Properties

Label 6048.2.a.bh
Level 6048
Weight 2
Character orbit 6048.a
Self dual yes
Analytic conductor 48.294
Analytic rank 1
Dimension 2
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6048 = 2^{5} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6048.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(48.2935231425\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 + 2 \beta ) q^{5} - q^{7} +O(q^{10})\) \( q + ( 1 + 2 \beta ) q^{5} - q^{7} + ( 2 - 2 \beta ) q^{11} -2 \beta q^{13} + ( -3 - 2 \beta ) q^{17} + ( -4 + 2 \beta ) q^{19} -4 q^{23} + ( 4 + 4 \beta ) q^{25} + 2 \beta q^{29} + ( 4 - 2 \beta ) q^{31} + ( -1 - 2 \beta ) q^{35} + ( -3 - 4 \beta ) q^{37} + ( -1 + 2 \beta ) q^{41} + ( -5 + 2 \beta ) q^{43} + ( 3 - 4 \beta ) q^{47} + q^{49} + 2 q^{53} + ( -6 + 2 \beta ) q^{55} + ( -5 - 4 \beta ) q^{59} + ( 6 + 2 \beta ) q^{61} + ( -8 - 2 \beta ) q^{65} -4 q^{67} + ( -4 - 4 \beta ) q^{71} + 4 \beta q^{73} + ( -2 + 2 \beta ) q^{77} + ( -1 - 2 \beta ) q^{79} + ( -11 - 4 \beta ) q^{83} + ( -11 - 8 \beta ) q^{85} + 6 q^{89} + 2 \beta q^{91} + ( 4 - 6 \beta ) q^{95} + ( -4 + 10 \beta ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{5} - 2q^{7} + O(q^{10}) \) \( 2q + 2q^{5} - 2q^{7} + 4q^{11} - 6q^{17} - 8q^{19} - 8q^{23} + 8q^{25} + 8q^{31} - 2q^{35} - 6q^{37} - 2q^{41} - 10q^{43} + 6q^{47} + 2q^{49} + 4q^{53} - 12q^{55} - 10q^{59} + 12q^{61} - 16q^{65} - 8q^{67} - 8q^{71} - 4q^{77} - 2q^{79} - 22q^{83} - 22q^{85} + 12q^{89} + 8q^{95} - 8q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 0 0 −1.82843 0 −1.00000 0 0 0
1.2 0 0 0 3.82843 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6048.2.a.bh yes 2
3.b odd 2 1 6048.2.a.y 2
4.b odd 2 1 6048.2.a.bi yes 2
12.b even 2 1 6048.2.a.bb yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6048.2.a.y 2 3.b odd 2 1
6048.2.a.bb yes 2 12.b even 2 1
6048.2.a.bh yes 2 1.a even 1 1 trivial
6048.2.a.bi yes 2 4.b odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(7\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6048))\):

\( T_{5}^{2} - 2 T_{5} - 7 \)
\( T_{11}^{2} - 4 T_{11} - 4 \)
\( T_{13}^{2} - 8 \)
\( T_{17}^{2} + 6 T_{17} + 1 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( \)
$3$ \( \)
$5$ \( 1 - 2 T + 3 T^{2} - 10 T^{3} + 25 T^{4} \)
$7$ \( ( 1 + T )^{2} \)
$11$ \( 1 - 4 T + 18 T^{2} - 44 T^{3} + 121 T^{4} \)
$13$ \( 1 + 18 T^{2} + 169 T^{4} \)
$17$ \( 1 + 6 T + 35 T^{2} + 102 T^{3} + 289 T^{4} \)
$19$ \( 1 + 8 T + 46 T^{2} + 152 T^{3} + 361 T^{4} \)
$23$ \( ( 1 + 4 T + 23 T^{2} )^{2} \)
$29$ \( 1 + 50 T^{2} + 841 T^{4} \)
$31$ \( 1 - 8 T + 70 T^{2} - 248 T^{3} + 961 T^{4} \)
$37$ \( 1 + 6 T + 51 T^{2} + 222 T^{3} + 1369 T^{4} \)
$41$ \( 1 + 2 T + 75 T^{2} + 82 T^{3} + 1681 T^{4} \)
$43$ \( 1 + 10 T + 103 T^{2} + 430 T^{3} + 1849 T^{4} \)
$47$ \( 1 - 6 T + 71 T^{2} - 282 T^{3} + 2209 T^{4} \)
$53$ \( ( 1 - 2 T + 53 T^{2} )^{2} \)
$59$ \( 1 + 10 T + 111 T^{2} + 590 T^{3} + 3481 T^{4} \)
$61$ \( 1 - 12 T + 150 T^{2} - 732 T^{3} + 3721 T^{4} \)
$67$ \( ( 1 + 4 T + 67 T^{2} )^{2} \)
$71$ \( 1 + 8 T + 126 T^{2} + 568 T^{3} + 5041 T^{4} \)
$73$ \( 1 + 114 T^{2} + 5329 T^{4} \)
$79$ \( 1 + 2 T + 151 T^{2} + 158 T^{3} + 6241 T^{4} \)
$83$ \( 1 + 22 T + 255 T^{2} + 1826 T^{3} + 6889 T^{4} \)
$89$ \( ( 1 - 6 T + 89 T^{2} )^{2} \)
$97$ \( 1 + 8 T + 10 T^{2} + 776 T^{3} + 9409 T^{4} \)
show more
show less