Properties

Label 605.2.g.e.366.1
Level $605$
Weight $2$
Character 605.366
Analytic conductor $4.831$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.13140625.1
Defining polynomial: \(x^{8} - 3 x^{7} + 5 x^{6} - 3 x^{5} + 4 x^{4} + 3 x^{3} + 5 x^{2} + 3 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 366.1
Root \(1.69513 + 1.23158i\) of defining polynomial
Character \(\chi\) \(=\) 605.366
Dual form 605.2.g.e.81.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.69513 + 1.23158i) q^{2} +(0.591149 + 1.81937i) q^{3} +(0.738630 - 2.27327i) q^{4} +(0.809017 + 0.587785i) q^{5} +(-3.24278 - 2.35601i) q^{6} +(0.947813 - 2.91707i) q^{7} +(0.252684 + 0.777682i) q^{8} +(-0.533593 + 0.387678i) q^{9} +O(q^{10})\) \(q+(-1.69513 + 1.23158i) q^{2} +(0.591149 + 1.81937i) q^{3} +(0.738630 - 2.27327i) q^{4} +(0.809017 + 0.587785i) q^{5} +(-3.24278 - 2.35601i) q^{6} +(0.947813 - 2.91707i) q^{7} +(0.252684 + 0.777682i) q^{8} +(-0.533593 + 0.387678i) q^{9} -2.09529 q^{10} +4.57255 q^{12} +(2.46735 - 1.79264i) q^{13} +(1.98595 + 6.11211i) q^{14} +(-0.591149 + 1.81937i) q^{15} +(2.48141 + 1.80285i) q^{16} +(-0.375259 - 0.272641i) q^{17} +(0.427051 - 1.31433i) q^{18} +(2.43988 + 7.50919i) q^{19} +(1.93376 - 1.40496i) q^{20} +5.86752 q^{21} -1.39026 q^{23} +(-1.26552 + 0.919451i) q^{24} +(0.309017 + 0.951057i) q^{25} +(-1.97470 + 6.07750i) q^{26} +(3.62218 + 2.63167i) q^{27} +(-5.93120 - 4.30927i) q^{28} +(-1.15004 + 3.53947i) q^{29} +(-1.23863 - 3.81211i) q^{30} +(8.47564 - 6.15791i) q^{31} -8.06206 q^{32} +0.971892 q^{34} +(2.48141 - 1.80285i) q^{35} +(0.487169 + 1.49935i) q^{36} +(0.569992 - 1.75425i) q^{37} +(-13.3841 - 9.72412i) q^{38} +(4.72004 + 3.42931i) q^{39} +(-0.252684 + 0.777682i) q^{40} +(1.36203 + 4.19190i) q^{41} +(-9.94619 + 7.22633i) q^{42} +1.31478 q^{43} -0.659557 q^{45} +(2.35666 - 1.71222i) q^{46} +(-0.920927 - 2.83432i) q^{47} +(-1.81316 + 5.58034i) q^{48} +(-1.94781 - 1.41517i) q^{49} +(-1.69513 - 1.23158i) q^{50} +(0.274201 - 0.843905i) q^{51} +(-2.25268 - 6.93305i) q^{52} +(-3.38828 + 2.46173i) q^{53} -9.38118 q^{54} +2.50805 q^{56} +(-12.2196 + 8.87809i) q^{57} +(-2.40968 - 7.41623i) q^{58} +(0.869890 - 2.67725i) q^{59} +(3.69927 + 2.68768i) q^{60} +(-1.63209 - 1.18578i) q^{61} +(-6.78332 + 20.8769i) q^{62} +(0.625136 + 1.92397i) q^{63} +(8.70342 - 6.32340i) q^{64} +3.04981 q^{65} -6.75753 q^{67} +(-0.896964 + 0.651683i) q^{68} +(-0.821848 - 2.52939i) q^{69} +(-1.98595 + 6.11211i) q^{70} +(5.27637 + 3.83351i) q^{71} +(-0.436320 - 0.317005i) q^{72} +(3.05179 - 9.39245i) q^{73} +(1.19430 + 3.67568i) q^{74} +(-1.54765 + 1.12443i) q^{75} +18.8726 q^{76} -12.2245 q^{78} +(-9.35051 + 6.79354i) q^{79} +(0.947813 + 2.91707i) q^{80} +(-3.25817 + 10.0276i) q^{81} +(-7.47150 - 5.42836i) q^{82} +(7.21531 + 5.24223i) q^{83} +(4.33392 - 13.3384i) q^{84} +(-0.143336 - 0.441143i) q^{85} +(-2.22872 + 1.61926i) q^{86} -7.11945 q^{87} -6.76978 q^{89} +(1.11803 - 0.812299i) q^{90} +(-2.89065 - 8.89651i) q^{91} +(-1.02689 + 3.16043i) q^{92} +(16.2139 + 11.7801i) q^{93} +(5.05179 + 3.67034i) q^{94} +(-2.43988 + 7.50919i) q^{95} +(-4.76588 - 14.6679i) q^{96} +(-12.4219 + 9.02506i) q^{97} +5.04469 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 3q^{2} + 5q^{3} + 3q^{4} + 2q^{5} - 8q^{6} - 4q^{7} + q^{8} + 5q^{9} + O(q^{10}) \) \( 8q - 3q^{2} + 5q^{3} + 3q^{4} + 2q^{5} - 8q^{6} - 4q^{7} + q^{8} + 5q^{9} - 2q^{10} + 16q^{12} - 3q^{13} + 14q^{14} - 5q^{15} - q^{16} - 12q^{17} - 10q^{18} - 5q^{19} + 2q^{20} + 20q^{21} + 10q^{23} + 2q^{24} - 2q^{25} + 5q^{26} + 5q^{27} - 19q^{28} - 21q^{29} - 7q^{30} + 15q^{31} - 16q^{32} + 4q^{34} - q^{35} + 15q^{36} - 31q^{37} - 20q^{38} + 14q^{39} - q^{40} - 3q^{41} - 21q^{42} + 38q^{43} + 7q^{46} - 5q^{47} + 5q^{48} - 4q^{49} - 3q^{50} - 6q^{51} - 17q^{52} - 2q^{53} - 16q^{54} + 22q^{56} - 40q^{57} + 2q^{58} + 18q^{59} + 4q^{60} - 6q^{61} + 5q^{62} + 30q^{63} + 29q^{64} - 2q^{65} - 38q^{67} + 14q^{68} + 9q^{69} - 14q^{70} + 15q^{71} - 5q^{72} + 2q^{73} + 20q^{74} - 5q^{75} - 16q^{78} + 3q^{79} - 4q^{80} - 12q^{81} - 22q^{82} + 38q^{83} + 17q^{84} - 13q^{85} + 2q^{86} - 38q^{87} - 16q^{89} - 36q^{91} + q^{92} + 40q^{93} + 18q^{94} + 5q^{95} + 17q^{96} - 56q^{97} - 16q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.69513 + 1.23158i −1.19864 + 0.870861i −0.994150 0.108009i \(-0.965553\pi\)
−0.204487 + 0.978869i \(0.565553\pi\)
\(3\) 0.591149 + 1.81937i 0.341300 + 1.05041i 0.963535 + 0.267582i \(0.0862247\pi\)
−0.622235 + 0.782830i \(0.713775\pi\)
\(4\) 0.738630 2.27327i 0.369315 1.13663i
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) −3.24278 2.35601i −1.32386 0.961839i
\(7\) 0.947813 2.91707i 0.358239 1.10255i −0.595868 0.803083i \(-0.703192\pi\)
0.954107 0.299465i \(-0.0968082\pi\)
\(8\) 0.252684 + 0.777682i 0.0893373 + 0.274952i
\(9\) −0.533593 + 0.387678i −0.177864 + 0.129226i
\(10\) −2.09529 −0.662590
\(11\) 0 0
\(12\) 4.57255 1.31998
\(13\) 2.46735 1.79264i 0.684320 0.497188i −0.190468 0.981693i \(-0.561001\pi\)
0.874788 + 0.484506i \(0.161001\pi\)
\(14\) 1.98595 + 6.11211i 0.530766 + 1.63353i
\(15\) −0.591149 + 1.81937i −0.152634 + 0.469759i
\(16\) 2.48141 + 1.80285i 0.620351 + 0.450712i
\(17\) −0.375259 0.272641i −0.0910136 0.0661252i 0.541348 0.840799i \(-0.317914\pi\)
−0.632361 + 0.774674i \(0.717914\pi\)
\(18\) 0.427051 1.31433i 0.100657 0.309790i
\(19\) 2.43988 + 7.50919i 0.559747 + 1.72273i 0.683065 + 0.730358i \(0.260647\pi\)
−0.123317 + 0.992367i \(0.539353\pi\)
\(20\) 1.93376 1.40496i 0.432402 0.314158i
\(21\) 5.86752 1.28040
\(22\) 0 0
\(23\) −1.39026 −0.289889 −0.144944 0.989440i \(-0.546300\pi\)
−0.144944 + 0.989440i \(0.546300\pi\)
\(24\) −1.26552 + 0.919451i −0.258322 + 0.187682i
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) −1.97470 + 6.07750i −0.387270 + 1.19189i
\(27\) 3.62218 + 2.63167i 0.697089 + 0.506465i
\(28\) −5.93120 4.30927i −1.12089 0.814375i
\(29\) −1.15004 + 3.53947i −0.213558 + 0.657263i 0.785695 + 0.618614i \(0.212305\pi\)
−0.999253 + 0.0386491i \(0.987695\pi\)
\(30\) −1.23863 3.81211i −0.226142 0.695993i
\(31\) 8.47564 6.15791i 1.52227 1.10599i 0.561922 0.827190i \(-0.310062\pi\)
0.960348 0.278804i \(-0.0899380\pi\)
\(32\) −8.06206 −1.42518
\(33\) 0 0
\(34\) 0.971892 0.166678
\(35\) 2.48141 1.80285i 0.419434 0.304737i
\(36\) 0.487169 + 1.49935i 0.0811948 + 0.249892i
\(37\) 0.569992 1.75425i 0.0937061 0.288398i −0.893208 0.449643i \(-0.851551\pi\)
0.986914 + 0.161246i \(0.0515511\pi\)
\(38\) −13.3841 9.72412i −2.17119 1.57746i
\(39\) 4.72004 + 3.42931i 0.755811 + 0.549129i
\(40\) −0.252684 + 0.777682i −0.0399529 + 0.122962i
\(41\) 1.36203 + 4.19190i 0.212714 + 0.654665i 0.999308 + 0.0371953i \(0.0118424\pi\)
−0.786594 + 0.617470i \(0.788158\pi\)
\(42\) −9.94619 + 7.22633i −1.53473 + 1.11505i
\(43\) 1.31478 0.200502 0.100251 0.994962i \(-0.468035\pi\)
0.100251 + 0.994962i \(0.468035\pi\)
\(44\) 0 0
\(45\) −0.659557 −0.0983210
\(46\) 2.35666 1.71222i 0.347471 0.252453i
\(47\) −0.920927 2.83432i −0.134331 0.413428i 0.861154 0.508344i \(-0.169742\pi\)
−0.995485 + 0.0949152i \(0.969742\pi\)
\(48\) −1.81316 + 5.58034i −0.261707 + 0.805453i
\(49\) −1.94781 1.41517i −0.278259 0.202167i
\(50\) −1.69513 1.23158i −0.239727 0.174172i
\(51\) 0.274201 0.843905i 0.0383959 0.118170i
\(52\) −2.25268 6.93305i −0.312391 0.961441i
\(53\) −3.38828 + 2.46173i −0.465416 + 0.338144i −0.795652 0.605754i \(-0.792872\pi\)
0.330236 + 0.943898i \(0.392872\pi\)
\(54\) −9.38118 −1.27662
\(55\) 0 0
\(56\) 2.50805 0.335152
\(57\) −12.2196 + 8.87809i −1.61853 + 1.17593i
\(58\) −2.40968 7.41623i −0.316406 0.973799i
\(59\) 0.869890 2.67725i 0.113250 0.348548i −0.878328 0.478059i \(-0.841341\pi\)
0.991578 + 0.129511i \(0.0413407\pi\)
\(60\) 3.69927 + 2.68768i 0.477574 + 0.346978i
\(61\) −1.63209 1.18578i −0.208967 0.151824i 0.478379 0.878154i \(-0.341225\pi\)
−0.687346 + 0.726330i \(0.741225\pi\)
\(62\) −6.78332 + 20.8769i −0.861482 + 2.65137i
\(63\) 0.625136 + 1.92397i 0.0787598 + 0.242398i
\(64\) 8.70342 6.32340i 1.08793 0.790426i
\(65\) 3.04981 0.378283
\(66\) 0 0
\(67\) −6.75753 −0.825564 −0.412782 0.910830i \(-0.635443\pi\)
−0.412782 + 0.910830i \(0.635443\pi\)
\(68\) −0.896964 + 0.651683i −0.108773 + 0.0790281i
\(69\) −0.821848 2.52939i −0.0989389 0.304503i
\(70\) −1.98595 + 6.11211i −0.237366 + 0.730537i
\(71\) 5.27637 + 3.83351i 0.626190 + 0.454953i 0.855078 0.518499i \(-0.173509\pi\)
−0.228888 + 0.973453i \(0.573509\pi\)
\(72\) −0.436320 0.317005i −0.0514209 0.0373594i
\(73\) 3.05179 9.39245i 0.357185 1.09930i −0.597546 0.801834i \(-0.703858\pi\)
0.954732 0.297469i \(-0.0961424\pi\)
\(74\) 1.19430 + 3.67568i 0.138835 + 0.427289i
\(75\) −1.54765 + 1.12443i −0.178707 + 0.129838i
\(76\) 18.8726 2.16483
\(77\) 0 0
\(78\) −12.2245 −1.38416
\(79\) −9.35051 + 6.79354i −1.05201 + 0.764333i −0.972594 0.232508i \(-0.925307\pi\)
−0.0794197 + 0.996841i \(0.525307\pi\)
\(80\) 0.947813 + 2.91707i 0.105969 + 0.326138i
\(81\) −3.25817 + 10.0276i −0.362019 + 1.11418i
\(82\) −7.47150 5.42836i −0.825089 0.599462i
\(83\) 7.21531 + 5.24223i 0.791983 + 0.575409i 0.908551 0.417773i \(-0.137189\pi\)
−0.116568 + 0.993183i \(0.537189\pi\)
\(84\) 4.33392 13.3384i 0.472870 1.45534i
\(85\) −0.143336 0.441143i −0.0155470 0.0478487i
\(86\) −2.22872 + 1.61926i −0.240329 + 0.174609i
\(87\) −7.11945 −0.763285
\(88\) 0 0
\(89\) −6.76978 −0.717595 −0.358797 0.933415i \(-0.616813\pi\)
−0.358797 + 0.933415i \(0.616813\pi\)
\(90\) 1.11803 0.812299i 0.117851 0.0856239i
\(91\) −2.89065 8.89651i −0.303023 0.932608i
\(92\) −1.02689 + 3.16043i −0.107060 + 0.329497i
\(93\) 16.2139 + 11.7801i 1.68130 + 1.22154i
\(94\) 5.05179 + 3.67034i 0.521053 + 0.378567i
\(95\) −2.43988 + 7.50919i −0.250327 + 0.770426i
\(96\) −4.76588 14.6679i −0.486415 1.49703i
\(97\) −12.4219 + 9.02506i −1.26126 + 0.916356i −0.998819 0.0485933i \(-0.984526\pi\)
−0.262437 + 0.964949i \(0.584526\pi\)
\(98\) 5.04469 0.509591
\(99\) 0 0
\(100\) 2.39026 0.239026
\(101\) 9.49186 6.89624i 0.944476 0.686202i −0.00501815 0.999987i \(-0.501597\pi\)
0.949494 + 0.313786i \(0.101597\pi\)
\(102\) 0.574532 + 1.76823i 0.0568872 + 0.175081i
\(103\) 4.29165 13.2083i 0.422868 1.30146i −0.482152 0.876087i \(-0.660145\pi\)
0.905021 0.425368i \(-0.139855\pi\)
\(104\) 2.01756 + 1.46584i 0.197838 + 0.143738i
\(105\) 4.74692 + 3.44884i 0.463252 + 0.336572i
\(106\) 2.71174 8.34589i 0.263388 0.810625i
\(107\) 2.26231 + 6.96269i 0.218706 + 0.673108i 0.998870 + 0.0475327i \(0.0151358\pi\)
−0.780164 + 0.625576i \(0.784864\pi\)
\(108\) 8.65794 6.29036i 0.833111 0.605290i
\(109\) 7.43306 0.711958 0.355979 0.934494i \(-0.384147\pi\)
0.355979 + 0.934494i \(0.384147\pi\)
\(110\) 0 0
\(111\) 3.52859 0.334919
\(112\) 7.61093 5.52967i 0.719165 0.522504i
\(113\) −0.938299 2.88779i −0.0882677 0.271660i 0.897173 0.441679i \(-0.145617\pi\)
−0.985441 + 0.170019i \(0.945617\pi\)
\(114\) 9.77976 30.0990i 0.915958 2.81903i
\(115\) −1.12474 0.817172i −0.104883 0.0762017i
\(116\) 7.19671 + 5.22872i 0.668198 + 0.485474i
\(117\) −0.621596 + 1.91308i −0.0574666 + 0.176864i
\(118\) 1.82268 + 5.60962i 0.167791 + 0.516407i
\(119\) −1.15099 + 0.836242i −0.105511 + 0.0766581i
\(120\) −1.56426 −0.142797
\(121\) 0 0
\(122\) 4.22699 0.382693
\(123\) −6.82145 + 4.95608i −0.615070 + 0.446874i
\(124\) −7.73823 23.8158i −0.694914 2.13873i
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) −3.42922 2.49147i −0.305499 0.221958i
\(127\) −0.365350 0.265442i −0.0324196 0.0235542i 0.571457 0.820632i \(-0.306378\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(128\) −1.98299 + 6.10301i −0.175273 + 0.539435i
\(129\) 0.777230 + 2.39207i 0.0684313 + 0.210610i
\(130\) −5.16983 + 3.75610i −0.453424 + 0.329432i
\(131\) −0.629003 −0.0549563 −0.0274781 0.999622i \(-0.508748\pi\)
−0.0274781 + 0.999622i \(0.508748\pi\)
\(132\) 0 0
\(133\) 24.2173 2.09991
\(134\) 11.4549 8.32246i 0.989551 0.718951i
\(135\) 1.38355 + 4.25813i 0.119077 + 0.366481i
\(136\) 0.117206 0.360724i 0.0100504 0.0309318i
\(137\) −9.04756 6.57343i −0.772985 0.561606i 0.129880 0.991530i \(-0.458541\pi\)
−0.902865 + 0.429923i \(0.858541\pi\)
\(138\) 4.50829 + 3.27547i 0.383771 + 0.278826i
\(139\) 0.733901 2.25872i 0.0622487 0.191582i −0.915096 0.403236i \(-0.867885\pi\)
0.977345 + 0.211655i \(0.0678852\pi\)
\(140\) −2.26552 6.97254i −0.191471 0.589287i
\(141\) 4.61227 3.35101i 0.388423 0.282206i
\(142\) −13.6654 −1.14678
\(143\) 0 0
\(144\) −2.02298 −0.168582
\(145\) −3.01085 + 2.18751i −0.250038 + 0.181663i
\(146\) 6.39440 + 19.6799i 0.529205 + 1.62872i
\(147\) 1.42327 4.38036i 0.117389 0.361286i
\(148\) −3.56688 2.59149i −0.293196 0.213019i
\(149\) −7.05490 5.12569i −0.577960 0.419913i 0.260028 0.965601i \(-0.416268\pi\)
−0.837988 + 0.545688i \(0.816268\pi\)
\(150\) 1.23863 3.81211i 0.101134 0.311258i
\(151\) −3.68825 11.3513i −0.300145 0.923753i −0.981444 0.191747i \(-0.938585\pi\)
0.681299 0.732005i \(-0.261415\pi\)
\(152\) −5.22324 + 3.79490i −0.423660 + 0.307807i
\(153\) 0.305932 0.0247332
\(154\) 0 0
\(155\) 10.4765 0.841490
\(156\) 11.2821 8.19692i 0.903291 0.656279i
\(157\) 1.19754 + 3.68565i 0.0955741 + 0.294147i 0.987403 0.158226i \(-0.0505776\pi\)
−0.891829 + 0.452373i \(0.850578\pi\)
\(158\) 7.48350 23.0318i 0.595355 1.83232i
\(159\) −6.48177 4.70928i −0.514037 0.373470i
\(160\) −6.52234 4.73876i −0.515637 0.374632i
\(161\) −1.31770 + 4.05547i −0.103850 + 0.319616i
\(162\) −6.82682 21.0108i −0.536366 1.65076i
\(163\) 8.03857 5.84036i 0.629629 0.457452i −0.226643 0.973978i \(-0.572775\pi\)
0.856272 + 0.516526i \(0.172775\pi\)
\(164\) 10.5354 0.822674
\(165\) 0 0
\(166\) −18.6871 −1.45040
\(167\) 11.2615 8.18198i 0.871443 0.633140i −0.0595308 0.998226i \(-0.518960\pi\)
0.930974 + 0.365086i \(0.118960\pi\)
\(168\) 1.48263 + 4.56306i 0.114387 + 0.352048i
\(169\) −1.14294 + 3.51761i −0.0879185 + 0.270585i
\(170\) 0.786277 + 0.571264i 0.0603047 + 0.0438139i
\(171\) −4.21305 3.06096i −0.322180 0.234077i
\(172\) 0.971136 2.98885i 0.0740484 0.227898i
\(173\) −3.34700 10.3010i −0.254468 0.783171i −0.993934 0.109977i \(-0.964922\pi\)
0.739466 0.673193i \(-0.235078\pi\)
\(174\) 12.0684 8.76819i 0.914901 0.664715i
\(175\) 3.06719 0.231857
\(176\) 0 0
\(177\) 5.38513 0.404771
\(178\) 11.4756 8.33754i 0.860136 0.624925i
\(179\) 7.02502 + 21.6208i 0.525075 + 1.61601i 0.764168 + 0.645018i \(0.223150\pi\)
−0.239093 + 0.970997i \(0.576850\pi\)
\(180\) −0.487169 + 1.49935i −0.0363114 + 0.111755i
\(181\) −1.94028 1.40969i −0.144220 0.104782i 0.513336 0.858188i \(-0.328410\pi\)
−0.657556 + 0.753406i \(0.728410\pi\)
\(182\) 15.8568 + 11.5207i 1.17539 + 0.853968i
\(183\) 1.19257 3.67034i 0.0881570 0.271319i
\(184\) −0.351296 1.08118i −0.0258979 0.0797054i
\(185\) 1.49226 1.08419i 0.109713 0.0797112i
\(186\) −41.9927 −3.07906
\(187\) 0 0
\(188\) −7.12340 −0.519527
\(189\) 11.1099 8.07181i 0.808126 0.587138i
\(190\) −5.11227 15.7340i −0.370883 1.14146i
\(191\) 5.32938 16.4022i 0.385621 1.18682i −0.550408 0.834896i \(-0.685528\pi\)
0.936029 0.351923i \(-0.114472\pi\)
\(192\) 16.6496 + 12.0967i 1.20158 + 0.873001i
\(193\) −2.09190 1.51986i −0.150579 0.109402i 0.509945 0.860207i \(-0.329666\pi\)
−0.660524 + 0.750805i \(0.729666\pi\)
\(194\) 9.94165 30.5973i 0.713769 2.19676i
\(195\) 1.80289 + 5.54873i 0.129108 + 0.397353i
\(196\) −4.65577 + 3.38262i −0.332555 + 0.241615i
\(197\) −0.144731 −0.0103116 −0.00515582 0.999987i \(-0.501641\pi\)
−0.00515582 + 0.999987i \(0.501641\pi\)
\(198\) 0 0
\(199\) −7.54177 −0.534622 −0.267311 0.963610i \(-0.586135\pi\)
−0.267311 + 0.963610i \(0.586135\pi\)
\(200\) −0.661536 + 0.480634i −0.0467776 + 0.0339859i
\(201\) −3.99470 12.2944i −0.281765 0.867183i
\(202\) −7.59663 + 23.3800i −0.534497 + 1.64501i
\(203\) 9.23485 + 6.70951i 0.648159 + 0.470915i
\(204\) −1.71589 1.24667i −0.120136 0.0872842i
\(205\) −1.36203 + 4.19190i −0.0951285 + 0.292775i
\(206\) 8.99226 + 27.6753i 0.626520 + 1.92823i
\(207\) 0.741831 0.538972i 0.0515608 0.0374611i
\(208\) 9.35435 0.648607
\(209\) 0 0
\(210\) −12.2942 −0.848379
\(211\) −1.83551 + 1.33357i −0.126362 + 0.0918070i −0.649171 0.760643i \(-0.724884\pi\)
0.522809 + 0.852450i \(0.324884\pi\)
\(212\) 3.09349 + 9.52078i 0.212462 + 0.653890i
\(213\) −3.85544 + 11.8658i −0.264170 + 0.813033i
\(214\) −12.4100 9.01642i −0.848333 0.616350i
\(215\) 1.06368 + 0.772808i 0.0725423 + 0.0527051i
\(216\) −1.13133 + 3.48188i −0.0769774 + 0.236912i
\(217\) −9.92973 30.5606i −0.674074 2.07459i
\(218\) −12.6000 + 9.15443i −0.853379 + 0.620016i
\(219\) 18.8924 1.27663
\(220\) 0 0
\(221\) −1.41464 −0.0951591
\(222\) −5.98141 + 4.34575i −0.401446 + 0.291667i
\(223\) 2.65127 + 8.15976i 0.177542 + 0.546418i 0.999740 0.0227830i \(-0.00725268\pi\)
−0.822199 + 0.569201i \(0.807253\pi\)
\(224\) −7.64132 + 23.5176i −0.510557 + 1.57133i
\(225\) −0.533593 0.387678i −0.0355729 0.0258452i
\(226\) 5.14709 + 3.73958i 0.342379 + 0.248753i
\(227\) −1.91603 + 5.89692i −0.127171 + 0.391392i −0.994290 0.106708i \(-0.965969\pi\)
0.867119 + 0.498101i \(0.165969\pi\)
\(228\) 11.1565 + 34.3362i 0.738857 + 2.27397i
\(229\) −18.7416 + 13.6166i −1.23848 + 0.899808i −0.997496 0.0707216i \(-0.977470\pi\)
−0.240983 + 0.970529i \(0.577470\pi\)
\(230\) 2.91300 0.192077
\(231\) 0 0
\(232\) −3.04318 −0.199794
\(233\) −22.5414 + 16.3773i −1.47674 + 1.07291i −0.498146 + 0.867093i \(0.665986\pi\)
−0.978590 + 0.205818i \(0.934014\pi\)
\(234\) −1.30243 4.00846i −0.0851423 0.262041i
\(235\) 0.920927 2.83432i 0.0600747 0.184891i
\(236\) −5.44358 3.95499i −0.354347 0.257448i
\(237\) −17.8875 12.9960i −1.16192 0.844182i
\(238\) 0.921171 2.83507i 0.0597107 0.183771i
\(239\) 5.03272 + 15.4891i 0.325540 + 1.00191i 0.971196 + 0.238280i \(0.0765837\pi\)
−0.645657 + 0.763628i \(0.723416\pi\)
\(240\) −4.74692 + 3.44884i −0.306412 + 0.222622i
\(241\) −4.39063 −0.282826 −0.141413 0.989951i \(-0.545164\pi\)
−0.141413 + 0.989951i \(0.545164\pi\)
\(242\) 0 0
\(243\) −6.73820 −0.432256
\(244\) −3.90111 + 2.83432i −0.249743 + 0.181449i
\(245\) −0.743998 2.28979i −0.0475323 0.146289i
\(246\) 5.45942 16.8024i 0.348080 1.07128i
\(247\) 19.4813 + 14.1540i 1.23956 + 0.900596i
\(248\) 6.93056 + 5.03534i 0.440091 + 0.319745i
\(249\) −5.27222 + 16.2262i −0.334114 + 1.02830i
\(250\) −0.647481 1.99274i −0.0409503 0.126032i
\(251\) 2.15739 1.56744i 0.136173 0.0989357i −0.517613 0.855615i \(-0.673179\pi\)
0.653787 + 0.756679i \(0.273179\pi\)
\(252\) 4.83545 0.304605
\(253\) 0 0
\(254\) 0.946229 0.0593717
\(255\) 0.717868 0.521562i 0.0449547 0.0326615i
\(256\) 2.49388 + 7.67536i 0.155867 + 0.479710i
\(257\) −6.68486 + 20.5739i −0.416990 + 1.28336i 0.493469 + 0.869764i \(0.335729\pi\)
−0.910459 + 0.413600i \(0.864271\pi\)
\(258\) −4.26354 3.09764i −0.265436 0.192851i
\(259\) −4.57703 3.32541i −0.284403 0.206631i
\(260\) 2.25268 6.93305i 0.139706 0.429969i
\(261\) −0.758519 2.33448i −0.0469512 0.144501i
\(262\) 1.06624 0.774670i 0.0658726 0.0478593i
\(263\) −22.1392 −1.36516 −0.682581 0.730810i \(-0.739142\pi\)
−0.682581 + 0.730810i \(0.739142\pi\)
\(264\) 0 0
\(265\) −4.18814 −0.257276
\(266\) −41.0515 + 29.8257i −2.51703 + 1.82873i
\(267\) −4.00194 12.3167i −0.244915 0.753771i
\(268\) −4.99131 + 15.3617i −0.304893 + 0.938364i
\(269\) −16.7615 12.1780i −1.02197 0.742503i −0.0552828 0.998471i \(-0.517606\pi\)
−0.966685 + 0.255967i \(0.917606\pi\)
\(270\) −7.58953 5.51412i −0.461884 0.335578i
\(271\) 0.130749 0.402403i 0.00794242 0.0244443i −0.947007 0.321214i \(-0.895909\pi\)
0.954949 + 0.296769i \(0.0959093\pi\)
\(272\) −0.439638 1.35307i −0.0266570 0.0820417i
\(273\) 14.4772 10.5183i 0.876202 0.636598i
\(274\) 23.4325 1.41561
\(275\) 0 0
\(276\) −6.35702 −0.382648
\(277\) −6.93534 + 5.03882i −0.416704 + 0.302753i −0.776310 0.630351i \(-0.782911\pi\)
0.359606 + 0.933104i \(0.382911\pi\)
\(278\) 1.53774 + 4.73267i 0.0922274 + 0.283847i
\(279\) −2.13525 + 6.57164i −0.127834 + 0.393434i
\(280\) 2.02905 + 1.47419i 0.121259 + 0.0880999i
\(281\) −5.67208 4.12101i −0.338368 0.245839i 0.405605 0.914049i \(-0.367061\pi\)
−0.743973 + 0.668210i \(0.767061\pi\)
\(282\) −3.69134 + 11.3608i −0.219816 + 0.676525i
\(283\) −3.07570 9.46603i −0.182831 0.562697i 0.817073 0.576534i \(-0.195595\pi\)
−0.999904 + 0.0138373i \(0.995595\pi\)
\(284\) 12.6119 9.16306i 0.748377 0.543728i
\(285\) −15.1043 −0.894702
\(286\) 0 0
\(287\) 13.5190 0.798002
\(288\) 4.30186 3.12548i 0.253489 0.184171i
\(289\) −5.18680 15.9633i −0.305106 0.939020i
\(290\) 2.40968 7.41623i 0.141501 0.435496i
\(291\) −23.7631 17.2649i −1.39302 1.01209i
\(292\) −19.0974 13.8751i −1.11759 0.811978i
\(293\) −6.74302 + 20.7529i −0.393931 + 1.21240i 0.535859 + 0.844307i \(0.319988\pi\)
−0.929791 + 0.368089i \(0.880012\pi\)
\(294\) 2.98216 + 9.17815i 0.173923 + 0.535280i
\(295\) 2.27740 1.65463i 0.132596 0.0963363i
\(296\) 1.50828 0.0876670
\(297\) 0 0
\(298\) 18.2717 1.05845
\(299\) −3.43025 + 2.49222i −0.198377 + 0.144129i
\(300\) 1.41300 + 4.34876i 0.0815794 + 0.251076i
\(301\) 1.24617 3.83530i 0.0718278 0.221063i
\(302\) 20.2321 + 14.6995i 1.16423 + 0.845859i
\(303\) 18.1579 + 13.1925i 1.04314 + 0.757889i
\(304\) −7.48357 + 23.0321i −0.429212 + 1.32098i
\(305\) −0.623402 1.91863i −0.0356959 0.109861i
\(306\) −0.518595 + 0.376781i −0.0296461 + 0.0215391i
\(307\) 30.8674 1.76170 0.880849 0.473397i \(-0.156972\pi\)
0.880849 + 0.473397i \(0.156972\pi\)
\(308\) 0 0
\(309\) 26.5678 1.51139
\(310\) −17.7590 + 12.9026i −1.00864 + 0.732821i
\(311\) −5.99957 18.4648i −0.340204 1.04704i −0.964101 0.265535i \(-0.914451\pi\)
0.623897 0.781507i \(-0.285549\pi\)
\(312\) −1.47423 + 4.53722i −0.0834619 + 0.256869i
\(313\) −0.850657 0.618038i −0.0480820 0.0349336i 0.563485 0.826127i \(-0.309460\pi\)
−0.611567 + 0.791193i \(0.709460\pi\)
\(314\) −6.56916 4.77278i −0.370719 0.269343i
\(315\) −0.625136 + 1.92397i −0.0352225 + 0.108404i
\(316\) 8.53698 + 26.2741i 0.480243 + 1.47804i
\(317\) 19.2800 14.0078i 1.08287 0.786754i 0.104692 0.994505i \(-0.466614\pi\)
0.978182 + 0.207750i \(0.0666142\pi\)
\(318\) 16.7873 0.941385
\(319\) 0 0
\(320\) 10.7580 0.601391
\(321\) −11.3303 + 8.23196i −0.632397 + 0.459463i
\(322\) −2.76097 8.49741i −0.153863 0.473542i
\(323\) 1.13173 3.48310i 0.0629710 0.193805i
\(324\) 20.3889 + 14.8134i 1.13272 + 0.822966i
\(325\) 2.46735 + 1.79264i 0.136864 + 0.0994375i
\(326\) −6.43351 + 19.8003i −0.356319 + 1.09664i
\(327\) 4.39404 + 13.5235i 0.242991 + 0.747850i
\(328\) −2.91580 + 2.11845i −0.160998 + 0.116972i
\(329\) −9.14077 −0.503947
\(330\) 0 0
\(331\) 25.6693 1.41091 0.705457 0.708753i \(-0.250742\pi\)
0.705457 + 0.708753i \(0.250742\pi\)
\(332\) 17.2464 12.5303i 0.946521 0.687688i
\(333\) 0.375942 + 1.15703i 0.0206015 + 0.0634049i
\(334\) −9.01295 + 27.7390i −0.493167 + 1.51781i
\(335\) −5.46696 3.97198i −0.298692 0.217012i
\(336\) 14.5597 + 10.5782i 0.794296 + 0.577090i
\(337\) 7.38308 22.7228i 0.402182 1.23779i −0.521043 0.853530i \(-0.674457\pi\)
0.923225 0.384259i \(-0.125543\pi\)
\(338\) −2.39480 7.37043i −0.130260 0.400898i
\(339\) 4.69927 3.41422i 0.255230 0.185435i
\(340\) −1.10871 −0.0601282
\(341\) 0 0
\(342\) 10.9115 0.590026
\(343\) 11.3955 8.27934i 0.615301 0.447042i
\(344\) 0.332224 + 1.02248i 0.0179123 + 0.0551285i
\(345\) 0.821848 2.52939i 0.0442468 0.136178i
\(346\) 18.3601 + 13.3394i 0.987047 + 0.717132i
\(347\) −0.268717 0.195234i −0.0144255 0.0104807i 0.580549 0.814225i \(-0.302838\pi\)
−0.594975 + 0.803744i \(0.702838\pi\)
\(348\) −5.25864 + 16.1844i −0.281892 + 0.867576i
\(349\) −0.377460 1.16170i −0.0202050 0.0621845i 0.940446 0.339944i \(-0.110408\pi\)
−0.960651 + 0.277760i \(0.910408\pi\)
\(350\) −5.19927 + 3.77749i −0.277913 + 0.201916i
\(351\) 13.6548 0.728840
\(352\) 0 0
\(353\) −25.7038 −1.36808 −0.684039 0.729446i \(-0.739778\pi\)
−0.684039 + 0.729446i \(0.739778\pi\)
\(354\) −9.12849 + 6.63224i −0.485174 + 0.352499i
\(355\) 2.01539 + 6.20274i 0.106966 + 0.329207i
\(356\) −5.00036 + 15.3895i −0.265019 + 0.815643i
\(357\) −2.20184 1.59973i −0.116534 0.0846666i
\(358\) −38.5361 27.9981i −2.03670 1.47975i
\(359\) 5.54113 17.0538i 0.292450 0.900067i −0.691617 0.722265i \(-0.743101\pi\)
0.984066 0.177802i \(-0.0568988\pi\)
\(360\) −0.166660 0.512925i −0.00878373 0.0270335i
\(361\) −35.0635 + 25.4751i −1.84545 + 1.34080i
\(362\) 5.02517 0.264117
\(363\) 0 0
\(364\) −22.3593 −1.17195
\(365\) 7.98970 5.80485i 0.418200 0.303840i
\(366\) 2.49878 + 7.69045i 0.130613 + 0.401986i
\(367\) −2.62383 + 8.07533i −0.136963 + 0.421529i −0.995890 0.0905689i \(-0.971131\pi\)
0.858927 + 0.512098i \(0.171131\pi\)
\(368\) −3.44979 2.50642i −0.179833 0.130656i
\(369\) −2.35188 1.70874i −0.122434 0.0889535i
\(370\) −1.19430 + 3.67568i −0.0620887 + 0.191089i
\(371\) 3.96957 + 12.2171i 0.206090 + 0.634280i
\(372\) 38.7553 28.1574i 2.00937 1.45989i
\(373\) −35.8450 −1.85598 −0.927991 0.372604i \(-0.878465\pi\)
−0.927991 + 0.372604i \(0.878465\pi\)
\(374\) 0 0
\(375\) −1.91300 −0.0987867
\(376\) 1.97150 1.43238i 0.101672 0.0738692i
\(377\) 3.50742 + 10.7947i 0.180641 + 0.555957i
\(378\) −8.89160 + 27.3655i −0.457334 + 1.40753i
\(379\) −14.1995 10.3166i −0.729380 0.529926i 0.159987 0.987119i \(-0.448855\pi\)
−0.889367 + 0.457193i \(0.848855\pi\)
\(380\) 15.2682 + 11.0930i 0.783244 + 0.569060i
\(381\) 0.266961 0.821622i 0.0136768 0.0420930i
\(382\) 11.1666 + 34.3673i 0.571334 + 1.75839i
\(383\) 17.4950 12.7109i 0.893954 0.649496i −0.0429517 0.999077i \(-0.513676\pi\)
0.936906 + 0.349581i \(0.113676\pi\)
\(384\) −12.2759 −0.626450
\(385\) 0 0
\(386\) 5.41788 0.275763
\(387\) −0.701557 + 0.509711i −0.0356622 + 0.0259101i
\(388\) 11.3412 + 34.9046i 0.575761 + 1.77201i
\(389\) 11.0448 33.9923i 0.559992 1.72348i −0.122389 0.992482i \(-0.539056\pi\)
0.682381 0.730996i \(-0.260944\pi\)
\(390\) −9.88986 7.18541i −0.500793 0.363847i
\(391\) 0.521706 + 0.379041i 0.0263838 + 0.0191689i
\(392\) 0.608369 1.87237i 0.0307273 0.0945689i
\(393\) −0.371834 1.14439i −0.0187566 0.0577268i
\(394\) 0.245337 0.178248i 0.0123599 0.00898001i
\(395\) −11.5579 −0.581539
\(396\) 0 0
\(397\) −20.0447 −1.00601 −0.503007 0.864282i \(-0.667773\pi\)
−0.503007 + 0.864282i \(0.667773\pi\)
\(398\) 12.7843 9.28831i 0.640817 0.465581i
\(399\) 14.3161 + 44.0603i 0.716699 + 2.20577i
\(400\) −0.947813 + 2.91707i −0.0473906 + 0.145853i
\(401\) 16.9074 + 12.2839i 0.844315 + 0.613431i 0.923573 0.383424i \(-0.125255\pi\)
−0.0792579 + 0.996854i \(0.525255\pi\)
\(402\) 21.9132 + 15.9208i 1.09293 + 0.794059i
\(403\) 9.87349 30.3875i 0.491834 1.51371i
\(404\) −8.66604 26.6713i −0.431152 1.32695i
\(405\) −8.53000 + 6.19741i −0.423859 + 0.307952i
\(406\) −23.9176 −1.18701
\(407\) 0 0
\(408\) 0.725576 0.0359214
\(409\) 19.0104 13.8119i 0.940005 0.682954i −0.00841691 0.999965i \(-0.502679\pi\)
0.948422 + 0.317011i \(0.102679\pi\)
\(410\) −2.85386 8.78327i −0.140942 0.433775i
\(411\) 6.61105 20.3467i 0.326099 1.00363i
\(412\) −26.8561 19.5121i −1.32311 0.961294i
\(413\) −6.98522 5.07506i −0.343720 0.249727i
\(414\) −0.593711 + 1.82725i −0.0291793 + 0.0898046i
\(415\) 2.75600 + 8.48210i 0.135287 + 0.416370i
\(416\) −19.8919 + 14.4523i −0.975283 + 0.708584i
\(417\) 4.54328 0.222485
\(418\) 0 0
\(419\) −10.1128 −0.494043 −0.247022 0.969010i \(-0.579452\pi\)
−0.247022 + 0.969010i \(0.579452\pi\)
\(420\) 11.3464 8.24361i 0.553646 0.402247i
\(421\) 2.75731 + 8.48612i 0.134383 + 0.413588i 0.995494 0.0948296i \(-0.0302306\pi\)
−0.861111 + 0.508418i \(0.830231\pi\)
\(422\) 1.46901 4.52116i 0.0715105 0.220087i
\(423\) 1.59020 + 1.15535i 0.0773184 + 0.0561751i
\(424\) −2.77061 2.01296i −0.134552 0.0977581i
\(425\) 0.143336 0.441143i 0.00695282 0.0213986i
\(426\) −8.07828 24.8624i −0.391394 1.20459i
\(427\) −5.00592 + 3.63701i −0.242253 + 0.176007i
\(428\) 17.4991 0.845850
\(429\) 0 0
\(430\) −2.75485 −0.132851
\(431\) −14.2486 + 10.3522i −0.686331 + 0.498649i −0.875452 0.483305i \(-0.839436\pi\)
0.189121 + 0.981954i \(0.439436\pi\)
\(432\) 4.24360 + 13.0605i 0.204170 + 0.628372i
\(433\) 2.82564 8.69644i 0.135792 0.417924i −0.859921 0.510428i \(-0.829487\pi\)
0.995712 + 0.0925038i \(0.0294870\pi\)
\(434\) 54.4700 + 39.5748i 2.61465 + 1.89965i
\(435\) −5.75975 4.18470i −0.276159 0.200641i
\(436\) 5.49028 16.8973i 0.262937 0.809236i
\(437\) −3.39206 10.4397i −0.162264 0.499398i
\(438\) −32.0250 + 23.2675i −1.53021 + 1.11177i
\(439\) −6.46946 −0.308770 −0.154385 0.988011i \(-0.549340\pi\)
−0.154385 + 0.988011i \(0.549340\pi\)
\(440\) 0 0
\(441\) 1.58797 0.0756176
\(442\) 2.39800 1.74225i 0.114061 0.0828703i
\(443\) −12.6339 38.8832i −0.600255 1.84739i −0.526604 0.850111i \(-0.676535\pi\)
−0.0736507 0.997284i \(-0.523465\pi\)
\(444\) 2.60632 8.02143i 0.123690 0.380680i
\(445\) −5.47686 3.97918i −0.259628 0.188631i
\(446\) −14.5437 10.5666i −0.688662 0.500342i
\(447\) 5.15502 15.8655i 0.243824 0.750413i
\(448\) −10.1966 31.3819i −0.481743 1.48265i
\(449\) 9.83826 7.14791i 0.464296 0.337331i −0.330918 0.943659i \(-0.607358\pi\)
0.795214 + 0.606329i \(0.207358\pi\)
\(450\) 1.38197 0.0651465
\(451\) 0 0
\(452\) −7.25777 −0.341377
\(453\) 18.4718 13.4206i 0.867882 0.630553i
\(454\) −4.01464 12.3558i −0.188416 0.579886i
\(455\) 2.89065 8.89651i 0.135516 0.417075i
\(456\) −9.99204 7.25964i −0.467920 0.339964i
\(457\) −8.01121 5.82049i −0.374749 0.272271i 0.384429 0.923155i \(-0.374398\pi\)
−0.759177 + 0.650884i \(0.774398\pi\)
\(458\) 14.9995 46.1636i 0.700880 2.15709i
\(459\) −0.641753 1.97511i −0.0299544 0.0921903i
\(460\) −2.68842 + 1.95325i −0.125348 + 0.0910709i
\(461\) 3.12529 0.145559 0.0727796 0.997348i \(-0.476813\pi\)
0.0727796 + 0.997348i \(0.476813\pi\)
\(462\) 0 0
\(463\) −24.3518 −1.13173 −0.565863 0.824499i \(-0.691457\pi\)
−0.565863 + 0.824499i \(0.691457\pi\)
\(464\) −9.23485 + 6.70951i −0.428717 + 0.311481i
\(465\) 6.19315 + 19.0606i 0.287200 + 0.883912i
\(466\) 18.0406 55.5232i 0.835714 2.57206i
\(467\) −26.8381 19.4990i −1.24192 0.902307i −0.244194 0.969726i \(-0.578523\pi\)
−0.997725 + 0.0674196i \(0.978523\pi\)
\(468\) 3.88981 + 2.82611i 0.179806 + 0.130637i
\(469\) −6.40487 + 19.7122i −0.295749 + 0.910223i
\(470\) 1.92961 + 5.93874i 0.0890064 + 0.273934i
\(471\) −5.99763 + 4.35753i −0.276356 + 0.200784i
\(472\) 2.30185 0.105951
\(473\) 0 0
\(474\) 46.3273 2.12788
\(475\) −6.38769 + 4.64093i −0.293088 + 0.212941i
\(476\) 1.05085 + 3.23418i 0.0481655 + 0.148238i
\(477\) 0.853604 2.62712i 0.0390838 0.120288i
\(478\) −27.6072 20.0578i −1.26273 0.917424i
\(479\) −13.9941 10.1673i −0.639409 0.464558i 0.220238 0.975446i \(-0.429317\pi\)
−0.859647 + 0.510888i \(0.829317\pi\)
\(480\) 4.76588 14.6679i 0.217531 0.669493i
\(481\) −1.73837 5.35015i −0.0792628 0.243946i
\(482\) 7.44269 5.40743i 0.339005 0.246302i
\(483\) −8.15736 −0.371173
\(484\) 0 0
\(485\) −15.3543 −0.697205
\(486\) 11.4221 8.29865i 0.518118 0.376435i
\(487\) 2.36108 + 7.26665i 0.106991 + 0.329283i 0.990192 0.139710i \(-0.0446170\pi\)
−0.883202 + 0.468993i \(0.844617\pi\)
\(488\) 0.509758 1.56887i 0.0230756 0.0710195i
\(489\) 15.3778 + 11.1726i 0.695406 + 0.505242i
\(490\) 4.08124 + 2.96519i 0.184372 + 0.133954i
\(491\) 9.47332 29.1559i 0.427525 1.31579i −0.473030 0.881046i \(-0.656840\pi\)
0.900556 0.434741i \(-0.143160\pi\)
\(492\) 6.22797 + 19.1677i 0.280778 + 0.864147i
\(493\) 1.39657 1.01467i 0.0628983 0.0456983i
\(494\) −50.4551 −2.27008
\(495\) 0 0
\(496\) 32.1333 1.44283
\(497\) 16.1836 11.7581i 0.725934 0.527422i
\(498\) −11.0469 33.9987i −0.495021 1.52352i
\(499\) −11.5814 + 35.6440i −0.518456 + 1.59564i 0.258449 + 0.966025i \(0.416789\pi\)
−0.776905 + 0.629618i \(0.783211\pi\)
\(500\) 1.93376 + 1.40496i 0.0864803 + 0.0628316i
\(501\) 21.5433 + 15.6521i 0.962482 + 0.699284i
\(502\) −1.72663 + 5.31401i −0.0770631 + 0.237176i
\(503\) −2.61952 8.06206i −0.116799 0.359469i 0.875519 0.483183i \(-0.160520\pi\)
−0.992318 + 0.123714i \(0.960520\pi\)
\(504\) −1.33828 + 0.972314i −0.0596115 + 0.0433103i
\(505\) 11.7326 0.522093
\(506\) 0 0
\(507\) −7.07548 −0.314233
\(508\) −0.873280 + 0.634475i −0.0387455 + 0.0281503i
\(509\) −0.524474 1.61417i −0.0232469 0.0715466i 0.938760 0.344572i \(-0.111976\pi\)
−0.962007 + 0.273025i \(0.911976\pi\)
\(510\) −0.574532 + 1.76823i −0.0254407 + 0.0782985i
\(511\) −24.5059 17.8046i −1.08408 0.787628i
\(512\) −24.0633 17.4830i −1.06346 0.772649i
\(513\) −10.9240 + 33.6206i −0.482306 + 1.48438i
\(514\) −14.0067 43.1083i −0.617811 1.90143i
\(515\) 11.2357 8.16319i 0.495103 0.359713i
\(516\) 6.01190 0.264659
\(517\) 0 0
\(518\) 11.8542 0.520843
\(519\) 16.7627 12.1788i 0.735803 0.534592i
\(520\) 0.770639 + 2.37178i 0.0337948 + 0.104010i
\(521\) −11.4623 + 35.2775i −0.502174 + 1.54553i 0.303295 + 0.952897i \(0.401913\pi\)
−0.805470 + 0.592637i \(0.798087\pi\)
\(522\) 4.16090 + 3.02307i 0.182117 + 0.132316i
\(523\) −14.6285 10.6282i −0.639659 0.464740i 0.220074 0.975483i \(-0.429370\pi\)
−0.859733 + 0.510744i \(0.829370\pi\)
\(524\) −0.464601 + 1.42989i −0.0202962 + 0.0624652i
\(525\) 1.81316 + 5.58034i 0.0791329 + 0.243546i
\(526\) 37.5288 27.2663i 1.63633 1.18887i
\(527\) −4.85946 −0.211681
\(528\) 0 0
\(529\) −21.0672 −0.915965
\(530\) 7.09944 5.15804i 0.308380 0.224051i
\(531\) 0.573742 + 1.76580i 0.0248983 + 0.0766291i
\(532\) 17.8877 55.0526i 0.775528 2.38683i
\(533\) 10.8752 + 7.90127i 0.471056 + 0.342242i
\(534\) 21.9529 + 15.9497i 0.949994 + 0.690211i
\(535\) −2.26231 + 6.96269i −0.0978084 + 0.301023i
\(536\) −1.70752 5.25521i −0.0737536 0.226990i
\(537\) −35.1834 + 25.5622i −1.51827 + 1.10309i
\(538\) 43.4111 1.87159
\(539\) 0 0
\(540\) 10.7018 0.460532
\(541\) 9.50790 6.90789i 0.408776 0.296993i −0.364330 0.931270i \(-0.618702\pi\)
0.773106 + 0.634277i \(0.218702\pi\)
\(542\) 0.273957 + 0.843154i 0.0117675 + 0.0362165i
\(543\) 1.41776 4.36342i 0.0608419 0.187252i
\(544\) 3.02536 + 2.19805i 0.129711 + 0.0942407i
\(545\) 6.01347 + 4.36904i 0.257589 + 0.187149i
\(546\) −11.5866 + 35.6598i −0.495860 + 1.52610i
\(547\) 6.72324 + 20.6920i 0.287465 + 0.884726i 0.985649 + 0.168808i \(0.0539917\pi\)
−0.698184 + 0.715918i \(0.746008\pi\)
\(548\) −21.6260 + 15.7122i −0.923816 + 0.671192i
\(549\) 1.33057 0.0567874
\(550\) 0 0
\(551\) −29.3845 −1.25182
\(552\) 1.75939 1.27827i 0.0748847 0.0544069i
\(553\) 10.9547 + 33.7151i 0.465841 + 1.43371i
\(554\) 5.55057 17.0829i 0.235821 0.725783i
\(555\) 2.85469 + 2.07405i 0.121175 + 0.0880385i
\(556\) −4.59259 3.33671i −0.194769 0.141508i
\(557\) −1.49389 + 4.59771i −0.0632980 + 0.194811i −0.977704 0.209986i \(-0.932658\pi\)
0.914406 + 0.404798i \(0.132658\pi\)
\(558\) −4.47399 13.7695i −0.189399 0.582910i
\(559\) 3.24402 2.35692i 0.137208 0.0996872i
\(560\) 9.40763 0.397545
\(561\) 0 0
\(562\) 14.6903 0.619672
\(563\) 3.86062 2.80491i 0.162706 0.118213i −0.503453 0.864023i \(-0.667937\pi\)
0.666159 + 0.745810i \(0.267937\pi\)
\(564\) −4.21099 12.9601i −0.177315 0.545718i
\(565\) 0.938299 2.88779i 0.0394745 0.121490i
\(566\) 16.8719 + 12.2582i 0.709179 + 0.515249i
\(567\) 26.1631 + 19.0086i 1.09875 + 0.798286i
\(568\) −1.64799 + 5.07200i −0.0691483 + 0.212816i
\(569\) −11.0377 33.9705i −0.462724 1.42412i −0.861822 0.507210i \(-0.830677\pi\)
0.399098 0.916908i \(-0.369323\pi\)
\(570\) 25.6037 18.6022i 1.07242 0.779161i
\(571\) 33.9838 1.42218 0.711090 0.703101i \(-0.248202\pi\)
0.711090 + 0.703101i \(0.248202\pi\)
\(572\) 0 0
\(573\) 32.9920 1.37826
\(574\) −22.9165 + 16.6498i −0.956515 + 0.694949i
\(575\) −0.429613 1.32221i −0.0179161 0.0551401i
\(576\) −2.19264 + 6.74825i −0.0913599 + 0.281177i
\(577\) 16.7126 + 12.1424i 0.695755 + 0.505495i 0.878547 0.477656i \(-0.158514\pi\)
−0.182792 + 0.983152i \(0.558514\pi\)
\(578\) 28.4525 + 20.6719i 1.18347 + 0.859839i
\(579\) 1.52855 4.70441i 0.0635245 0.195508i
\(580\) 2.74890 + 8.46024i 0.114142 + 0.351292i
\(581\) 22.1307 16.0789i 0.918136 0.667065i
\(582\) 61.5447 2.55111
\(583\) 0 0
\(584\) 8.07548 0.334166
\(585\) −1.62736 + 1.18235i −0.0672830 + 0.0488840i
\(586\) −14.1286 43.4834i −0.583647 1.79628i
\(587\) 4.12848 12.7062i 0.170401 0.524439i −0.828993 0.559259i \(-0.811086\pi\)
0.999394 + 0.0348197i \(0.0110857\pi\)
\(588\) −8.90648 6.47094i −0.367297 0.266857i
\(589\) 66.9205 + 48.6206i 2.75741 + 2.00338i
\(590\) −1.82268 + 5.60962i −0.0750384 + 0.230944i
\(591\) −0.0855575 0.263319i −0.00351936 0.0108315i
\(592\) 4.57703 3.32541i 0.188115 0.136673i
\(593\) −20.8062 −0.854410 −0.427205 0.904155i \(-0.640502\pi\)
−0.427205 + 0.904155i \(0.640502\pi\)
\(594\) 0 0
\(595\) −1.42270 −0.0583250
\(596\) −16.8630 + 12.2517i −0.690737 + 0.501850i
\(597\) −4.45830 13.7213i −0.182466 0.561573i
\(598\) 2.74534 8.44928i 0.112265 0.345517i
\(599\) 11.5250 + 8.37338i 0.470897 + 0.342127i 0.797791 0.602934i \(-0.206002\pi\)
−0.326894 + 0.945061i \(0.606002\pi\)
\(600\) −1.26552 0.919451i −0.0516645 0.0375364i
\(601\) 6.41093 19.7308i 0.261507 0.804836i −0.730970 0.682409i \(-0.760932\pi\)
0.992478 0.122427i \(-0.0390677\pi\)
\(602\) 2.61108 + 8.03609i 0.106420 + 0.327526i
\(603\) 3.60577 2.61975i 0.146838 0.106684i
\(604\) −28.5287 −1.16082
\(605\) 0 0
\(606\) −47.0276 −1.91037
\(607\) 14.4991 10.5342i 0.588502 0.427572i −0.253277 0.967394i \(-0.581508\pi\)
0.841779 + 0.539822i \(0.181508\pi\)
\(608\) −19.6705 60.5395i −0.797743 2.45520i
\(609\) −6.74790 + 20.7679i −0.273439 + 0.841558i
\(610\) 3.41970 + 2.48456i 0.138460 + 0.100597i
\(611\) −7.35316 5.34238i −0.297477 0.216130i
\(612\) 0.225971 0.695467i 0.00913433 0.0281126i
\(613\) 8.71486 + 26.8216i 0.351990 + 1.08331i 0.957734 + 0.287654i \(0.0928753\pi\)
−0.605745 + 0.795659i \(0.707125\pi\)
\(614\) −52.3243 + 38.0158i −2.11164 + 1.53419i
\(615\) −8.43178 −0.340002
\(616\) 0 0
\(617\) −4.72930 −0.190394 −0.0951972 0.995458i \(-0.530348\pi\)
−0.0951972 + 0.995458i \(0.530348\pi\)
\(618\) −45.0358 + 32.7205i −1.81161 + 1.31621i
\(619\) −9.28827 28.5864i −0.373327 1.14898i −0.944600 0.328223i \(-0.893550\pi\)
0.571273 0.820760i \(-0.306450\pi\)
\(620\) 7.73823 23.8158i 0.310775 0.956467i
\(621\) −5.03576 3.65869i −0.202078 0.146818i
\(622\) 32.9109 + 23.9112i 1.31961 + 0.958752i
\(623\) −6.41648 + 19.7479i −0.257071 + 0.791183i
\(624\) 5.52981 + 17.0190i 0.221369 + 0.681305i
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 2.20314 0.0880551
\(627\) 0 0
\(628\) 9.26301 0.369634
\(629\) −0.692177 + 0.502896i −0.0275989 + 0.0200518i
\(630\) −1.30984 4.03129i −0.0521855 0.160610i
\(631\) −9.79694 + 30.1519i −0.390010 + 1.20033i 0.542770 + 0.839882i \(0.317376\pi\)
−0.932780 + 0.360446i \(0.882624\pi\)
\(632\) −7.64594 5.55510i −0.304139 0.220970i
\(633\) −3.51132 2.55112i −0.139562 0.101398i
\(634\) −15.4304 + 47.4899i −0.612820 + 1.88607i
\(635\) −0.139551 0.429495i −0.00553792 0.0170440i
\(636\) −15.4931 + 11.2564i −0.614341 + 0.446345i
\(637\) −7.34282 −0.290933
\(638\) 0 0
\(639\) −4.30160 −0.170169
\(640\) −5.19153 + 3.77187i −0.205213 + 0.149096i
\(641\) −5.85814 18.0295i −0.231383 0.712123i −0.997581 0.0695181i \(-0.977854\pi\)
0.766198 0.642605i \(-0.222146\pi\)
\(642\) 9.06801 27.9085i 0.357886 1.10146i
\(643\) 29.3259 + 21.3065i 1.15650 + 0.840248i 0.989332 0.145680i \(-0.0465370\pi\)
0.167170 + 0.985928i \(0.446537\pi\)
\(644\) 8.24589 + 5.99099i 0.324933 + 0.236078i
\(645\) −0.777230 + 2.39207i −0.0306034 + 0.0941876i
\(646\) 2.37130 + 7.29812i 0.0932976 + 0.287141i
\(647\) 28.2767 20.5442i 1.11167 0.807676i 0.128745 0.991678i \(-0.458905\pi\)
0.982926 + 0.184002i \(0.0589052\pi\)
\(648\) −8.62158 −0.338688
\(649\) 0 0
\(650\) −6.39026 −0.250646
\(651\) 49.7310 36.1317i 1.94911 1.41611i
\(652\) −7.33919 22.5877i −0.287425 0.884602i
\(653\) −9.20539 + 28.3313i −0.360235 + 1.10869i 0.592677 + 0.805440i \(0.298071\pi\)
−0.952912 + 0.303248i \(0.901929\pi\)
\(654\) −24.1037 17.5124i −0.942531 0.684789i
\(655\) −0.508874 0.369719i −0.0198834 0.0144461i
\(656\) −4.17761 + 12.8573i −0.163108 + 0.501995i
\(657\) 2.01283 + 6.19486i 0.0785280 + 0.241684i
\(658\) 15.4948 11.2576i 0.604050 0.438868i
\(659\) 7.30532 0.284575 0.142287 0.989825i \(-0.454554\pi\)
0.142287 + 0.989825i \(0.454554\pi\)
\(660\) 0 0
\(661\) −22.7352 −0.884296 −0.442148 0.896942i \(-0.645783\pi\)
−0.442148 + 0.896942i \(0.645783\pi\)
\(662\) −43.5128 + 31.6139i −1.69117 + 1.22871i
\(663\) −0.836263 2.57375i −0.0324778 0.0999563i
\(664\) −2.25359 + 6.93584i −0.0874563 + 0.269163i
\(665\) 19.5922 + 14.2346i 0.759755 + 0.551994i
\(666\) −2.06225 1.49831i −0.0799106 0.0580584i
\(667\) 1.59886 4.92077i 0.0619079 0.190533i
\(668\) −10.2817 31.6439i −0.397812 1.22434i
\(669\) −13.2783 + 9.64726i −0.513369 + 0.372985i
\(670\) 14.1590 0.547010
\(671\) 0 0
\(672\) −47.3043 −1.82480
\(673\) −14.3561 + 10.4303i −0.553387 + 0.402059i −0.829033 0.559200i \(-0.811108\pi\)
0.275646 + 0.961259i \(0.411108\pi\)
\(674\) 15.4697 + 47.6109i 0.595872 + 1.83390i
\(675\) −1.38355 + 4.25813i −0.0532528 + 0.163895i
\(676\) 7.15227 + 5.19643i 0.275087 + 0.199863i
\(677\) 6.60332 + 4.79759i 0.253786 + 0.184387i 0.707403 0.706810i \(-0.249867\pi\)
−0.453617 + 0.891197i \(0.649867\pi\)
\(678\) −3.76097 + 11.5751i −0.144439 + 0.444539i
\(679\) 14.5530 + 44.7897i 0.558494 + 1.71887i
\(680\) 0.306850 0.222940i 0.0117672 0.00854934i
\(681\) −11.8613 −0.454527
\(682\) 0 0
\(683\) −6.19100 −0.236892 −0.118446 0.992960i \(-0.537791\pi\)
−0.118446 + 0.992960i \(0.537791\pi\)
\(684\) −10.0703 + 7.31648i −0.385046 + 0.279753i
\(685\) −3.45586 10.6360i −0.132042 0.406382i
\(686\) −9.12020 + 28.0691i −0.348211 + 1.07168i
\(687\) −35.8526 26.0484i −1.36786 0.993810i
\(688\) 3.26250 + 2.37035i 0.124382 + 0.0903686i
\(689\) −3.94709 + 12.1479i −0.150372 + 0.462798i
\(690\) 1.72201 + 5.29981i 0.0655559 + 0.201760i
\(691\) −19.0969 + 13.8747i −0.726482 + 0.527820i −0.888448 0.458976i \(-0.848216\pi\)
0.161967 + 0.986796i \(0.448216\pi\)
\(692\) −25.8892 −0.984158
\(693\) 0 0
\(694\) 0.695956 0.0264181
\(695\) 1.92138 1.39596i 0.0728820 0.0529519i
\(696\) −1.79897 5.53666i −0.0681898 0.209867i
\(697\) 0.631772 1.94439i 0.0239301 0.0736492i
\(698\) 2.07058 + 1.50436i 0.0783724 + 0.0569409i
\(699\) −43.1216 31.3297i −1.63101 1.18500i
\(700\) 2.26552 6.97254i 0.0856284 0.263537i
\(701\) −11.5042 35.4063i −0.434508 1.33728i −0.893590 0.448884i \(-0.851822\pi\)
0.459082 0.888394i \(-0.348178\pi\)
\(702\) −23.1467 + 16.8170i −0.873614 + 0.634718i
\(703\) 14.5637 0.549282
\(704\) 0 0
\(705\) 5.70108 0.214715
\(706\) 43.5713 31.6564i 1.63983 1.19140i
\(707\) −11.1203 34.2247i −0.418222 1.28715i
\(708\) 3.97762 12.2419i 0.149488 0.460077i
\(709\) −14.7676 10.7293i −0.554609 0.402947i 0.274873 0.961480i \(-0.411364\pi\)
−0.829482 + 0.558534i \(0.811364\pi\)
\(710\) −11.0555 8.03232i −0.414907 0.301448i
\(711\) 2.35566 7.24997i 0.0883441 0.271895i
\(712\) −1.71062 5.26473i −0.0641080 0.197304i
\(713\) −11.7833 + 8.56108i −0.441289 + 0.320615i
\(714\) 5.70259 0.213414
\(715\) 0 0
\(716\) 54.3388 2.03074
\(717\) −25.2053 + 18.3127i −0.941310 + 0.683902i
\(718\) 11.6103 + 35.7328i 0.433292 + 1.33354i
\(719\) 2.95849 9.10531i 0.110333 0.339571i −0.880612 0.473838i \(-0.842868\pi\)
0.990945 + 0.134268i \(0.0428682\pi\)
\(720\) −1.63663 1.18908i −0.0609935 0.0443144i
\(721\) −34.4619 25.0380i −1.28343 0.932465i
\(722\) 28.0624 86.3673i 1.04438 3.21426i
\(723\) −2.59552 7.98818i −0.0965283 0.297084i
\(724\) −4.63776 + 3.36953i −0.172361 + 0.125228i
\(725\) −3.72162 −0.138217
\(726\) 0 0
\(727\) −14.0175 −0.519882 −0.259941 0.965625i \(-0.583703\pi\)
−0.259941 + 0.965625i \(0.583703\pi\)
\(728\) 6.18823 4.49601i 0.229351 0.166633i
\(729\) 5.79123 + 17.8236i 0.214490 + 0.660132i
\(730\) −6.39440 + 19.6799i −0.236667 + 0.728388i
\(731\) −0.493383 0.358463i −0.0182484 0.0132582i
\(732\) −7.46281 5.42205i −0.275833 0.200405i
\(733\) −2.87006 + 8.83314i −0.106008 + 0.326260i −0.989966 0.141307i \(-0.954869\pi\)
0.883958 + 0.467567i \(0.154869\pi\)
\(734\) −5.49771 16.9202i −0.202924 0.624536i
\(735\) 3.72616 2.70721i 0.137441 0.0998571i
\(736\) 11.2083 0.413145
\(737\) 0 0
\(738\) 6.09119 0.224220
\(739\) −31.5182 + 22.8993i −1.15942 + 0.842365i −0.989704 0.143129i \(-0.954284\pi\)
−0.169712 + 0.985494i \(0.554284\pi\)
\(740\) −1.36243 4.19312i −0.0500838 0.154142i
\(741\) −14.2350 + 43.8107i −0.522935 + 1.60943i
\(742\) −21.7753 15.8207i −0.799396 0.580795i
\(743\) 37.1578 + 26.9968i 1.36319 + 0.990415i 0.998235 + 0.0593894i \(0.0189154\pi\)
0.364954 + 0.931025i \(0.381085\pi\)
\(744\) −5.06416 + 15.5859i −0.185661 + 0.571406i
\(745\) −2.69473 8.29354i −0.0987274 0.303852i
\(746\) 60.7618 44.1460i 2.22465 1.61630i
\(747\) −5.88233 −0.215223
\(748\) 0 0
\(749\) 22.4549 0.820483
\(750\) 3.24278 2.35601i 0.118409 0.0860295i
\(751\) 7.16698 + 22.0577i 0.261527 + 0.804896i 0.992473 + 0.122462i \(0.0390788\pi\)
−0.730947 + 0.682435i \(0.760921\pi\)
\(752\) 2.82465 8.69339i 0.103005 0.317015i
\(753\) 4.12708 + 2.99850i 0.150399 + 0.109271i
\(754\) −19.2401 13.9788i −0.700684 0.509077i
\(755\) 3.68825 11.3513i 0.134229 0.413115i
\(756\) −10.1433 31.2179i −0.368908 1.13538i
\(757\) 5.27642 3.83355i 0.191775 0.139333i −0.487755 0.872981i \(-0.662184\pi\)
0.679530 + 0.733648i \(0.262184\pi\)
\(758\) 36.7757 1.33575
\(759\) 0 0
\(760\) −6.45628 −0.234194
\(761\) −5.31267 + 3.85988i −0.192584 + 0.139921i −0.679899 0.733306i \(-0.737976\pi\)
0.487315 + 0.873226i \(0.337976\pi\)
\(762\) 0.559362 + 1.72154i 0.0202635 + 0.0623648i
\(763\) 7.04515 21.6827i 0.255051 0.784968i
\(764\) −33.3501 24.2302i −1.20656 0.876620i
\(765\) 0.247504 + 0.179823i 0.00894854 + 0.00650150i
\(766\) −14.0018 + 43.0932i −0.505906 + 1.55702i
\(767\) −2.65300 8.16511i −0.0957944 0.294825i
\(768\) −12.4901 + 9.07456i −0.450696 + 0.327450i
\(769\) −12.5950 −0.454188 −0.227094 0.973873i \(-0.572922\pi\)
−0.227094 + 0.973873i \(0.572922\pi\)
\(770\) 0 0
\(771\) −41.3832 −1.49038
\(772\) −5.00019 + 3.63285i −0.179961 + 0.130749i
\(773\) 6.78131 + 20.8707i 0.243907 + 0.750668i 0.995814 + 0.0913995i \(0.0291340\pi\)
−0.751907 + 0.659269i \(0.770866\pi\)
\(774\) 0.561478 1.72805i 0.0201819 0.0621136i
\(775\) 8.47564 + 6.15791i 0.304454 + 0.221199i
\(776\) −10.1574 7.37982i −0.364631 0.264920i
\(777\) 3.34444 10.2931i 0.119981 0.369264i
\(778\) 23.1420 + 71.2239i 0.829682 + 2.55350i