Properties

Label 6048.2.ds
Level 6048
Weight 2
Character orbit ds
Rep. character \(\chi_{6048}(673,\cdot)\)
Character field \(\Q(\zeta_{9})\)
Dimension 1296
Sturm bound 2304

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 6048 = 2^{5} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6048.ds (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 27 \)
Character field: \(\Q(\zeta_{9})\)
Sturm bound: \(2304\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6048, [\chi])\).

Total New Old
Modular forms 7008 1296 5712
Cusp forms 6816 1296 5520
Eisenstein series 192 0 192

Decomposition of \(S_{2}^{\mathrm{new}}(6048, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(6048, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6048, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1512, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3024, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database