Properties

Label 605.2.a.f
Level $605$
Weight $2$
Character orbit 605.a
Self dual yes
Analytic conductor $4.831$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + 2 q^{3} + q^{4} + q^{5} + 2 \beta q^{6} + 2 \beta q^{7} - \beta q^{8} + q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{2} + 2 q^{3} + q^{4} + q^{5} + 2 \beta q^{6} + 2 \beta q^{7} - \beta q^{8} + q^{9} + \beta q^{10} + 2 q^{12} + 6 q^{14} + 2 q^{15} - 5 q^{16} - 4 \beta q^{17} + \beta q^{18} - 4 \beta q^{19} + q^{20} + 4 \beta q^{21} + 6 q^{23} - 2 \beta q^{24} + q^{25} - 4 q^{27} + 2 \beta q^{28} + 2 \beta q^{30} + 4 q^{31} - 3 \beta q^{32} - 12 q^{34} + 2 \beta q^{35} + q^{36} + 10 q^{37} - 12 q^{38} - \beta q^{40} + 4 \beta q^{41} + 12 q^{42} - 2 \beta q^{43} + q^{45} + 6 \beta q^{46} - 6 q^{47} - 10 q^{48} + 5 q^{49} + \beta q^{50} - 8 \beta q^{51} - 6 q^{53} - 4 \beta q^{54} - 6 q^{56} - 8 \beta q^{57} + 2 q^{60} + 4 \beta q^{61} + 4 \beta q^{62} + 2 \beta q^{63} + q^{64} + 10 q^{67} - 4 \beta q^{68} + 12 q^{69} + 6 q^{70} - \beta q^{72} - 4 \beta q^{73} + 10 \beta q^{74} + 2 q^{75} - 4 \beta q^{76} - 4 \beta q^{79} - 5 q^{80} - 11 q^{81} + 12 q^{82} - 10 \beta q^{83} + 4 \beta q^{84} - 4 \beta q^{85} - 6 q^{86} - 6 q^{89} + \beta q^{90} + 6 q^{92} + 8 q^{93} - 6 \beta q^{94} - 4 \beta q^{95} - 6 \beta q^{96} - 10 q^{97} + 5 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} + 2 q^{4} + 2 q^{5} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{3} + 2 q^{4} + 2 q^{5} + 2 q^{9} + 4 q^{12} + 12 q^{14} + 4 q^{15} - 10 q^{16} + 2 q^{20} + 12 q^{23} + 2 q^{25} - 8 q^{27} + 8 q^{31} - 24 q^{34} + 2 q^{36} + 20 q^{37} - 24 q^{38} + 24 q^{42} + 2 q^{45} - 12 q^{47} - 20 q^{48} + 10 q^{49} - 12 q^{53} - 12 q^{56} + 4 q^{60} + 2 q^{64} + 20 q^{67} + 24 q^{69} + 12 q^{70} + 4 q^{75} - 10 q^{80} - 22 q^{81} + 24 q^{82} - 12 q^{86} - 12 q^{89} + 12 q^{92} + 16 q^{93} - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−1.73205 2.00000 1.00000 1.00000 −3.46410 −3.46410 1.73205 1.00000 −1.73205
1.2 1.73205 2.00000 1.00000 1.00000 3.46410 3.46410 −1.73205 1.00000 1.73205
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \(-1\)
\(11\) \(1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 605.2.a.f 2
3.b odd 2 1 5445.2.a.r 2
4.b odd 2 1 9680.2.a.bg 2
5.b even 2 1 3025.2.a.j 2
11.b odd 2 1 inner 605.2.a.f 2
11.c even 5 4 605.2.g.h 8
11.d odd 10 4 605.2.g.h 8
33.d even 2 1 5445.2.a.r 2
44.c even 2 1 9680.2.a.bg 2
55.d odd 2 1 3025.2.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
605.2.a.f 2 1.a even 1 1 trivial
605.2.a.f 2 11.b odd 2 1 inner
605.2.g.h 8 11.c even 5 4
605.2.g.h 8 11.d odd 10 4
3025.2.a.j 2 5.b even 2 1
3025.2.a.j 2 55.d odd 2 1
5445.2.a.r 2 3.b odd 2 1
5445.2.a.r 2 33.d even 2 1
9680.2.a.bg 2 4.b odd 2 1
9680.2.a.bg 2 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(605))\):

\( T_{2}^{2} - 3 \) Copy content Toggle raw display
\( T_{3} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 3 \) Copy content Toggle raw display
$3$ \( (T - 2)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 12 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 48 \) Copy content Toggle raw display
$19$ \( T^{2} - 48 \) Copy content Toggle raw display
$23$ \( (T - 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( (T - 10)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 48 \) Copy content Toggle raw display
$43$ \( T^{2} - 12 \) Copy content Toggle raw display
$47$ \( (T + 6)^{2} \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 48 \) Copy content Toggle raw display
$67$ \( (T - 10)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 48 \) Copy content Toggle raw display
$79$ \( T^{2} - 48 \) Copy content Toggle raw display
$83$ \( T^{2} - 300 \) Copy content Toggle raw display
$89$ \( (T + 6)^{2} \) Copy content Toggle raw display
$97$ \( (T + 10)^{2} \) Copy content Toggle raw display
show more
show less