# Properties

 Label 6037.2 Level 6037 Weight 2 Dimension 1.51554e+06 Nonzero newspaces 8 Sturm bound 6.07423e+06

## Defining parameters

 Level: $$N$$ = $$6037\( 6037$$ \) Weight: $$k$$ = $$2$$ Nonzero newspaces: $$8$$ Sturm bound: $$6074228$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(6037))$$.

Total New Old
Modular forms 1521575 1521575 0
Cusp forms 1515540 1515540 0
Eisenstein series 6035 6035 0

## Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(6037))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
6037.2.a $$\chi_{6037}(1, \cdot)$$ 6037.2.a.a 243 1
6037.2.a.b 259
6037.2.b $$\chi_{6037}(6036, \cdot)$$ n/a 502 1
6037.2.c $$\chi_{6037}(509, \cdot)$$ n/a 1004 2
6037.2.e $$\chi_{6037}(510, \cdot)$$ n/a 1006 2
6037.2.g $$\chi_{6037}(14, \cdot)$$ n/a 251502 502
6037.2.h $$\chi_{6037}(4, \cdot)$$ n/a 252004 502
6037.2.i $$\chi_{6037}(9, \cdot)$$ n/a 504008 1004
6037.2.k $$\chi_{6037}(3, \cdot)$$ n/a 505012 1004

"n/a" means that newforms for that character have not been added to the database yet

## Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database