i 0.0158090 0.0114859i
\(324\) −0.307099 + 0.945154i −0.0170611 + 0.0525085i
\(325\) 0.874813 2.69240i 0.0485259 0.149347i
\(326\) −17.5273 + 12.7344i −0.970749 + 0.705290i
\(327\) 2.85246 + 2.07244i 0.157742 + 0.114606i
\(328\) 7.53448 + 23.1888i 0.416022 + 1.28038i
\(329\) −8.11961 −0.447648
\(330\) 0 0
\(331\) −12.9230 −0.710311 −0.355155 0.934807i \(-0.615572\pi\)
−0.355155 + 0.934807i \(0.615572\pi\)
\(332\) −0.533354 1.64149i −0.0292716 0.0900887i
\(333\) 21.2452 + 15.4355i 1.16423 + 0.845863i
\(334\) −19.4226 + 14.1114i −1.06276 + 0.772139i
\(335\) 4.14555 12.7587i 0.226496 0.697082i
\(336\) −2.36847 + 7.28942i −0.129211 + 0.397670i
\(337\) 10.8290 7.86773i 0.589893 0.428582i −0.252384 0.967627i \(-0.581215\pi\)
0.842277 + 0.539045i \(0.181215\pi\)
\(338\) −5.46813 3.97283i −0.297427 0.216093i
\(339\) 1.02884 + 3.16643i 0.0558787 + 0.171977i
\(340\) −0.598640 −0.0324658
\(341\) 0 0
\(342\) 0.344163 0.0186102
\(343\) −0.768863 2.36632i −0.0415147 0.127769i
\(344\) −7.03968 5.11463i −0.379554 0.275762i
\(345\) 0.541077 0.393115i 0.0291306 0.0211646i
\(346\) 6.65485 20.4815i 0.357767 1.10109i
\(347\) 2.61088 8.03547i 0.140159 0.431366i −0.856197 0.516649i \(-0.827179\pi\)
0.996357 + 0.0852825i \(0.0271793\pi\)
\(348\) 0.509872 0.370444i 0.0273320 0.0198579i
\(349\) −8.41283 6.11228i −0.450328 0.327183i 0.339397 0.940643i \(-0.389777\pi\)
−0.789725 + 0.613461i \(0.789777\pi\)
\(350\) −1.52884 4.70527i −0.0817197 0.251507i
\(351\) −9.23559 −0.492959
\(352\) 0 0
\(353\) 19.1073 1.01698 0.508489 0.861069i \(-0.330204\pi\)
0.508489 + 0.861069i \(0.330204\pi\)
\(354\) 2.05133 + 6.31335i 0.109027 + 0.335551i
\(355\) 6.71734 + 4.88043i 0.356519 + 0.259027i
\(356\) −1.59530 + 1.15905i −0.0845507 + 0.0614297i
\(357\) −2.39608 + 7.37439i −0.126814 + 0.390294i
\(358\) 7.07191 21.7651i 0.373762 1.15032i
\(359\) −3.57114 + 2.59458i −0.188478 + 0.136937i −0.678023 0.735041i \(-0.737163\pi\)
0.489545 + 0.871978i \(0.337163\pi\)
\(360\) −6.32872 4.59808i −0.333553 0.242340i
\(361\) −5.86853 18.0615i −0.308870 0.950604i
\(362\) 32.6546 1.71629
\(363\) 0 0
\(364\) −1.67520 −0.0878041
\(365\) −0.407912 1.25542i −0.0213511 0.0657119i
\(366\) 5.35264 + 3.88892i 0.279787 + 0.203277i
\(367\) 23.7541 17.2584i 1.23996 0.900880i 0.242360 0.970186i \(-0.422078\pi\)
0.997595 + 0.0693059i \(0.0220785\pi\)
\(368\) −1.31059 + 4.03358i −0.0683192 + 0.210265i
\(369\) −6.86009 + 21.1132i −0.357122 + 1.09911i
\(370\) −10.7919 + 7.84080i −0.561046 + 0.407624i
\(371\) −8.83938 6.42219i −0.458918 0.333423i
\(372\) −0.195460 0.601563i −0.0101341 0.0311896i
\(373\) 4.96478 0.257067 0.128533 0.991705i \(-0.458973\pi\)
0.128533 + 0.991705i \(0.458973\pi\)
\(374\) 0 0
\(375\) −0.575493 −0.0297183
\(376\) −2.01528 6.20239i −0.103930 0.319864i
\(377\) −15.4684 11.2384i −0.796662 0.578809i
\(378\) −13.0577 + 9.48700i −0.671618 + 0.487959i
\(379\) 2.44839 7.53536i 0.125765 0.387066i −0.868274 0.496084i \(-0.834771\pi\)
0.994040 + 0.109018i \(0.0347708\pi\)
\(380\) 0.00476632 0.0146692i 0.000244507 0.000752516i
\(381\) 1.13501 0.824635i 0.0581485 0.0422473i
\(382\) 5.90365 + 4.28925i 0.302057 + 0.219457i
\(383\) −7.57571 23.3156i −0.387101 1.19137i −0.934945 0.354793i \(-0.884551\pi\)
0.547844 0.836580i \(-0.315449\pi\)
\(384\) −5.60903 −0.286235
\(385\) 0 0
\(386\) 24.7872 1.26164
\(387\) −2.44824 7.53491i −0.124451 0.383021i
\(388\) −0.568183 0.412809i −0.0288451 0.0209572i
\(389\) −4.41799 + 3.20986i −0.224001 + 0.162746i −0.694126 0.719854i \(-0.744209\pi\)
0.470125 + 0.882600i \(0.344209\pi\)
\(390\) 0.682513 2.10056i 0.0345604 0.106366i
\(391\) −1.32587 + 4.08060i −0.0670520 + 0.206365i
\(392\) −14.9828 + 10.8856i −0.756746 + 0.549808i
\(393\) 3.27843 + 2.38192i 0.165375 + 0.120152i
\(394\) 1.10834 + 3.41111i 0.0558372 + 0.171849i
\(395\) −13.8661 −0.697679
\(396\) 0 0
\(397\) −6.43455 −0.322941 −0.161470 0.986878i \(-0.551624\pi\)
−0.161470 + 0.986878i \(0.551624\pi\)
\(398\) −2.73475 8.41670i −0.137081 0.421891i
\(399\) −0.161626 0.117429i −0.00809144 0.00587878i
\(400\) 2.95244 2.14507i 0.147622 0.107254i
\(401\) −4.54336 + 13.9830i −0.226884 + 0.698278i 0.771211 + 0.636580i \(0.219652\pi\)
−0.998095 + 0.0616980i \(0.980348\pi\)
\(402\) 3.23428 9.95410i 0.161311 0.496465i
\(403\) −15.5244 + 11.2792i −0.773327 + 0.561855i
\(404\) −1.29943 0.944090i −0.0646490 0.0469702i
\(405\) −1.89395 5.82899i −0.0941112 0.289645i
\(406\) −33.4143 −1.65832
\(407\) 0 0
\(408\) −6.22784 −0.308324
\(409\) −1.35837 4.18062i −0.0671668 0.206718i 0.911840 0.410546i \(-0.134662\pi\)
−0.979007 + 0.203828i \(0.934662\pi\)
\(410\) −9.12312 6.62834i −0.450559 0.327350i
\(411\) 4.45697 3.23818i 0.219846 0.159727i
\(412\) −0.203727 + 0.627008i −0.0100369 + 0.0308905i
\(413\) −9.59542 + 29.5317i −0.472160 + 1.45316i
\(414\) −3.40166 + 2.47145i −0.167183 + 0.121465i
\(415\) 8.61155 + 6.25666i 0.422724 + 0.307127i
\(416\) −0.800383 2.46332i −0.0392420 0.120774i
\(417\) −0.296668 −0.0145279
\(418\) 0 0
\(419\) 17.8526 0.872159 0.436079 0.899908i \(-0.356367\pi\)
0.436079 + 0.899908i \(0.356367\pi\)
\(420\) 0.105234 + 0.323876i 0.00513488 + 0.0158035i
\(421\) 3.90637 + 2.83814i 0.190385 + 0.138323i 0.678895 0.734236i \(-0.262459\pi\)
−0.488510 + 0.872558i \(0.662459\pi\)
\(422\) 30.1037 21.8716i 1.46543 1.06469i
\(423\) 1.83490 5.64723i 0.0892157 0.274578i
\(424\) 2.71184 8.34619i 0.131699 0.405327i
\(425\) 2.98685 2.17008i 0.144884 0.105264i
\(426\) 5.24074 + 3.80762i 0.253915 + 0.184480i
\(427\) 9.56357 + 29.4337i 0.462814 + 1.42439i
\(428\) 0.314335 0.0151939
\(429\) 0 0
\(430\) 4.02448 0.194078
\(431\) 7.68647 + 23.6565i 0.370244 + 1.13949i 0.946631 + 0.322318i \(0.104462\pi\)
−0.576387 + 0.817177i \(0.695538\pi\)
\(432\) −9.63191 6.99800i −0.463416 0.336691i
\(433\) 17.1918 12.4906i 0.826186 0.600259i −0.0922919 0.995732i \(-0.529419\pi\)
0.918478 + 0.395473i \(0.129419\pi\)
\(434\) −10.3630 + 31.8941i −0.497441 + 1.53097i
\(435\) −1.20109 + 3.69658i −0.0575880 + 0.177238i
\(436\) −0.803691 + 0.583916i −0.0384898 + 0.0279645i
\(437\) −0.0894356 0.0649788i −0.00427828 0.00310836i
\(438\) −0.318245 0.979458i −0.0152064 0.0468003i
\(439\) 15.9119 0.759434 0.379717 0.925103i \(-0.376021\pi\)
0.379717 + 0.925103i \(0.376021\pi\)
\(440\) 0 0
\(441\) −16.8621 −0.802958
\(442\) 4.37852 + 13.4757i 0.208265 + 0.640973i
\(443\) −21.2671 15.4515i −1.01043 0.734122i −0.0461323 0.998935i \(-0.514690\pi\)
−0.964300 + 0.264814i \(0.914690\pi\)
\(444\) 0.742837 0.539702i 0.0352535 0.0256131i
\(445\) 3.75801 11.5660i 0.178147 0.548279i
\(446\) 2.12896 6.55226i 0.100809 0.310258i
\(447\) −3.79908 + 2.76020i −0.179690 + 0.130553i
\(448\) −25.2113 18.3171i −1.19112 0.865402i
\(449\) −2.53073 7.78879i −0.119433 0.367576i 0.873413 0.486980i \(-0.161902\pi\)
−0.992846 + 0.119404i \(0.961902\pi\)
\(450\) 3.61803 0.170556
\(451\) 0 0
\(452\) −0.938065 −0.0441229
\(453\) −0.345044 1.06194i −0.0162116 0.0498941i
\(454\) −4.10168 2.98004i −0.192501 0.139860i
\(455\) 8.35822 6.07260i 0.391839 0.284688i
\(456\) 0.0495855 0.152608i 0.00232205 0.00714655i
\(457\) −3.68237 + 11.3332i −0.172254 + 0.530143i −0.999497 0.0317007i \(-0.989908\pi\)
0.827244 + 0.561843i \(0.189908\pi\)
\(458\) 29.5294 21.4544i 1.37982 1.00250i
\(459\) −9.74419 7.07957i −0.454820 0.330446i
\(460\) 0.0582308 + 0.179216i 0.00271503 + 0.00835599i
\(461\) −6.96172 −0.324240 −0.162120 0.986771i \(-0.551833\pi\)
−0.162120 + 0.986771i \(0.551833\pi\)
\(462\) 0 0
\(463\) 12.4762 0.579817 0.289909 0.957054i \(-0.406375\pi\)
0.289909 + 0.957054i \(0.406375\pi\)
\(464\) −7.61657 23.4414i −0.353590 1.08824i
\(465\) 3.15590 + 2.29290i 0.146351 + 0.106330i
\(466\) −20.0891 + 14.5956i −0.930609 + 0.676127i
\(467\) −1.89927 + 5.84535i −0.0878877 + 0.270491i −0.985335 0.170631i \(-0.945419\pi\)
0.897447 + 0.441122i \(0.145419\pi\)
\(468\) 0.378566 1.16511i 0.0174992 0.0538571i
\(469\) 39.6078 28.7768i 1.82892 1.32879i
\(470\) 2.44020 + 1.77291i 0.112558 + 0.0817781i
\(471\) 3.78339 + 11.6441i 0.174330 + 0.536531i
\(472\) −24.9401 −1.14796
\(473\) 0 0
\(474\) −10.8181 −0.496890
\(475\) 0.0293950 + 0.0904686i 0.00134874 + 0.00415098i
\(476\) −1.76745 1.28413i −0.0810108 0.0588578i
\(477\) 6.46422 4.69653i 0.295976 0.215039i
\(478\) −4.58970 + 14.1256i −0.209928 + 0.646092i
\(479\) −6.85838 + 21.1079i −0.313367 + 0.964445i 0.663054 + 0.748571i \(0.269260\pi\)
−0.976421 + 0.215874i \(0.930740\pi\)
\(480\) −0.425971 + 0.309486i −0.0194428 + 0.0141260i
\(481\) −22.5360 16.3734i −1.02755 0.746561i
\(482\) −4.18693 12.8861i −0.190710 0.586944i
\(483\) 2.44076 0.111058
\(484\) 0 0
\(485\) 4.33133 0.196675
\(486\) −5.57769 17.1664i −0.253009 0.778682i
\(487\) 27.6932 + 20.1203i 1.25490 + 0.911736i 0.998495 0.0548341i \(-0.0174630\pi\)
0.256402 + 0.966570i \(0.417463\pi\)
\(488\) −20.1100 + 14.6108i −0.910339 + 0.661400i
\(489\) −2.84201 + 8.74680i −0.128520 + 0.395544i
\(490\) 2.64687 8.14623i 0.119573 0.368009i
\(491\) −13.7498 + 9.98984i −0.620522 + 0.450835i −0.853104 0.521741i \(-0.825283\pi\)
0.232582 + 0.972577i \(0.425283\pi\)
\(492\) 0.627968 + 0.456246i 0.0283110 + 0.0205691i
\(493\) −7.70536 23.7146i −0.347032 1.06805i
\(494\) −0.365073 −0.0164254
\(495\) 0 0
\(496\) −24.7371 −1.11073
\(497\) 9.36365 + 28.8184i 0.420017 + 1.29268i
\(498\) 6.71857 + 4.88133i 0.301066 + 0.218737i
\(499\) −4.23072 + 3.07380i −0.189393 + 0.137602i −0.678441 0.734655i \(-0.737344\pi\)
0.489048 + 0.872257i \(0.337344\pi\)
\(500\) 0.0501062 0.154211i 0.00224082 0.00689653i
\(501\) −3.14932 + 9.69262i −0.140701 + 0.433034i
\(502\) 10.5919 7.69548i 0.472740 0.343466i
\(503\) 33.9340 + 24.6545i 1.51304 + 1.09929i 0.964804 + 0.262970i \(0.0847020\pi\)
0.548240 + 0.836321i \(0.315298\pi\)
\(504\) −8.82193 27.1511i −0.392960 1.20941i
\(505\) 9.90570 0.440798
\(506\) 0 0
\(507\) −2.86923 −0.127427
\(508\) 0.122150 + 0.375940i 0.00541955 + 0.0166797i
\(509\) −16.4779 11.9719i −0.730370 0.530645i 0.159311 0.987228i \(-0.449073\pi\)
−0.889680 + 0.456584i \(0.849073\pi\)
\(510\) 2.33029 1.69305i 0.103187 0.0749696i
\(511\) 1.48864 4.58156i 0.0658536 0.202676i
\(512\) 7.64292 23.5225i 0.337772 1.03956i
\(513\) 0.251062 0.182407i 0.0110847 0.00805348i
\(514\) 11.4366 + 8.30916i 0.504446 + 0.366501i
\(515\) −1.25643 3.86690i −0.0553651 0.170396i
\(516\) −0.277016 −0.0121949
\(517\) 0 0
\(518\) −48.6816 −2.13895
\(519\) −2.82503 8.69454i −0.124005 0.381648i
\(520\) 6.71323 + 4.87744i 0.294394 + 0.213890i
\(521\) −11.7128 + 8.50988i −0.513149 + 0.372824i −0.814017 0.580841i \(-0.802724\pi\)
0.300868 + 0.953666i \(0.402724\pi\)
\(522\) 7.55108 23.2398i 0.330502 1.01718i
\(523\) −3.44867 + 10.6139i −0.150800 + 0.464114i −0.997711 0.0676203i \(-0.978459\pi\)
0.846911 + 0.531734i \(0.178459\pi\)
\(524\) −0.923710 + 0.671115i −0.0403525 + 0.0293178i
\(525\) −1.69911 1.23447i −0.0741551 0.0538769i
\(526\) −4.59221 14.1334i −0.200230 0.616244i
\(527\) −25.0254 −1.09013
\(528\) 0 0
\(529\) −21.6494 −0.941279
\(530\) 1.25424 + 3.86014i 0.0544805 + 0.167674i
\(531\) −18.3710 13.3473i −0.797234 0.579225i
\(532\) 0.0455388 0.0330859i 0.00197436 0.00143446i
\(533\) 7.27689 22.3960i 0.315197 0.970077i
\(534\) 2.93193 9.02354i 0.126877 0.390487i
\(535\) −1.56834 + 1.13947i −0.0678053 + 0.0492634i
\(536\) 31.8125 + 23.1132i 1.37409 + 0.998337i
\(537\) −3.00208 9.23944i −0.129549 0.398711i
\(538\) 0.121123 0.00522197
\(539\) 0 0
\(540\) −0.528983 −0.0227638
\(541\) −3.30055 10.1580i −0.141902 0.436728i 0.854698 0.519126i \(-0.173742\pi\)
−0.996600 + 0.0823974i \(0.973742\pi\)
\(542\) 14.6961 + 10.6774i 0.631253 + 0.458632i
\(543\) 11.2147 8.14795i 0.481268 0.349662i
\(544\) 1.04381 3.21251i 0.0447529 0.137735i
\(545\) 1.89324 5.82678i 0.0810973 0.249592i
\(546\) 6.52092 4.73773i 0.279070 0.202756i
\(547\) 1.41384 + 1.02721i 0.0604514 + 0.0439205i 0.617601 0.786492i \(-0.288105\pi\)
−0.557149 + 0.830412i \(0.688105\pi\)
\(548\) 0.479660 + 1.47624i 0.0204901 + 0.0630619i
\(549\) −22.6325 −0.965930
\(550\) 0 0
\(551\) 0.642459 0.0273697
\(552\) 0.605793 + 1.86444i 0.0257843 + 0.0793558i
\(553\) −40.9388 29.7438i −1.74089 1.26483i
\(554\) 4.28471 3.11302i 0.182040 0.132260i
\(555\) −1.74988 + 5.38558i −0.0742783 + 0.228605i
\(556\) 0.0258299 0.0794961i 0.00109543 0.00337139i
\(557\) −15.7632 + 11.4526i −0.667908 + 0.485263i −0.869324 0.494242i \(-0.835446\pi\)
0.201416 + 0.979506i \(0.435446\pi\)
\(558\) −19.8406 14.4151i −0.839921 0.610238i
\(559\) 2.59699 + 7.99271i 0.109841 + 0.338055i
\(560\) 13.3182 0.562798
\(561\) 0 0
\(562\) −2.08426 −0.0879191
\(563\) 4.53920 + 13.9702i 0.191304 + 0.588775i 1.00000 0.000546971i \(0.000174106\pi\)
−0.808695 + 0.588228i \(0.799826\pi\)
\(564\) −0.167965 0.122034i −0.00707261 0.00513855i
\(565\) 4.68038 3.40050i 0.196905 0.143060i
\(566\) −2.26710 + 6.97742i −0.0952934 + 0.293283i
\(567\) 6.91181 21.2724i 0.290269 0.893356i
\(568\) −19.6897 + 14.3054i −0.826159 + 0.600240i
\(569\) 16.1266 + 11.7166i 0.676061 + 0.491187i 0.872049 0.489419i \(-0.162791\pi\)
−0.195987 + 0.980606i \(0.562791\pi\)
\(570\) 0.0229335 + 0.0705819i 0.000960577 + 0.00295635i
\(571\) −5.24422 −0.219464 −0.109732 0.993961i \(-0.534999\pi\)
−0.109732 + 0.993961i \(0.534999\pi\)
\(572\) 0 0
\(573\) 3.09776 0.129411
\(574\) −12.7172 39.1395i −0.530805 1.63365i
\(575\) −0.940197 0.683093i −0.0392089 0.0284869i
\(576\) 18.4370 13.3953i 0.768208 0.558136i
\(577\) 11.6192 35.7601i 0.483712 1.48871i −0.350125 0.936703i \(-0.613861\pi\)
0.833838 0.552010i \(-0.186139\pi\)
\(578\) 1.41156 4.34433i 0.0587132 0.180701i
\(579\) 8.51275 6.18488i 0.353778 0.257035i
\(580\) −0.885974 0.643698i −0.0367881 0.0267281i
\(581\) 12.0041 + 36.9448i 0.498013 + 1.53273i
\(582\) 3.37922 0.140073
\(583\) 0 0
\(584\) 3.86923 0.160110
\(585\) 2.33471 + 7.18549i 0.0965283 + 0.297084i
\(586\) −12.5212 9.09718i −0.517246 0.375801i
\(587\) −20.6875 + 15.0303i −0.853863 + 0.620368i −0.926208 0.377012i \(-0.876952\pi\)
0.0723456 + 0.997380i \(0.476952\pi\)
\(588\) −0.182191 + 0.560726i −0.00751343 + 0.0231240i
\(589\) 0.199250 0.613230i 0.00820997 0.0252677i
\(590\) 9.33193 6.78004i 0.384189 0.279130i
\(591\) 1.23178 + 0.894938i 0.0506685 + 0.0368128i
\(592\) −11.0966 34.1520i −0.456069 1.40364i
\(593\) −40.2260 −1.65188 −0.825942 0.563754i \(-0.809356\pi\)
−0.825942 + 0.563754i \(0.809356\pi\)
\(594\) 0 0
\(595\) 13.4735 0.552358
\(596\) −0.408858 1.25834i −0.0167475 0.0515435i
\(597\) −3.03933 2.20820i −0.124391 0.0903757i
\(598\) 3.60834 2.62161i 0.147556 0.107206i
\(599\) 1.52344 4.68868i 0.0622462 0.191574i −0.915097 0.403233i \(-0.867886\pi\)
0.977344 + 0.211659i \(0.0678865\pi\)
\(600\) 0.521270 1.60431i 0.0212808 0.0654955i
\(601\) 37.2873 27.0908i 1.52098 1.10506i 0.559981 0.828506i \(-0.310809\pi\)
0.960999 0.276551i \(-0.0891914\pi\)
\(602\) 11.8820 + 8.63280i 0.484276 + 0.351847i
\(603\) 11.0637 + 34.0505i 0.450548 + 1.38664i
\(604\) 0.314602 0.0128010
\(605\) 0 0
\(606\) 7.72824 0.313938
\(607\) 13.9479 + 42.9273i 0.566129 + 1.74237i 0.664572 + 0.747224i \(0.268614\pi\)
−0.0984428 + 0.995143i \(0.531386\pi\)
\(608\) 0.0704095 + 0.0511555i 0.00285548 + 0.00207463i
\(609\) −11.4756 + 8.33750i −0.465014 + 0.337853i
\(610\) 3.55265 10.9339i 0.143843 0.442702i
\(611\) −1.94638 + 5.99034i −0.0787420 + 0.242343i
\(612\) 1.29253 0.939078i 0.0522474 0.0379600i
\(613\) 3.83003 + 2.78268i 0.154694 + 0.112391i 0.662440 0.749115i \(-0.269521\pi\)
−0.507746 + 0.861507i \(0.669521\pi\)
\(614\) −1.78047 5.47973i −0.0718540 0.221144i
\(615\) −4.78708 −0.193034
\(616\) 0 0
\(617\) 17.8468 0.718486 0.359243 0.933244i \(-0.383035\pi\)
0.359243 + 0.933244i \(0.383035\pi\)
\(618\) −0.980246 3.01689i −0.0394313 0.121357i
\(619\) −0.288781 0.209811i −0.0116071 0.00843303i 0.581967 0.813213i \(-0.302283\pi\)
−0.593574 + 0.804780i \(0.702283\pi\)
\(620\) −0.889186 + 0.646031i −0.0357106 + 0.0259452i
\(621\) −1.17159 + 3.60578i −0.0470143 + 0.144695i
\(622\) 6.96233 21.4279i 0.279164 0.859179i
\(623\) 35.9051 26.0866i 1.43851 1.04514i
\(624\) 4.81010 + 3.49474i 0.192558 + 0.139902i
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 36.0297 1.44004
\(627\) 0 0
\(628\) −3.44960 −0.137654
\(629\) −11.2260 34.5501i −0.447610 1.37760i
\(630\) 10.6820 + 7.76094i 0.425582 + 0.309203i
\(631\) 25.8822 18.8046i 1.03036 0.748597i 0.0619761 0.998078i \(-0.480260\pi\)
0.968380 + 0.249480i \(0.0802598\pi\)
\(632\) 12.5596 38.6546i 0.499595 1.53760i
\(633\) 4.88124 15.0229i 0.194012 0.597107i
\(634\) 6.35787 4.61926i 0.252503 0.183454i
\(635\) −1.97224 1.43292i −0.0782661 0.0568637i
\(636\) −0.0863323 0.265703i −0.00342330 0.0105358i
\(637\) 17.8866 0.708693
\(638\) 0 0
\(639\) −22.1594 −0.876610
\(640\) 3.01183 + 9.26945i 0.119053 + 0.366407i
\(641\) −0.819410 0.595336i −0.0323647 0.0235144i 0.571485 0.820612i \(-0.306367\pi\)
−0.603850 + 0.797098i \(0.706367\pi\)
\(642\) −1.22359 + 0.888990i −0.0482912 + 0.0350856i
\(643\) −4.62674 + 14.2396i −0.182461 + 0.561556i −0.999895 0.0144651i \(-0.995395\pi\)
0.817435 + 0.576021i \(0.195395\pi\)
\(644\) −0.212508 + 0.654034i −0.00837400 + 0.0257725i
\(645\) 1.38214 1.00418i 0.0544218 0.0395397i
\(646\) −0.385178 0.279848i −0.0151546 0.0110105i
\(647\) 5.52749 + 17.0119i 0.217308 + 0.668806i 0.998982 + 0.0451179i \(0.0143664\pi\)
−0.781674 + 0.623688i \(0.785634\pi\)
\(648\) 17.9650 0.705732
\(649\) 0 0
\(650\) −3.83785 −0.150533
\(651\) 4.39917 + 13.5393i 0.172417 + 0.530645i
\(652\) −2.09638 1.52311i −0.0821006 0.0596495i
\(653\) −37.0240 + 26.8995i −1.44886 + 1.05266i −0.462767 + 0.886480i \(0.653144\pi\)
−0.986095 + 0.166181i \(0.946856\pi\)
\(654\) 1.47707 4.54594i 0.0577579 0.177760i
\(655\) 2.17596 6.69692i 0.0850218 0.261670i
\(656\) 24.5590 17.8432i 0.958869 0.696659i
\(657\) 2.85009 + 2.07071i 0.111193 + 0.0807863i
\(658\) 3.40152 + 10.4688i 0.132605 + 0.408116i
\(659\) 9.54036 0.371640 0.185820 0.982584i \(-0.440506\pi\)
0.185820 + 0.982584i \(0.440506\pi\)
\(660\) 0 0
\(661\) 15.7769 0.613651 0.306825 0.951766i \(-0.400733\pi\)
0.306825 + 0.951766i \(0.400733\pi\)
\(662\) 5.41377 + 16.6619i 0.210412 + 0.647582i
\(663\) 4.86617 + 3.53548i 0.188986 + 0.137307i
\(664\) −25.2419 + 18.3393i −0.979575 + 0.711703i
\(665\) −0.107275 + 0.330157i −0.00415993 + 0.0128030i
\(666\) 11.0012 33.8583i 0.426289 1.31198i
\(667\) −6.34999 + 4.61353i −0.245872 + 0.178637i
\(668\) −2.32307 1.68781i −0.0898822 0.0653032i
\(669\) −0.903757 2.78148i −0.0349413 0.107538i
\(670\) −18.1868 −0.702616
\(671\) 0 0
\(672\) −1.92152 −0.0741243
\(673\) −14.6175 44.9879i −0.563462 1.73416i −0.672478 0.740117i \(-0.734770\pi\)
0.109016 0.994040i \(-0.465230\pi\)
\(674\) −14.6806 10.6661i −0.565475 0.410842i
\(675\) 2.63930 1.91757i 0.101587 0.0738072i
\(676\) 0.249814 0.768850i 0.00960825 0.0295711i
\(677\) −8.51129 + 26.1950i −0.327115 + 1.00676i 0.643361 + 0.765563i \(0.277539\pi\)
−0.970477 + 0.241195i \(0.922461\pi\)
\(678\) 3.65155 2.65300i 0.140237 0.101888i
\(679\) 12.7880 + 9.29100i 0.490757 + 0.356556i
\(680\) 3.34410 + 10.2921i 0.128240 + 0.394683i
\(681\) −2.15223 −0.0824736
\(682\) 0 0
\(683\) −27.1617 −1.03931 −0.519656 0.854375i \(-0.673940\pi\)
−0.519656 + 0.854375i \(0.673940\pi\)
\(684\) 0.0127204 + 0.0391494i 0.000486377 + 0.00149691i
\(685\) −7.74461 5.62678i −0.295906 0.214988i
\(686\) −2.72885 + 1.98262i −0.104188 + 0.0756969i
\(687\) 4.78811 14.7363i 0.182678 0.562224i
\(688\) −3.34780 + 10.3035i −0.127634 + 0.392817i
\(689\) −6.85696 + 4.98188i −0.261229 + 0.189794i
\(690\) −0.733524 0.532936i −0.0279248 0.0202885i
\(691\) −2.32591 7.15841i −0.0884817 0.272319i 0.897018 0.441993i \(-0.145728\pi\)
−0.985500 + 0.169674i \(0.945728\pi\)
\(692\) 2.57579 0.0979167
\(693\) 0 0
\(694\) −11.4541 −0.434791
\(695\) 0.159299 + 0.490271i 0.00604255 + 0.0185971i
\(696\) −9.21706 6.69658i −0.349372 0.253833i
\(697\) 24.8453 18.0512i 0.941083 0.683737i
\(698\) −4.35634 + 13.4074i −0.164890 + 0.507479i
\(699\) −3.25739 + 10.0252i −0.123206 + 0.379189i
\(700\) 0.478730 0.347817i 0.0180943 0.0131463i
\(701\) −25.7435 18.7038i −0.972319 0.706431i −0.0163401 0.999866i \(-0.505201\pi\)
−0.955979 + 0.293435i \(0.905201\pi\)
\(702\) 3.86903 + 11.9077i 0.146027 + 0.449426i
\(703\) 0.936004 0.0353021
\(704\) 0 0
\(705\) 1.28042 0.0482234
\(706\) −8.00454 24.6355i −0.301255 0.927167i
\(707\) 29.2460 + 21.2484i 1.09991 + 0.799130i
\(708\) −0.642341 + 0.466688i −0.0241406 + 0.0175392i
\(709\) −4.46162 + 13.7315i −0.167560 + 0.515696i −0.999216 0.0395951i \(-0.987393\pi\)
0.831656 + 0.555291i \(0.187393\pi\)
\(710\) 3.47838 10.7054i 0.130541 0.401765i
\(711\) 29.9384 21.7515i 1.12278 0.815746i
\(712\) 28.8385 + 20.9524i 1.08077 + 0.785226i
\(713\) 2.43427 + 7.49191i 0.0911642 + 0.280574i
\(714\) 10.5117 0.393392
\(715\) 0 0
\(716\) 2.73721 0.102294
\(717\) 1.94836 + 5.99644i 0.0727628 + 0.223941i
\(718\) 4.84130 + 3.51741i 0.180676 + 0.131269i
\(719\) −4.37682 + 3.17994i −0.163228 + 0.118592i −0.666401 0.745594i \(-0.732166\pi\)
0.503173 + 0.864186i \(0.332166\pi\)
\(720\) −3.00970 + 9.26289i −0.112165 + 0.345208i
\(721\) 4.58525 14.1119i 0.170763 0.525556i
\(722\) −20.8286 + 15.1329i −0.775160 + 0.563186i
\(723\) −4.65325 3.38078i −0.173056 0.125733i
\(724\) 1.20693 + 3.71454i 0.0448551 + 0.138050i
\(725\) 6.75389 0.250833
\(726\) 0 0
\(727\) −16.7753 −0.622161 −0.311080 0.950384i \(-0.600691\pi\)
−0.311080 + 0.950384i \(0.600691\pi\)
\(728\) 9.35791 + 28.8007i 0.346827 + 1.06742i
\(729\) 8.67639 + 6.30377i 0.321348 + 0.233473i
\(730\) −1.44776 + 1.05186i −0.0535841 + 0.0389311i
\(731\) −3.38683 + 10.4236i −0.125266 + 0.385530i
\(732\) −0.244538 + 0.752611i −0.00903839 + 0.0278173i
\(733\) −11.3950 + 8.27899i −0.420886 + 0.305791i −0.777994 0.628272i \(-0.783763\pi\)
0.357108 + 0.934063i \(0.383763\pi\)
\(734\) −32.2029 23.3968i −1.18863 0.863590i
\(735\) −1.12361 3.45813i −0.0414451 0.127555i
\(736\) −1.06327 −0.0391926
\(737\) 0 0
\(738\) 30.0956 1.10783
\(739\) 11.2314 + 34.5668i 0.413155 + 1.27156i 0.913891 + 0.405960i \(0.133063\pi\)
−0.500736 + 0.865600i \(0.666937\pi\)
\(740\) −1.29078 0.937809i −0.0474501 0.0344745i
\(741\) −0.125378 + 0.0910927i −0.00460589 + 0.00334637i
\(742\) −4.57722 + 14.0872i −0.168035 + 0.517159i
\(743\) 0.604796 1.86137i 0.0221878 0.0682870i −0.939350 0.342961i \(-0.888570\pi\)
0.961537 + 0.274674i \(0.0885700\pi\)
\(744\) −9.25047 + 6.72086i −0.339139 + 0.246399i
\(745\) 6.60144 + 4.79623i 0.241858 + 0.175720i
\(746\) −2.07988 6.40121i −0.0761498 0.234365i
\(747\) −28.4080 −1.03939
\(748\) 0 0
\(749\) −7.07466 −0.258503
\(750\) 0.241089 + 0.741996i 0.00880333 + 0.0270939i
\(751\) −15.1372 10.9978i −0.552363 0.401316i 0.276293 0.961074i \(-0.410894\pi\)
−0.828656 + 0.559758i \(0.810894\pi\)
\(752\) −6.56890 + 4.77258i −0.239543 + 0.174038i
\(753\) 1.71745 5.28577i 0.0625874 0.192624i
\(754\) −8.00985 + 24.6518i −0.291702 + 0.897766i
\(755\) −1.56968 + 1.14044i −0.0571263 + 0.0415047i
\(756\) −1.56179 1.13471i −0.0568017 0.0412688i
\(757\) −4.49528 13.8351i −0.163384 0.502844i 0.835530 0.549445i \(-0.185161\pi\)
−0.998914 + 0.0466015i \(0.985161\pi\)
\(758\) −10.7412 −0.390138
\(759\) 0 0
\(760\) −0.278825 −0.0101141
\(761\) −4.06066 12.4974i −0.147199 0.453031i 0.850088 0.526640i \(-0.176548\pi\)
−0.997287 + 0.0736088i \(0.976548\pi\)
\(762\) −1.53871 1.11794i −0.0557415 0.0404986i
\(763\) 18.0885 13.1421i 0.654848 0.475775i
\(764\) −0.269711 + 0.830086i −0.00975782 + 0.0300315i
\(765\) −3.04478 + 9.37087i −0.110084 + 0.338805i
\(766\) −26.8877 + 19.5351i −0.971492 + 0.705831i
\(767\) 19.4872 + 14.1583i 0.703641 + 0.511225i
\(768\) −0.687387 2.11556i −0.0248040 0.0763387i
\(769\) −38.9767 −1.40554 −0.702768 0.711419i \(-0.748053\pi\)
−0.702768 + 0.711419i \(0.748053\pi\)
\(770\) 0 0
\(771\) 6.00099 0.216121
\(772\) 0.916145 + 2.81960i 0.0329728 + 0.101480i
\(773\) 31.3526 + 22.7790i 1.12767 + 0.819303i 0.985355 0.170518i \(-0.0545442\pi\)
0.142319 + 0.989821i \(0.454544\pi\)
\(774\) −8.68930 + 6.31315i −0.312331 + 0.226921i
\(775\) 2.09463 6.44661i 0.0752414 0.231569i
\(776\) −3.92323 + 12.0745i −0.140836 + 0.433448i
\(777\) −16.7189 + 12.1470i −0.599786 + 0.435770i
\(778\) 5.98936 + 4.35152i 0.214729 +