Properties

Label 6048.2.z
Level 6048
Weight 2
Character orbit z
Rep. character \(\chi_{6048}(1513,\cdot)\)
Character field \(\Q(\zeta_{4})\)
Dimension 0
Newform subspaces 0
Sturm bound 2304
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 6048 = 2^{5} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6048.z (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 0 \)
Sturm bound: \(2304\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6048, [\chi])\).

Total New Old
Modular forms 2352 0 2352
Cusp forms 2256 0 2256
Eisenstein series 96 0 96

Decomposition of \(S_{2}^{\mathrm{old}}(6048, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6048, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1008, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3024, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database