Properties

Label 6048.2.j.c
Level 6048
Weight 2
Character orbit 6048.j
Analytic conductor 48.294
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6048 = 2^{5} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6048.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(48.2935231425\)
Analytic rank: \(0\)
Dimension: \(32\)
Coefficient ring index: multiple of None
Twist minimal: no (minimal twist has level 1512)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32q + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 32q + 64q^{19} - 16q^{25} + 48q^{43} - 32q^{49} - 16q^{67} - 16q^{73} - 16q^{91} + 64q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5615.1 0 0 0 −3.61017 0 1.00000i 0 0 0
5615.2 0 0 0 −3.61017 0 1.00000i 0 0 0
5615.3 0 0 0 −3.47003 0 1.00000i 0 0 0
5615.4 0 0 0 −3.47003 0 1.00000i 0 0 0
5615.5 0 0 0 −2.21305 0 1.00000i 0 0 0
5615.6 0 0 0 −2.21305 0 1.00000i 0 0 0
5615.7 0 0 0 −2.09311 0 1.00000i 0 0 0
5615.8 0 0 0 −2.09311 0 1.00000i 0 0 0
5615.9 0 0 0 −1.17792 0 1.00000i 0 0 0
5615.10 0 0 0 −1.17792 0 1.00000i 0 0 0
5615.11 0 0 0 −0.436221 0 1.00000i 0 0 0
5615.12 0 0 0 −0.436221 0 1.00000i 0 0 0
5615.13 0 0 0 −0.206991 0 1.00000i 0 0 0
5615.14 0 0 0 −0.206991 0 1.00000i 0 0 0
5615.15 0 0 0 −0.162025 0 1.00000i 0 0 0
5615.16 0 0 0 −0.162025 0 1.00000i 0 0 0
5615.17 0 0 0 0.162025 0 1.00000i 0 0 0
5615.18 0 0 0 0.162025 0 1.00000i 0 0 0
5615.19 0 0 0 0.206991 0 1.00000i 0 0 0
5615.20 0 0 0 0.206991 0 1.00000i 0 0 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 5615.32
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.d odd 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6048.2.j.c 32
3.b odd 2 1 inner 6048.2.j.c 32
4.b odd 2 1 1512.2.j.c 32
8.b even 2 1 1512.2.j.c 32
8.d odd 2 1 inner 6048.2.j.c 32
12.b even 2 1 1512.2.j.c 32
24.f even 2 1 inner 6048.2.j.c 32
24.h odd 2 1 1512.2.j.c 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1512.2.j.c 32 4.b odd 2 1
1512.2.j.c 32 8.b even 2 1
1512.2.j.c 32 12.b even 2 1
1512.2.j.c 32 24.h odd 2 1
6048.2.j.c 32 1.a even 1 1 trivial
6048.2.j.c 32 3.b odd 2 1 inner
6048.2.j.c 32 8.d odd 2 1 inner
6048.2.j.c 32 24.f even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{5}^{16} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(6048, [\chi])\).

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database