Properties

Label 6036.2.a
Level 6036
Weight 2
Character orbit a
Rep. character \(\chi_{6036}(1,\cdot)\)
Character field \(\Q\)
Dimension 84
Newforms 9
Sturm bound 2016
Trace bound 5

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 6036 = 2^{2} \cdot 3 \cdot 503 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6036.a (trivial)
Character field: \(\Q\)
Newforms: \( 9 \)
Sturm bound: \(2016\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6036))\).

Total New Old
Modular forms 1014 84 930
Cusp forms 1003 84 919
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(503\)FrickeDim.
\(-\)\(+\)\(+\)\(-\)\(26\)
\(-\)\(+\)\(-\)\(+\)\(16\)
\(-\)\(-\)\(+\)\(+\)\(16\)
\(-\)\(-\)\(-\)\(-\)\(26\)
Plus space\(+\)\(32\)
Minus space\(-\)\(52\)

Trace form

\( 84q + 4q^{5} + 4q^{7} + 84q^{9} + O(q^{10}) \) \( 84q + 4q^{5} + 4q^{7} + 84q^{9} - 4q^{11} + 4q^{13} + 4q^{15} + 4q^{17} - 8q^{19} - 8q^{23} + 92q^{25} + 8q^{29} + 4q^{31} + 8q^{33} - 8q^{35} + 12q^{37} - 8q^{39} + 8q^{41} + 4q^{45} + 28q^{47} + 104q^{49} + 8q^{51} + 16q^{53} + 16q^{55} - 4q^{57} + 4q^{59} + 20q^{61} + 4q^{63} + 40q^{65} + 12q^{67} + 16q^{69} + 20q^{71} + 8q^{73} + 44q^{77} + 8q^{79} + 84q^{81} - 8q^{83} + 36q^{85} + 32q^{89} - 12q^{91} - 12q^{93} + 28q^{95} + 12q^{97} - 4q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6036))\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3 503
6036.2.a.a \(1\) \(48.198\) \(\Q\) None \(0\) \(-1\) \(-3\) \(3\) \(-\) \(+\) \(-\) \(q-q^{3}-3q^{5}+3q^{7}+q^{9}+6q^{11}+\cdots\)
6036.2.a.b \(1\) \(48.198\) \(\Q\) None \(0\) \(-1\) \(3\) \(1\) \(-\) \(+\) \(-\) \(q-q^{3}+3q^{5}+q^{7}+q^{9}-2q^{11}-5q^{13}+\cdots\)
6036.2.a.c \(1\) \(48.198\) \(\Q\) None \(0\) \(1\) \(-3\) \(-5\) \(-\) \(-\) \(-\) \(q+q^{3}-3q^{5}-5q^{7}+q^{9}-6q^{11}+\cdots\)
6036.2.a.d \(1\) \(48.198\) \(\Q\) None \(0\) \(1\) \(-1\) \(1\) \(-\) \(-\) \(-\) \(q+q^{3}-q^{5}+q^{7}+q^{9}+6q^{11}+3q^{13}+\cdots\)
6036.2.a.e \(1\) \(48.198\) \(\Q\) None \(0\) \(1\) \(1\) \(1\) \(-\) \(-\) \(+\) \(q+q^{3}+q^{5}+q^{7}+q^{9}-2q^{11}+3q^{13}+\cdots\)
6036.2.a.f \(14\) \(48.198\) \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None \(0\) \(-14\) \(-6\) \(-7\) \(-\) \(+\) \(-\) \(q-q^{3}-\beta _{1}q^{5}+\beta _{2}q^{7}+q^{9}+\beta _{3}q^{11}+\cdots\)
6036.2.a.g \(15\) \(48.198\) \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None \(0\) \(15\) \(-11\) \(-4\) \(-\) \(-\) \(+\) \(q+q^{3}+(-1+\beta _{1})q^{5}-\beta _{8}q^{7}+q^{9}+\cdots\)
6036.2.a.h \(24\) \(48.198\) None \(0\) \(24\) \(18\) \(9\) \(-\) \(-\) \(-\)
6036.2.a.i \(26\) \(48.198\) None \(0\) \(-26\) \(6\) \(5\) \(-\) \(+\) \(+\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(6036))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(6036)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(503))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1006))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1509))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2012))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3018))\)\(^{\oplus 2}\)