Properties

Label 6048.2.a.d
Level 6048
Weight 2
Character orbit 6048.a
Self dual yes
Analytic conductor 48.294
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6048 = 2^{5} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6048.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(48.2935231425\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 3q^{5} + q^{7} + O(q^{10}) \) \( q - 3q^{5} + q^{7} + 2q^{11} - 4q^{13} + 5q^{17} - 4q^{23} + 4q^{25} + 4q^{29} - 8q^{31} - 3q^{35} + q^{37} + 7q^{41} + 5q^{43} + q^{47} + q^{49} + 2q^{53} - 6q^{55} - 11q^{59} - 14q^{61} + 12q^{65} - 4q^{67} + 12q^{71} + 2q^{77} + 13q^{79} + 11q^{83} - 15q^{85} + 6q^{89} - 4q^{91} - 8q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −3.00000 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6048.2.a.d yes 1
3.b odd 2 1 6048.2.a.w yes 1
4.b odd 2 1 6048.2.a.a 1
12.b even 2 1 6048.2.a.v yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6048.2.a.a 1 4.b odd 2 1
6048.2.a.d yes 1 1.a even 1 1 trivial
6048.2.a.v yes 1 12.b even 2 1
6048.2.a.w yes 1 3.b odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6048))\):

\( T_{5} + 3 \)
\( T_{11} - 2 \)
\( T_{13} + 4 \)
\( T_{17} - 5 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 + 3 T + 5 T^{2} \)
$7$ \( 1 - T \)
$11$ \( 1 - 2 T + 11 T^{2} \)
$13$ \( 1 + 4 T + 13 T^{2} \)
$17$ \( 1 - 5 T + 17 T^{2} \)
$19$ \( 1 + 19 T^{2} \)
$23$ \( 1 + 4 T + 23 T^{2} \)
$29$ \( 1 - 4 T + 29 T^{2} \)
$31$ \( 1 + 8 T + 31 T^{2} \)
$37$ \( 1 - T + 37 T^{2} \)
$41$ \( 1 - 7 T + 41 T^{2} \)
$43$ \( 1 - 5 T + 43 T^{2} \)
$47$ \( 1 - T + 47 T^{2} \)
$53$ \( 1 - 2 T + 53 T^{2} \)
$59$ \( 1 + 11 T + 59 T^{2} \)
$61$ \( 1 + 14 T + 61 T^{2} \)
$67$ \( 1 + 4 T + 67 T^{2} \)
$71$ \( 1 - 12 T + 71 T^{2} \)
$73$ \( 1 + 73 T^{2} \)
$79$ \( 1 - 13 T + 79 T^{2} \)
$83$ \( 1 - 11 T + 83 T^{2} \)
$89$ \( 1 - 6 T + 89 T^{2} \)
$97$ \( 1 + 8 T + 97 T^{2} \)
show more
show less