Properties

Label 605.2.a.b
Level $605$
Weight $2$
Character orbit 605.a
Self dual yes
Analytic conductor $4.831$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.83094932229\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - q^{4} + q^{5} + 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} - q^{4} + q^{5} + 3 q^{8} - 3 q^{9} - q^{10} - 2 q^{13} - q^{16} - 6 q^{17} + 3 q^{18} + 4 q^{19} - q^{20} + 4 q^{23} + q^{25} + 2 q^{26} - 6 q^{29} - 8 q^{31} - 5 q^{32} + 6 q^{34} + 3 q^{36} - 2 q^{37} - 4 q^{38} + 3 q^{40} - 2 q^{41} - 4 q^{43} - 3 q^{45} - 4 q^{46} - 12 q^{47} - 7 q^{49} - q^{50} + 2 q^{52} - 2 q^{53} + 6 q^{58} + 4 q^{59} + 10 q^{61} + 8 q^{62} + 7 q^{64} - 2 q^{65} - 16 q^{67} + 6 q^{68} + 8 q^{71} - 9 q^{72} - 14 q^{73} + 2 q^{74} - 4 q^{76} - 8 q^{79} - q^{80} + 9 q^{81} + 2 q^{82} + 4 q^{83} - 6 q^{85} + 4 q^{86} + 10 q^{89} + 3 q^{90} - 4 q^{92} + 12 q^{94} + 4 q^{95} + 10 q^{97} + 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 −1.00000 1.00000 0 0 3.00000 −3.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 605.2.a.b 1
3.b odd 2 1 5445.2.a.i 1
4.b odd 2 1 9680.2.a.r 1
5.b even 2 1 3025.2.a.f 1
11.b odd 2 1 55.2.a.a 1
11.c even 5 4 605.2.g.c 4
11.d odd 10 4 605.2.g.a 4
33.d even 2 1 495.2.a.a 1
44.c even 2 1 880.2.a.h 1
55.d odd 2 1 275.2.a.a 1
55.e even 4 2 275.2.b.b 2
77.b even 2 1 2695.2.a.c 1
88.b odd 2 1 3520.2.a.p 1
88.g even 2 1 3520.2.a.n 1
132.d odd 2 1 7920.2.a.i 1
143.d odd 2 1 9295.2.a.b 1
165.d even 2 1 2475.2.a.i 1
165.l odd 4 2 2475.2.c.f 2
220.g even 2 1 4400.2.a.p 1
220.i odd 4 2 4400.2.b.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.a.a 1 11.b odd 2 1
275.2.a.a 1 55.d odd 2 1
275.2.b.b 2 55.e even 4 2
495.2.a.a 1 33.d even 2 1
605.2.a.b 1 1.a even 1 1 trivial
605.2.g.a 4 11.d odd 10 4
605.2.g.c 4 11.c even 5 4
880.2.a.h 1 44.c even 2 1
2475.2.a.i 1 165.d even 2 1
2475.2.c.f 2 165.l odd 4 2
2695.2.a.c 1 77.b even 2 1
3025.2.a.f 1 5.b even 2 1
3520.2.a.n 1 88.g even 2 1
3520.2.a.p 1 88.b odd 2 1
4400.2.a.p 1 220.g even 2 1
4400.2.b.n 2 220.i odd 4 2
5445.2.a.i 1 3.b odd 2 1
7920.2.a.i 1 132.d odd 2 1
9295.2.a.b 1 143.d odd 2 1
9680.2.a.r 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(605))\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{3} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T - 4 \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T + 8 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T + 2 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T + 12 \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T - 4 \) Copy content Toggle raw display
$61$ \( T - 10 \) Copy content Toggle raw display
$67$ \( T + 16 \) Copy content Toggle raw display
$71$ \( T - 8 \) Copy content Toggle raw display
$73$ \( T + 14 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T - 10 \) Copy content Toggle raw display
$97$ \( T - 10 \) Copy content Toggle raw display
show more
show less