Properties

Label 603.2.u.a.91.1
Level $603$
Weight $2$
Character 603.91
Analytic conductor $4.815$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [603,2,Mod(64,603)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(603, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("603.64"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 603 = 3^{2} \cdot 67 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 603.u (of order \(11\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.81497924188\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 67)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 91.1
Root \(-0.841254 + 0.540641i\) of defining polynomial
Character \(\chi\) \(=\) 603.91
Dual form 603.2.u.a.550.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.915415 + 2.00448i) q^{2} +(-1.87023 - 2.15836i) q^{4} +(0.0405070 - 0.281733i) q^{5} +(0.226900 - 0.496841i) q^{7} +(1.80972 - 0.531382i) q^{8} +(0.527646 + 0.339098i) q^{10} +(0.508975 - 3.54000i) q^{11} +(0.942270 + 0.276675i) q^{13} +(0.788201 + 0.909632i) q^{14} +(0.221378 - 1.53972i) q^{16} +(-0.862774 + 0.995695i) q^{17} +(-3.05062 - 6.67992i) q^{19} +(-0.683838 + 0.439476i) q^{20} +(6.62993 + 4.26080i) q^{22} +(6.22839 - 4.00274i) q^{23} +(4.71973 + 1.38584i) q^{25} +(-1.41716 + 1.63549i) q^{26} +(-1.49672 + 0.439476i) q^{28} +3.42094 q^{29} +(-5.85621 + 1.71954i) q^{31} +(6.05710 + 3.89266i) q^{32} +(-1.20605 - 2.64089i) q^{34} +(-0.130785 - 0.0840506i) q^{35} +5.01428 q^{37} +16.1823 q^{38} +(-0.0764012 - 0.531382i) q^{40} +(-0.877875 + 1.01312i) q^{41} +(5.80088 - 6.69457i) q^{43} +(-8.59250 + 5.52206i) q^{44} +(2.32186 + 16.1489i) q^{46} +(-4.50791 + 2.89705i) q^{47} +(4.38866 + 5.06478i) q^{49} +(-7.09840 + 8.19199i) q^{50} +(-1.16510 - 2.55121i) q^{52} +(-4.58316 - 5.28925i) q^{53} +(-0.976716 - 0.286790i) q^{55} +(0.146613 - 1.01971i) q^{56} +(-3.13158 + 6.85720i) q^{58} +(0.837324 - 0.245860i) q^{59} +(-1.86953 - 13.0029i) q^{61} +(1.91408 - 13.3127i) q^{62} +(-10.7303 + 6.89594i) q^{64} +(0.116117 - 0.254261i) q^{65} +(-1.18356 + 8.09933i) q^{67} +3.76266 q^{68} +(0.288201 - 0.185215i) q^{70} +(2.89602 + 3.34218i) q^{71} +(0.738601 + 5.13708i) q^{73} +(-4.59015 + 10.0510i) q^{74} +(-8.71232 + 19.0773i) q^{76} +(-1.64333 - 1.05610i) q^{77} +(7.48653 + 2.19824i) q^{79} +(-0.424822 - 0.124739i) q^{80} +(-1.22716 - 2.68711i) q^{82} +(0.929807 - 6.46695i) q^{83} +(0.245571 + 0.283404i) q^{85} +(8.10892 + 17.7561i) q^{86} +(-0.959989 - 6.67687i) q^{88} +(-12.8365 - 8.24949i) q^{89} +(0.351265 - 0.405381i) q^{91} +(-20.2879 - 5.95707i) q^{92} +(-1.68048 - 11.6880i) q^{94} +(-2.00552 + 0.588874i) q^{95} -5.39459 q^{97} +(-14.1697 + 4.16060i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 4 q^{2} - 14 q^{4} + 9 q^{5} + 7 q^{7} + 7 q^{8} - 8 q^{10} + 12 q^{11} + 15 q^{13} - 5 q^{14} + 12 q^{16} - q^{17} - 13 q^{19} - 6 q^{20} - 7 q^{22} + 7 q^{23} + 12 q^{25} - 28 q^{26} + 10 q^{28}+ \cdots - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/603\mathbb{Z}\right)^\times\).

\(n\) \(136\) \(470\)
\(\chi(n)\) \(e\left(\frac{7}{11}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.915415 + 2.00448i −0.647296 + 1.41738i 0.246605 + 0.969116i \(0.420685\pi\)
−0.893901 + 0.448265i \(0.852042\pi\)
\(3\) 0 0
\(4\) −1.87023 2.15836i −0.935116 1.07918i
\(5\) 0.0405070 0.281733i 0.0181153 0.125995i −0.978757 0.205024i \(-0.934273\pi\)
0.996872 + 0.0790290i \(0.0251820\pi\)
\(6\) 0 0
\(7\) 0.226900 0.496841i 0.0857601 0.187788i −0.861893 0.507090i \(-0.830721\pi\)
0.947653 + 0.319302i \(0.103448\pi\)
\(8\) 1.80972 0.531382i 0.639833 0.187872i
\(9\) 0 0
\(10\) 0.527646 + 0.339098i 0.166856 + 0.107232i
\(11\) 0.508975 3.54000i 0.153462 1.06735i −0.756898 0.653533i \(-0.773286\pi\)
0.910360 0.413817i \(-0.135805\pi\)
\(12\) 0 0
\(13\) 0.942270 + 0.276675i 0.261339 + 0.0767360i 0.409777 0.912186i \(-0.365606\pi\)
−0.148438 + 0.988922i \(0.547425\pi\)
\(14\) 0.788201 + 0.909632i 0.210655 + 0.243109i
\(15\) 0 0
\(16\) 0.221378 1.53972i 0.0553446 0.384930i
\(17\) −0.862774 + 0.995695i −0.209254 + 0.241491i −0.850668 0.525703i \(-0.823802\pi\)
0.641415 + 0.767194i \(0.278348\pi\)
\(18\) 0 0
\(19\) −3.05062 6.67992i −0.699859 1.53248i −0.840142 0.542367i \(-0.817528\pi\)
0.140283 0.990111i \(-0.455199\pi\)
\(20\) −0.683838 + 0.439476i −0.152911 + 0.0982699i
\(21\) 0 0
\(22\) 6.62993 + 4.26080i 1.41351 + 0.908405i
\(23\) 6.22839 4.00274i 1.29871 0.834630i 0.305639 0.952148i \(-0.401130\pi\)
0.993071 + 0.117518i \(0.0374936\pi\)
\(24\) 0 0
\(25\) 4.71973 + 1.38584i 0.943946 + 0.277168i
\(26\) −1.41716 + 1.63549i −0.277928 + 0.320746i
\(27\) 0 0
\(28\) −1.49672 + 0.439476i −0.282853 + 0.0830532i
\(29\) 3.42094 0.635252 0.317626 0.948216i \(-0.397114\pi\)
0.317626 + 0.948216i \(0.397114\pi\)
\(30\) 0 0
\(31\) −5.85621 + 1.71954i −1.05181 + 0.308838i −0.761547 0.648110i \(-0.775560\pi\)
−0.290260 + 0.956948i \(0.593742\pi\)
\(32\) 6.05710 + 3.89266i 1.07075 + 0.688132i
\(33\) 0 0
\(34\) −1.20605 2.64089i −0.206836 0.452908i
\(35\) −0.130785 0.0840506i −0.0221068 0.0142071i
\(36\) 0 0
\(37\) 5.01428 0.824343 0.412172 0.911106i \(-0.364770\pi\)
0.412172 + 0.911106i \(0.364770\pi\)
\(38\) 16.1823 2.62512
\(39\) 0 0
\(40\) −0.0764012 0.531382i −0.0120801 0.0840189i
\(41\) −0.877875 + 1.01312i −0.137101 + 0.158223i −0.820148 0.572151i \(-0.806109\pi\)
0.683047 + 0.730374i \(0.260654\pi\)
\(42\) 0 0
\(43\) 5.80088 6.69457i 0.884626 1.02091i −0.114995 0.993366i \(-0.536685\pi\)
0.999621 0.0275467i \(-0.00876948\pi\)
\(44\) −8.59250 + 5.52206i −1.29537 + 0.832482i
\(45\) 0 0
\(46\) 2.32186 + 16.1489i 0.342339 + 2.38102i
\(47\) −4.50791 + 2.89705i −0.657546 + 0.422579i −0.826416 0.563059i \(-0.809624\pi\)
0.168871 + 0.985638i \(0.445988\pi\)
\(48\) 0 0
\(49\) 4.38866 + 5.06478i 0.626951 + 0.723540i
\(50\) −7.09840 + 8.19199i −1.00387 + 1.15852i
\(51\) 0 0
\(52\) −1.16510 2.55121i −0.161570 0.353789i
\(53\) −4.58316 5.28925i −0.629546 0.726535i 0.347944 0.937515i \(-0.386880\pi\)
−0.977490 + 0.210980i \(0.932334\pi\)
\(54\) 0 0
\(55\) −0.976716 0.286790i −0.131700 0.0386707i
\(56\) 0.146613 1.01971i 0.0195920 0.136265i
\(57\) 0 0
\(58\) −3.13158 + 6.85720i −0.411196 + 0.900394i
\(59\) 0.837324 0.245860i 0.109010 0.0320083i −0.226773 0.973948i \(-0.572817\pi\)
0.335783 + 0.941939i \(0.390999\pi\)
\(60\) 0 0
\(61\) −1.86953 13.0029i −0.239369 1.66485i −0.655239 0.755422i \(-0.727432\pi\)
0.415870 0.909424i \(-0.363477\pi\)
\(62\) 1.91408 13.3127i 0.243089 1.69072i
\(63\) 0 0
\(64\) −10.7303 + 6.89594i −1.34129 + 0.861992i
\(65\) 0.116117 0.254261i 0.0144025 0.0315372i
\(66\) 0 0
\(67\) −1.18356 + 8.09933i −0.144595 + 0.989491i
\(68\) 3.76266 0.456289
\(69\) 0 0
\(70\) 0.288201 0.185215i 0.0344466 0.0221375i
\(71\) 2.89602 + 3.34218i 0.343694 + 0.396644i 0.901111 0.433589i \(-0.142753\pi\)
−0.557417 + 0.830233i \(0.688207\pi\)
\(72\) 0 0
\(73\) 0.738601 + 5.13708i 0.0864467 + 0.601250i 0.986288 + 0.165033i \(0.0527730\pi\)
−0.899841 + 0.436217i \(0.856318\pi\)
\(74\) −4.59015 + 10.0510i −0.533594 + 1.16841i
\(75\) 0 0
\(76\) −8.71232 + 19.0773i −0.999372 + 2.18832i
\(77\) −1.64333 1.05610i −0.187275 0.120354i
\(78\) 0 0
\(79\) 7.48653 + 2.19824i 0.842300 + 0.247322i 0.674293 0.738464i \(-0.264449\pi\)
0.168007 + 0.985786i \(0.446267\pi\)
\(80\) −0.424822 0.124739i −0.0474966 0.0139462i
\(81\) 0 0
\(82\) −1.22716 2.68711i −0.135517 0.296742i
\(83\) 0.929807 6.46695i 0.102060 0.709840i −0.872972 0.487771i \(-0.837810\pi\)
0.975031 0.222068i \(-0.0712809\pi\)
\(84\) 0 0
\(85\) 0.245571 + 0.283404i 0.0266359 + 0.0307395i
\(86\) 8.10892 + 17.7561i 0.874407 + 1.91468i
\(87\) 0 0
\(88\) −0.959989 6.67687i −0.102335 0.711757i
\(89\) −12.8365 8.24949i −1.36066 0.874444i −0.362323 0.932053i \(-0.618016\pi\)
−0.998339 + 0.0576083i \(0.981653\pi\)
\(90\) 0 0
\(91\) 0.351265 0.405381i 0.0368226 0.0424955i
\(92\) −20.2879 5.95707i −2.11516 0.621067i
\(93\) 0 0
\(94\) −1.68048 11.6880i −0.173329 1.20553i
\(95\) −2.00552 + 0.588874i −0.205762 + 0.0604172i
\(96\) 0 0
\(97\) −5.39459 −0.547737 −0.273869 0.961767i \(-0.588303\pi\)
−0.273869 + 0.961767i \(0.588303\pi\)
\(98\) −14.1697 + 4.16060i −1.43135 + 0.420284i
\(99\) 0 0
\(100\) −5.83585 12.7787i −0.583585 1.27787i
\(101\) 7.05137 + 15.4403i 0.701638 + 1.53637i 0.837974 + 0.545709i \(0.183740\pi\)
−0.136337 + 0.990663i \(0.543533\pi\)
\(102\) 0 0
\(103\) 0.568757 0.167002i 0.0560413 0.0164552i −0.253592 0.967311i \(-0.581612\pi\)
0.309633 + 0.950856i \(0.399794\pi\)
\(104\) 1.85227 0.181630
\(105\) 0 0
\(106\) 14.7977 4.34500i 1.43728 0.422023i
\(107\) −0.266995 1.85699i −0.0258113 0.179522i 0.972837 0.231489i \(-0.0743598\pi\)
−0.998649 + 0.0519676i \(0.983451\pi\)
\(108\) 0 0
\(109\) −11.2065 3.29052i −1.07339 0.315175i −0.303156 0.952941i \(-0.598040\pi\)
−0.770230 + 0.637766i \(0.779859\pi\)
\(110\) 1.46896 1.69528i 0.140060 0.161638i
\(111\) 0 0
\(112\) −0.714766 0.459352i −0.0675391 0.0434047i
\(113\) −1.53683 10.6889i −0.144573 1.00553i −0.924915 0.380175i \(-0.875864\pi\)
0.780341 0.625354i \(-0.215045\pi\)
\(114\) 0 0
\(115\) −0.875410 1.91688i −0.0816324 0.178750i
\(116\) −6.39794 7.38362i −0.594034 0.685552i
\(117\) 0 0
\(118\) −0.273677 + 1.90346i −0.0251940 + 0.175228i
\(119\) 0.298939 + 0.654585i 0.0274037 + 0.0600057i
\(120\) 0 0
\(121\) −1.71811 0.504483i −0.156192 0.0458621i
\(122\) 27.7754 + 8.15558i 2.51466 + 0.738372i
\(123\) 0 0
\(124\) 14.6639 + 9.42389i 1.31685 + 0.846290i
\(125\) 1.17282 2.56811i 0.104900 0.229699i
\(126\) 0 0
\(127\) 4.37570 9.58144i 0.388281 0.850216i −0.610045 0.792367i \(-0.708849\pi\)
0.998325 0.0578488i \(-0.0184241\pi\)
\(128\) −1.95074 13.5677i −0.172423 1.19923i
\(129\) 0 0
\(130\) 0.403365 + 0.465508i 0.0353775 + 0.0408278i
\(131\) 15.7460 10.1193i 1.37573 0.884129i 0.376625 0.926366i \(-0.377085\pi\)
0.999108 + 0.0422366i \(0.0134483\pi\)
\(132\) 0 0
\(133\) −4.01104 −0.347802
\(134\) −15.1515 9.78667i −1.30889 0.845440i
\(135\) 0 0
\(136\) −1.03229 + 2.26039i −0.0885179 + 0.193827i
\(137\) 8.50699 5.46711i 0.726801 0.467087i −0.124196 0.992258i \(-0.539635\pi\)
0.850997 + 0.525171i \(0.175999\pi\)
\(138\) 0 0
\(139\) 2.58225 17.9599i 0.219023 1.52334i −0.522632 0.852558i \(-0.675050\pi\)
0.741655 0.670781i \(-0.234041\pi\)
\(140\) 0.0631871 + 0.439476i 0.00534029 + 0.0371425i
\(141\) 0 0
\(142\) −9.35039 + 2.74552i −0.784667 + 0.230399i
\(143\) 1.45902 3.19481i 0.122010 0.267164i
\(144\) 0 0
\(145\) 0.138572 0.963789i 0.0115078 0.0800383i
\(146\) −10.9733 3.22205i −0.908157 0.266659i
\(147\) 0 0
\(148\) −9.37787 10.8226i −0.770856 0.889615i
\(149\) 1.08126 + 2.36763i 0.0885802 + 0.193964i 0.948737 0.316065i \(-0.102362\pi\)
−0.860157 + 0.510029i \(0.829635\pi\)
\(150\) 0 0
\(151\) −6.04091 + 6.97159i −0.491603 + 0.567340i −0.946293 0.323310i \(-0.895204\pi\)
0.454691 + 0.890649i \(0.349750\pi\)
\(152\) −9.07035 10.4677i −0.735703 0.849046i
\(153\) 0 0
\(154\) 3.62127 2.32725i 0.291810 0.187535i
\(155\) 0.247232 + 1.71954i 0.0198582 + 0.138117i
\(156\) 0 0
\(157\) 7.73089 4.96834i 0.616993 0.396517i −0.194481 0.980906i \(-0.562302\pi\)
0.811473 + 0.584389i \(0.198666\pi\)
\(158\) −11.2596 + 12.9943i −0.895766 + 1.03377i
\(159\) 0 0
\(160\) 1.34204 1.54880i 0.106098 0.122444i
\(161\) −0.575508 4.00274i −0.0453564 0.315460i
\(162\) 0 0
\(163\) 11.0877 0.868456 0.434228 0.900803i \(-0.357021\pi\)
0.434228 + 0.900803i \(0.357021\pi\)
\(164\) 3.82851 0.298957
\(165\) 0 0
\(166\) 12.1117 + 7.78372i 0.940050 + 0.604134i
\(167\) −6.41212 14.0406i −0.496185 1.08649i −0.977691 0.210050i \(-0.932637\pi\)
0.481506 0.876443i \(-0.340090\pi\)
\(168\) 0 0
\(169\) −10.1250 6.50692i −0.778844 0.500533i
\(170\) −0.792878 + 0.232810i −0.0608109 + 0.0178557i
\(171\) 0 0
\(172\) −25.2983 −1.92898
\(173\) −11.7878 + 3.46122i −0.896212 + 0.263152i −0.697227 0.716851i \(-0.745583\pi\)
−0.198985 + 0.980002i \(0.563765\pi\)
\(174\) 0 0
\(175\) 1.75945 2.03051i 0.133002 0.153492i
\(176\) −5.33793 1.56736i −0.402362 0.118144i
\(177\) 0 0
\(178\) 28.2866 18.1787i 2.12017 1.36255i
\(179\) −10.5816 6.80035i −0.790903 0.508282i 0.0817330 0.996654i \(-0.473955\pi\)
−0.872635 + 0.488372i \(0.837591\pi\)
\(180\) 0 0
\(181\) −18.9004 + 12.1466i −1.40486 + 0.902847i −0.999934 0.0115037i \(-0.996338\pi\)
−0.404923 + 0.914351i \(0.632702\pi\)
\(182\) 0.491025 + 1.07519i 0.0363972 + 0.0796987i
\(183\) 0 0
\(184\) 9.14467 10.5535i 0.674154 0.778015i
\(185\) 0.203114 1.41269i 0.0149332 0.103863i
\(186\) 0 0
\(187\) 3.08563 + 3.56100i 0.225643 + 0.260406i
\(188\) 14.6837 + 4.31153i 1.07092 + 0.314451i
\(189\) 0 0
\(190\) 0.655498 4.55909i 0.0475548 0.330751i
\(191\) 9.29425 + 5.97305i 0.672508 + 0.432195i 0.831829 0.555032i \(-0.187294\pi\)
−0.159321 + 0.987227i \(0.550930\pi\)
\(192\) 0 0
\(193\) 3.14016 0.922035i 0.226034 0.0663695i −0.166754 0.985998i \(-0.553329\pi\)
0.392788 + 0.919629i \(0.371511\pi\)
\(194\) 4.93828 10.8133i 0.354548 0.776352i
\(195\) 0 0
\(196\) 2.72383 18.9446i 0.194559 1.35319i
\(197\) 16.2726 + 18.7796i 1.15938 + 1.33799i 0.931258 + 0.364360i \(0.118712\pi\)
0.228120 + 0.973633i \(0.426742\pi\)
\(198\) 0 0
\(199\) −5.27273 + 11.5457i −0.373774 + 0.818451i 0.625495 + 0.780228i \(0.284897\pi\)
−0.999269 + 0.0382230i \(0.987830\pi\)
\(200\) 9.27781 0.656040
\(201\) 0 0
\(202\) −37.4048 −2.63179
\(203\) 0.776210 1.69966i 0.0544793 0.119293i
\(204\) 0 0
\(205\) 0.249869 + 0.288364i 0.0174516 + 0.0201402i
\(206\) −0.185897 + 1.29294i −0.0129520 + 0.0900833i
\(207\) 0 0
\(208\) 0.634601 1.38958i 0.0440017 0.0963502i
\(209\) −25.1996 + 7.39927i −1.74309 + 0.511818i
\(210\) 0 0
\(211\) 7.79814 + 5.01156i 0.536846 + 0.345010i 0.780804 0.624776i \(-0.214810\pi\)
−0.243958 + 0.969786i \(0.578446\pi\)
\(212\) −2.84455 + 19.7843i −0.195364 + 1.35879i
\(213\) 0 0
\(214\) 3.96670 + 1.16473i 0.271158 + 0.0796193i
\(215\) −1.65110 1.90547i −0.112604 0.129952i
\(216\) 0 0
\(217\) −0.474435 + 3.29977i −0.0322068 + 0.224003i
\(218\) 16.8544 19.4510i 1.14152 1.31739i
\(219\) 0 0
\(220\) 1.20769 + 2.64447i 0.0814223 + 0.178290i
\(221\) −1.08845 + 0.699505i −0.0732171 + 0.0470538i
\(222\) 0 0
\(223\) 1.93895 + 1.24609i 0.129842 + 0.0834441i 0.603949 0.797023i \(-0.293593\pi\)
−0.474108 + 0.880467i \(0.657229\pi\)
\(224\) 3.30839 2.12617i 0.221051 0.142061i
\(225\) 0 0
\(226\) 22.8325 + 6.70424i 1.51880 + 0.445959i
\(227\) −8.35734 + 9.64488i −0.554696 + 0.640153i −0.961971 0.273152i \(-0.911934\pi\)
0.407275 + 0.913306i \(0.366479\pi\)
\(228\) 0 0
\(229\) −7.29074 + 2.14075i −0.481786 + 0.141465i −0.513602 0.858029i \(-0.671689\pi\)
0.0318160 + 0.999494i \(0.489871\pi\)
\(230\) 4.64371 0.306197
\(231\) 0 0
\(232\) 6.19094 1.81782i 0.406455 0.119346i
\(233\) −12.1270 7.79355i −0.794466 0.510572i 0.0793395 0.996848i \(-0.474719\pi\)
−0.873806 + 0.486275i \(0.838355\pi\)
\(234\) 0 0
\(235\) 0.633593 + 1.38737i 0.0413310 + 0.0905024i
\(236\) −2.09664 1.34743i −0.136480 0.0877103i
\(237\) 0 0
\(238\) −1.58576 −0.102789
\(239\) −22.2474 −1.43906 −0.719532 0.694459i \(-0.755644\pi\)
−0.719532 + 0.694459i \(0.755644\pi\)
\(240\) 0 0
\(241\) 3.28427 + 22.8426i 0.211558 + 1.47142i 0.767955 + 0.640504i \(0.221275\pi\)
−0.556396 + 0.830917i \(0.687816\pi\)
\(242\) 2.58401 2.98211i 0.166107 0.191697i
\(243\) 0 0
\(244\) −24.5684 + 28.3535i −1.57283 + 1.81515i
\(245\) 1.60469 1.03127i 0.102520 0.0658853i
\(246\) 0 0
\(247\) −1.02633 7.13832i −0.0653041 0.454200i
\(248\) −9.68438 + 6.22377i −0.614959 + 0.395210i
\(249\) 0 0
\(250\) 4.07411 + 4.70177i 0.257669 + 0.297366i
\(251\) −7.66631 + 8.84739i −0.483893 + 0.558442i −0.944223 0.329305i \(-0.893185\pi\)
0.460330 + 0.887748i \(0.347731\pi\)
\(252\) 0 0
\(253\) −10.9996 24.0858i −0.691540 1.51426i
\(254\) 15.2002 + 17.5420i 0.953747 + 1.10068i
\(255\) 0 0
\(256\) 4.50498 + 1.32278i 0.281561 + 0.0826739i
\(257\) −2.78579 + 19.3756i −0.173773 + 1.20862i 0.697051 + 0.717022i \(0.254495\pi\)
−0.870824 + 0.491596i \(0.836414\pi\)
\(258\) 0 0
\(259\) 1.13774 2.49130i 0.0706957 0.154802i
\(260\) −0.765953 + 0.224904i −0.0475024 + 0.0139480i
\(261\) 0 0
\(262\) 5.86987 + 40.8259i 0.362642 + 2.52223i
\(263\) 0.157085 1.09255i 0.00968627 0.0673695i −0.984405 0.175917i \(-0.943711\pi\)
0.994091 + 0.108548i \(0.0346200\pi\)
\(264\) 0 0
\(265\) −1.67581 + 1.07697i −0.102944 + 0.0661580i
\(266\) 3.67177 8.04005i 0.225131 0.492967i
\(267\) 0 0
\(268\) 19.6948 12.5931i 1.20305 0.769244i
\(269\) −11.1258 −0.678354 −0.339177 0.940723i \(-0.610149\pi\)
−0.339177 + 0.940723i \(0.610149\pi\)
\(270\) 0 0
\(271\) −0.371014 + 0.238436i −0.0225375 + 0.0144840i −0.551861 0.833936i \(-0.686082\pi\)
0.529324 + 0.848420i \(0.322446\pi\)
\(272\) 1.34209 + 1.54886i 0.0813763 + 0.0939133i
\(273\) 0 0
\(274\) 3.17128 + 22.0568i 0.191584 + 1.33250i
\(275\) 7.30809 16.0025i 0.440695 0.964986i
\(276\) 0 0
\(277\) −4.30520 + 9.42708i −0.258674 + 0.566418i −0.993758 0.111559i \(-0.964416\pi\)
0.735083 + 0.677977i \(0.237143\pi\)
\(278\) 33.6364 + 21.6168i 2.01738 + 1.29649i
\(279\) 0 0
\(280\) −0.281348 0.0826112i −0.0168138 0.00493697i
\(281\) 19.6848 + 5.77998i 1.17430 + 0.344805i 0.809973 0.586468i \(-0.199482\pi\)
0.364324 + 0.931272i \(0.381300\pi\)
\(282\) 0 0
\(283\) 3.82870 + 8.38369i 0.227593 + 0.498359i 0.988634 0.150345i \(-0.0480386\pi\)
−0.761041 + 0.648704i \(0.775311\pi\)
\(284\) 1.79742 12.5013i 0.106657 0.741816i
\(285\) 0 0
\(286\) 5.06833 + 5.84916i 0.299696 + 0.345868i
\(287\) 0.304171 + 0.666042i 0.0179546 + 0.0393152i
\(288\) 0 0
\(289\) 2.17232 + 15.1088i 0.127784 + 0.888756i
\(290\) 1.80504 + 1.16003i 0.105996 + 0.0681194i
\(291\) 0 0
\(292\) 9.70633 11.2017i 0.568020 0.655530i
\(293\) 31.4261 + 9.22753i 1.83593 + 0.539078i 0.999953 0.00968446i \(-0.00308271\pi\)
0.835978 + 0.548763i \(0.184901\pi\)
\(294\) 0 0
\(295\) −0.0353494 0.245860i −0.00205812 0.0143145i
\(296\) 9.07446 2.66450i 0.527442 0.154871i
\(297\) 0 0
\(298\) −5.73566 −0.332258
\(299\) 6.97629 2.04842i 0.403449 0.118463i
\(300\) 0 0
\(301\) −2.00992 4.40111i −0.115850 0.253676i
\(302\) −8.44446 18.4908i −0.485924 1.06402i
\(303\) 0 0
\(304\) −10.9605 + 3.21831i −0.628631 + 0.184583i
\(305\) −3.73906 −0.214098
\(306\) 0 0
\(307\) −12.4577 + 3.65791i −0.710999 + 0.208768i −0.617181 0.786821i \(-0.711725\pi\)
−0.0938179 + 0.995589i \(0.529907\pi\)
\(308\) 0.793953 + 5.52206i 0.0452397 + 0.314649i
\(309\) 0 0
\(310\) −3.67310 1.07852i −0.208618 0.0612558i
\(311\) −3.59740 + 4.15163i −0.203990 + 0.235417i −0.848522 0.529161i \(-0.822507\pi\)
0.644532 + 0.764578i \(0.277052\pi\)
\(312\) 0 0
\(313\) −9.81322 6.30657i −0.554676 0.356469i 0.233078 0.972458i \(-0.425120\pi\)
−0.787755 + 0.615989i \(0.788756\pi\)
\(314\) 2.88197 + 20.0445i 0.162639 + 1.13118i
\(315\) 0 0
\(316\) −9.25693 20.2699i −0.520743 1.14027i
\(317\) 1.37986 + 1.59245i 0.0775008 + 0.0894407i 0.793176 0.608993i \(-0.208426\pi\)
−0.715675 + 0.698434i \(0.753881\pi\)
\(318\) 0 0
\(319\) 1.74117 12.1101i 0.0974869 0.678036i
\(320\) 1.50816 + 3.30241i 0.0843086 + 0.184610i
\(321\) 0 0
\(322\) 8.55025 + 2.51058i 0.476487 + 0.139909i
\(323\) 9.28315 + 2.72578i 0.516528 + 0.151666i
\(324\) 0 0
\(325\) 4.06384 + 2.61167i 0.225421 + 0.144869i
\(326\) −10.1499 + 22.2251i −0.562148 + 1.23093i
\(327\) 0 0
\(328\) −1.05035 + 2.29995i −0.0579961 + 0.126994i
\(329\) 0.416534 + 2.89705i 0.0229642 + 0.159720i
\(330\) 0 0
\(331\) 0.400012 + 0.461638i 0.0219866 + 0.0253739i 0.766636 0.642081i \(-0.221929\pi\)
−0.744650 + 0.667455i \(0.767383\pi\)
\(332\) −15.6970 + 10.0878i −0.861483 + 0.553641i
\(333\) 0 0
\(334\) 34.0138 1.86115
\(335\) 2.23390 + 0.661527i 0.122051 + 0.0361431i
\(336\) 0 0
\(337\) 4.63800 10.1558i 0.252648 0.553222i −0.740230 0.672353i \(-0.765284\pi\)
0.992879 + 0.119131i \(0.0380109\pi\)
\(338\) 22.3115 14.3388i 1.21359 0.779926i
\(339\) 0 0
\(340\) 0.152414 1.06006i 0.00826581 0.0574900i
\(341\) 3.10650 + 21.6062i 0.168226 + 1.17004i
\(342\) 0 0
\(343\) 7.18071 2.10845i 0.387722 0.113845i
\(344\) 6.94060 15.1978i 0.374212 0.819410i
\(345\) 0 0
\(346\) 3.85281 26.7969i 0.207129 1.44061i
\(347\) −12.0537 3.53930i −0.647079 0.190000i −0.0583070 0.998299i \(-0.518570\pi\)
−0.588772 + 0.808299i \(0.700388\pi\)
\(348\) 0 0
\(349\) 14.4252 + 16.6476i 0.772164 + 0.891125i 0.996518 0.0833826i \(-0.0265724\pi\)
−0.224353 + 0.974508i \(0.572027\pi\)
\(350\) 2.45949 + 5.38554i 0.131465 + 0.287869i
\(351\) 0 0
\(352\) 16.8629 19.4609i 0.898797 1.03727i
\(353\) 6.10368 + 7.04403i 0.324866 + 0.374916i 0.894565 0.446938i \(-0.147486\pi\)
−0.569699 + 0.821854i \(0.692940\pi\)
\(354\) 0 0
\(355\) 1.05891 0.680520i 0.0562011 0.0361183i
\(356\) 6.20176 + 43.1342i 0.328693 + 2.28611i
\(357\) 0 0
\(358\) 23.3177 14.9854i 1.23238 0.792001i
\(359\) 16.0332 18.5033i 0.846201 0.976568i −0.153733 0.988112i \(-0.549129\pi\)
0.999933 + 0.0115449i \(0.00367494\pi\)
\(360\) 0 0
\(361\) −22.8727 + 26.3965i −1.20383 + 1.38929i
\(362\) −7.04580 49.0046i −0.370319 2.57563i
\(363\) 0 0
\(364\) −1.53191 −0.0802937
\(365\) 1.47720 0.0773203
\(366\) 0 0
\(367\) 18.8542 + 12.1168i 0.984179 + 0.632493i 0.930587 0.366070i \(-0.119297\pi\)
0.0535914 + 0.998563i \(0.482933\pi\)
\(368\) −4.78428 10.4761i −0.249398 0.546105i
\(369\) 0 0
\(370\) 2.64577 + 1.70033i 0.137547 + 0.0883961i
\(371\) −3.66784 + 1.07697i −0.190425 + 0.0559137i
\(372\) 0 0
\(373\) 20.0794 1.03967 0.519837 0.854266i \(-0.325993\pi\)
0.519837 + 0.854266i \(0.325993\pi\)
\(374\) −9.96259 + 2.92528i −0.515153 + 0.151263i
\(375\) 0 0
\(376\) −6.61861 + 7.63828i −0.341329 + 0.393914i
\(377\) 3.22345 + 0.946489i 0.166016 + 0.0487467i
\(378\) 0 0
\(379\) −20.0919 + 12.9123i −1.03205 + 0.663260i −0.943009 0.332768i \(-0.892018\pi\)
−0.0890439 + 0.996028i \(0.528381\pi\)
\(380\) 5.02179 + 3.22731i 0.257612 + 0.165557i
\(381\) 0 0
\(382\) −20.4809 + 13.1623i −1.04790 + 0.673442i
\(383\) 4.04039 + 8.84722i 0.206454 + 0.452072i 0.984328 0.176349i \(-0.0564288\pi\)
−0.777873 + 0.628421i \(0.783702\pi\)
\(384\) 0 0
\(385\) −0.364106 + 0.420200i −0.0185565 + 0.0214154i
\(386\) −1.02635 + 7.13844i −0.0522400 + 0.363337i
\(387\) 0 0
\(388\) 10.0891 + 11.6435i 0.512198 + 0.591107i
\(389\) 11.0080 + 3.23225i 0.558130 + 0.163882i 0.548618 0.836073i \(-0.315154\pi\)
0.00951188 + 0.999955i \(0.496972\pi\)
\(390\) 0 0
\(391\) −1.38819 + 9.65504i −0.0702036 + 0.488277i
\(392\) 10.6336 + 6.83379i 0.537077 + 0.345158i
\(393\) 0 0
\(394\) −52.5396 + 15.4270i −2.64691 + 0.777202i
\(395\) 0.922573 2.02015i 0.0464197 0.101645i
\(396\) 0 0
\(397\) 4.38098 30.4704i 0.219875 1.52926i −0.518619 0.855005i \(-0.673554\pi\)
0.738494 0.674260i \(-0.235537\pi\)
\(398\) −18.3163 21.1382i −0.918114 1.05956i
\(399\) 0 0
\(400\) 3.17865 6.96028i 0.158933 0.348014i
\(401\) −14.3770 −0.717954 −0.358977 0.933346i \(-0.616874\pi\)
−0.358977 + 0.933346i \(0.616874\pi\)
\(402\) 0 0
\(403\) −5.99389 −0.298577
\(404\) 20.1382 44.0964i 1.00191 2.19388i
\(405\) 0 0
\(406\) 2.69638 + 3.11179i 0.133819 + 0.154436i
\(407\) 2.55214 17.7506i 0.126505 0.879862i
\(408\) 0 0
\(409\) −8.65239 + 18.9461i −0.427833 + 0.936824i 0.565840 + 0.824515i \(0.308552\pi\)
−0.993673 + 0.112309i \(0.964175\pi\)
\(410\) −0.806755 + 0.236885i −0.0398428 + 0.0116989i
\(411\) 0 0
\(412\) −1.42416 0.915251i −0.0701633 0.0450912i
\(413\) 0.0678350 0.471803i 0.00333794 0.0232159i
\(414\) 0 0
\(415\) −1.78429 0.523914i −0.0875871 0.0257179i
\(416\) 4.63042 + 5.34379i 0.227025 + 0.262001i
\(417\) 0 0
\(418\) 8.23640 57.2854i 0.402856 2.80192i
\(419\) 17.2766 19.9383i 0.844018 0.974049i −0.155888 0.987775i \(-0.549824\pi\)
0.999906 + 0.0137262i \(0.00436932\pi\)
\(420\) 0 0
\(421\) −2.23208 4.88757i −0.108785 0.238206i 0.847408 0.530941i \(-0.178162\pi\)
−0.956193 + 0.292736i \(0.905434\pi\)
\(422\) −17.1841 + 11.0436i −0.836509 + 0.537592i
\(423\) 0 0
\(424\) −11.1049 7.13666i −0.539300 0.346587i
\(425\) −5.45194 + 3.50375i −0.264458 + 0.169957i
\(426\) 0 0
\(427\) −6.88456 2.02149i −0.333167 0.0978267i
\(428\) −3.50871 + 4.04927i −0.169600 + 0.195729i
\(429\) 0 0
\(430\) 5.33093 1.56530i 0.257080 0.0754855i
\(431\) 32.5222 1.56654 0.783270 0.621682i \(-0.213550\pi\)
0.783270 + 0.621682i \(0.213550\pi\)
\(432\) 0 0
\(433\) −34.9882 + 10.2735i −1.68143 + 0.493711i −0.976490 0.215561i \(-0.930842\pi\)
−0.704935 + 0.709272i \(0.749024\pi\)
\(434\) −6.18002 3.97166i −0.296650 0.190646i
\(435\) 0 0
\(436\) 13.8566 + 30.3417i 0.663610 + 1.45310i
\(437\) −45.7384 29.3943i −2.18797 1.40612i
\(438\) 0 0
\(439\) 19.9742 0.953319 0.476659 0.879088i \(-0.341848\pi\)
0.476659 + 0.879088i \(0.341848\pi\)
\(440\) −1.91998 −0.0915314
\(441\) 0 0
\(442\) −0.405759 2.82211i −0.0193000 0.134234i
\(443\) −18.6353 + 21.5062i −0.885388 + 1.02179i 0.114211 + 0.993457i \(0.463566\pi\)
−0.999598 + 0.0283355i \(0.990979\pi\)
\(444\) 0 0
\(445\) −2.84412 + 3.28229i −0.134824 + 0.155595i
\(446\) −4.27269 + 2.74589i −0.202318 + 0.130022i
\(447\) 0 0
\(448\) 0.991486 + 6.89594i 0.0468433 + 0.325802i
\(449\) −34.6098 + 22.2424i −1.63334 + 1.04968i −0.686922 + 0.726732i \(0.741038\pi\)
−0.946416 + 0.322951i \(0.895325\pi\)
\(450\) 0 0
\(451\) 3.13963 + 3.62333i 0.147840 + 0.170616i
\(452\) −20.1963 + 23.3078i −0.949954 + 1.09631i
\(453\) 0 0
\(454\) −11.6825 25.5812i −0.548288 1.20058i
\(455\) −0.0999804 0.115383i −0.00468715 0.00540926i
\(456\) 0 0
\(457\) 22.1392 + 6.50065i 1.03563 + 0.304088i 0.754997 0.655728i \(-0.227638\pi\)
0.280630 + 0.959816i \(0.409457\pi\)
\(458\) 2.38296 16.5738i 0.111348 0.774444i
\(459\) 0 0
\(460\) −2.50010 + 5.47446i −0.116568 + 0.255248i
\(461\) 2.61328 0.767328i 0.121713 0.0357380i −0.220309 0.975430i \(-0.570707\pi\)
0.342022 + 0.939692i \(0.388888\pi\)
\(462\) 0 0
\(463\) −4.69086 32.6256i −0.218003 1.51624i −0.745397 0.666621i \(-0.767740\pi\)
0.527394 0.849621i \(-0.323169\pi\)
\(464\) 0.757322 5.26729i 0.0351578 0.244528i
\(465\) 0 0
\(466\) 26.7232 17.1740i 1.23793 0.795570i
\(467\) −1.94526 + 4.25953i −0.0900160 + 0.197108i −0.949285 0.314416i \(-0.898191\pi\)
0.859269 + 0.511523i \(0.170919\pi\)
\(468\) 0 0
\(469\) 3.75553 + 2.42578i 0.173414 + 0.112012i
\(470\) −3.36096 −0.155030
\(471\) 0 0
\(472\) 1.38468 0.889878i 0.0637349 0.0409599i
\(473\) −20.7463 23.9425i −0.953915 1.10088i
\(474\) 0 0
\(475\) −5.14080 35.7551i −0.235876 1.64056i
\(476\) 0.853746 1.86944i 0.0391314 0.0856858i
\(477\) 0 0
\(478\) 20.3656 44.5944i 0.931501 2.03970i
\(479\) 27.8247 + 17.8819i 1.27134 + 0.817044i 0.989794 0.142503i \(-0.0455150\pi\)
0.281550 + 0.959546i \(0.409151\pi\)
\(480\) 0 0
\(481\) 4.72481 + 1.38733i 0.215433 + 0.0632568i
\(482\) −48.7940 14.3272i −2.22250 0.652586i
\(483\) 0 0
\(484\) 2.12441 + 4.65181i 0.0965641 + 0.211446i
\(485\) −0.218519 + 1.51983i −0.00992242 + 0.0690119i
\(486\) 0 0
\(487\) −19.0731 22.0116i −0.864286 0.997440i −0.999978 0.00668857i \(-0.997871\pi\)
0.135691 0.990751i \(-0.456675\pi\)
\(488\) −10.2928 22.5381i −0.465934 1.02025i
\(489\) 0 0
\(490\) 0.598203 + 4.16060i 0.0270241 + 0.187957i
\(491\) 7.56919 + 4.86442i 0.341593 + 0.219528i 0.700177 0.713969i \(-0.253104\pi\)
−0.358585 + 0.933497i \(0.616741\pi\)
\(492\) 0 0
\(493\) −2.95150 + 3.40621i −0.132929 + 0.153408i
\(494\) 15.2481 + 4.47726i 0.686046 + 0.201441i
\(495\) 0 0
\(496\) 1.35117 + 9.39760i 0.0606694 + 0.421965i
\(497\) 2.31764 0.680520i 0.103960 0.0305255i
\(498\) 0 0
\(499\) −7.67344 −0.343510 −0.171755 0.985140i \(-0.554944\pi\)
−0.171755 + 0.985140i \(0.554944\pi\)
\(500\) −7.73634 + 2.27159i −0.345980 + 0.101589i
\(501\) 0 0
\(502\) −10.7166 23.4660i −0.478303 1.04734i
\(503\) 6.96032 + 15.2410i 0.310345 + 0.679561i 0.998961 0.0455647i \(-0.0145087\pi\)
−0.688616 + 0.725126i \(0.741781\pi\)
\(504\) 0 0
\(505\) 4.63568 1.36116i 0.206285 0.0605707i
\(506\) 58.3487 2.59392
\(507\) 0 0
\(508\) −28.8638 + 8.47517i −1.28062 + 0.376025i
\(509\) 0.747769 + 5.20085i 0.0331443 + 0.230524i 0.999660 0.0260848i \(-0.00830400\pi\)
−0.966515 + 0.256608i \(0.917395\pi\)
\(510\) 0 0
\(511\) 2.71990 + 0.798636i 0.120321 + 0.0353296i
\(512\) 11.1772 12.8992i 0.493967 0.570069i
\(513\) 0 0
\(514\) −36.2879 23.3208i −1.60059 1.02864i
\(515\) −0.0240113 0.167002i −0.00105806 0.00735900i
\(516\) 0 0
\(517\) 7.96116 + 17.4325i 0.350131 + 0.766681i
\(518\) 3.95226 + 4.56115i 0.173652 + 0.200406i
\(519\) 0 0
\(520\) 0.0750298 0.521844i 0.00329028 0.0228844i
\(521\) 1.41043 + 3.08842i 0.0617921 + 0.135306i 0.938009 0.346612i \(-0.112668\pi\)
−0.876217 + 0.481917i \(0.839941\pi\)
\(522\) 0 0
\(523\) 4.78551 + 1.40515i 0.209256 + 0.0614430i 0.384680 0.923050i \(-0.374312\pi\)
−0.175425 + 0.984493i \(0.556130\pi\)
\(524\) −51.2898 15.0600i −2.24060 0.657901i
\(525\) 0 0
\(526\) 2.04620 + 1.31501i 0.0892184 + 0.0573372i
\(527\) 3.34045 7.31457i 0.145512 0.318628i
\(528\) 0 0
\(529\) 13.2164 28.9398i 0.574624 1.25825i
\(530\) −0.624716 4.34500i −0.0271359 0.188735i
\(531\) 0 0
\(532\) 7.50158 + 8.65728i 0.325235 + 0.375341i
\(533\) −1.10750 + 0.711748i −0.0479712 + 0.0308292i
\(534\) 0 0
\(535\) −0.533989 −0.0230864
\(536\) 2.16193 + 15.2865i 0.0933810 + 0.660274i
\(537\) 0 0
\(538\) 10.1848 22.3015i 0.439096 0.961486i
\(539\) 20.1630 12.9580i 0.868483 0.558140i
\(540\) 0 0
\(541\) −0.597192 + 4.15356i −0.0256753 + 0.178576i −0.998624 0.0524469i \(-0.983298\pi\)
0.972948 + 0.231022i \(0.0742071\pi\)
\(542\) −0.138309 0.961959i −0.00594087 0.0413197i
\(543\) 0 0
\(544\) −9.10181 + 2.67253i −0.390237 + 0.114584i
\(545\) −1.38099 + 3.02394i −0.0591550 + 0.129531i
\(546\) 0 0
\(547\) −2.30946 + 16.0627i −0.0987455 + 0.686790i 0.878973 + 0.476871i \(0.158229\pi\)
−0.977719 + 0.209919i \(0.932680\pi\)
\(548\) −27.7100 8.13640i −1.18371 0.347570i
\(549\) 0 0
\(550\) 25.3867 + 29.2978i 1.08249 + 1.24926i
\(551\) −10.4360 22.8516i −0.444587 0.973510i
\(552\) 0 0
\(553\) 2.79087 3.22083i 0.118680 0.136964i
\(554\) −14.9553 17.2594i −0.635391 0.733281i
\(555\) 0 0
\(556\) −43.5934 + 28.0158i −1.84877 + 1.18813i
\(557\) 5.34345 + 37.1645i 0.226409 + 1.57471i 0.713054 + 0.701110i \(0.247312\pi\)
−0.486645 + 0.873600i \(0.661779\pi\)
\(558\) 0 0
\(559\) 7.31822 4.70313i 0.309528 0.198921i
\(560\) −0.158368 + 0.182766i −0.00669225 + 0.00772327i
\(561\) 0 0
\(562\) −29.6056 + 34.1667i −1.24884 + 1.44124i
\(563\) −1.27221 8.84845i −0.0536175 0.372918i −0.998909 0.0466918i \(-0.985132\pi\)
0.945292 0.326226i \(-0.105777\pi\)
\(564\) 0 0
\(565\) −3.07367 −0.129310
\(566\) −20.3098 −0.853684
\(567\) 0 0
\(568\) 7.01696 + 4.50953i 0.294425 + 0.189215i
\(569\) −0.0245931 0.0538514i −0.00103100 0.00225757i 0.909116 0.416543i \(-0.136759\pi\)
−0.910147 + 0.414286i \(0.864031\pi\)
\(570\) 0 0
\(571\) 11.5983 + 7.45376i 0.485373 + 0.311930i 0.760342 0.649523i \(-0.225031\pi\)
−0.274969 + 0.961453i \(0.588668\pi\)
\(572\) −9.62427 + 2.82594i −0.402411 + 0.118159i
\(573\) 0 0
\(574\) −1.61351 −0.0673466
\(575\) 34.9435 10.2603i 1.45724 0.427886i
\(576\) 0 0
\(577\) 26.7559 30.8780i 1.11386 1.28547i 0.159375 0.987218i \(-0.449052\pi\)
0.954488 0.298248i \(-0.0964024\pi\)
\(578\) −32.2739 9.47648i −1.34242 0.394170i
\(579\) 0 0
\(580\) −2.33937 + 1.50342i −0.0971369 + 0.0624261i
\(581\) −3.00207 1.92932i −0.124547 0.0800415i
\(582\) 0 0
\(583\) −21.0567 + 13.5323i −0.872078 + 0.560450i
\(584\) 4.06642 + 8.90421i 0.168270 + 0.368459i
\(585\) 0 0
\(586\) −47.2643 + 54.5459i −1.95247 + 2.25327i
\(587\) −5.29614 + 36.8354i −0.218595 + 1.52036i 0.524636 + 0.851327i \(0.324201\pi\)
−0.743231 + 0.669035i \(0.766708\pi\)
\(588\) 0 0
\(589\) 29.3514 + 33.8734i 1.20940 + 1.39573i
\(590\) 0.525181 + 0.154207i 0.0216214 + 0.00634861i
\(591\) 0 0
\(592\) 1.11005 7.72060i 0.0456230 0.317315i
\(593\) 30.3866 + 19.5283i 1.24783 + 0.801931i 0.986570 0.163337i \(-0.0522259\pi\)
0.261259 + 0.965269i \(0.415862\pi\)
\(594\) 0 0
\(595\) 0.196527 0.0577055i 0.00805682 0.00236570i
\(596\) 3.08799 6.76176i 0.126489 0.276972i
\(597\) 0 0
\(598\) −2.28018 + 15.8590i −0.0932434 + 0.648522i
\(599\) 5.56121 + 6.41798i 0.227225 + 0.262231i 0.857901 0.513814i \(-0.171768\pi\)
−0.630677 + 0.776046i \(0.717223\pi\)
\(600\) 0 0
\(601\) 15.1590 33.1935i 0.618347 1.35399i −0.298369 0.954451i \(-0.596442\pi\)
0.916716 0.399540i \(-0.130830\pi\)
\(602\) 10.6619 0.434545
\(603\) 0 0
\(604\) 26.3451 1.07197
\(605\) −0.211725 + 0.463613i −0.00860784 + 0.0188485i
\(606\) 0 0
\(607\) 6.95205 + 8.02309i 0.282175 + 0.325647i 0.879089 0.476658i \(-0.158152\pi\)
−0.596914 + 0.802305i \(0.703607\pi\)
\(608\) 7.52477 52.3359i 0.305170 2.12250i
\(609\) 0 0
\(610\) 3.42279 7.49487i 0.138585 0.303458i
\(611\) −5.04921 + 1.48258i −0.204269 + 0.0599788i
\(612\) 0 0
\(613\) 25.9153 + 16.6548i 1.04671 + 0.672680i 0.946638 0.322300i \(-0.104456\pi\)
0.100073 + 0.994980i \(0.468092\pi\)
\(614\) 4.07176 28.3197i 0.164323 1.14289i
\(615\) 0 0
\(616\) −3.53517 1.03802i −0.142436 0.0418230i
\(617\) −3.99460 4.61001i −0.160816 0.185592i 0.669623 0.742701i \(-0.266456\pi\)
−0.830439 + 0.557109i \(0.811910\pi\)
\(618\) 0 0
\(619\) 4.29086 29.8436i 0.172464 1.19952i −0.701192 0.712972i \(-0.747349\pi\)
0.873656 0.486543i \(-0.161742\pi\)
\(620\) 3.24900 3.74955i 0.130483 0.150586i
\(621\) 0 0
\(622\) −5.02873 11.0114i −0.201634 0.441516i
\(623\) −7.01128 + 4.50588i −0.280901 + 0.180524i
\(624\) 0 0
\(625\) 20.0146 + 12.8626i 0.800582 + 0.514503i
\(626\) 21.6246 13.8973i 0.864292 0.555446i
\(627\) 0 0
\(628\) −25.1820 7.39411i −1.00487 0.295057i
\(629\) −4.32620 + 4.99270i −0.172497 + 0.199072i
\(630\) 0 0
\(631\) −10.3693 + 3.04470i −0.412795 + 0.121207i −0.481534 0.876427i \(-0.659920\pi\)
0.0687397 + 0.997635i \(0.478102\pi\)
\(632\) 14.7166 0.585396
\(633\) 0 0
\(634\) −4.45518 + 1.30816i −0.176938 + 0.0519536i
\(635\) −2.52216 1.62089i −0.100089 0.0643232i
\(636\) 0 0
\(637\) 2.73400 + 5.98663i 0.108325 + 0.237199i
\(638\) 22.6806 + 14.5759i 0.897932 + 0.577066i
\(639\) 0 0
\(640\) −3.90148 −0.154219
\(641\) −29.3401 −1.15886 −0.579431 0.815021i \(-0.696725\pi\)
−0.579431 + 0.815021i \(0.696725\pi\)
\(642\) 0 0
\(643\) 3.70761 + 25.7870i 0.146214 + 1.01694i 0.922345 + 0.386368i \(0.126271\pi\)
−0.776131 + 0.630572i \(0.782820\pi\)
\(644\) −7.56304 + 8.72821i −0.298025 + 0.343940i
\(645\) 0 0
\(646\) −13.9617 + 16.1127i −0.549316 + 0.633944i
\(647\) 21.3283 13.7068i 0.838501 0.538872i −0.0494680 0.998776i \(-0.515753\pi\)
0.887969 + 0.459904i \(0.152116\pi\)
\(648\) 0 0
\(649\) −0.444169 3.08926i −0.0174351 0.121264i
\(650\) −8.95513 + 5.75511i −0.351249 + 0.225734i
\(651\) 0 0
\(652\) −20.7366 23.9313i −0.812107 0.937221i
\(653\) −6.21081 + 7.16766i −0.243048 + 0.280492i −0.864147 0.503240i \(-0.832141\pi\)
0.621099 + 0.783732i \(0.286687\pi\)
\(654\) 0 0
\(655\) −2.21312 4.84606i −0.0864738 0.189351i
\(656\) 1.36558 + 1.57597i 0.0533170 + 0.0615311i
\(657\) 0 0
\(658\) −6.18839 1.81707i −0.241248 0.0708369i
\(659\) 0.660761 4.59569i 0.0257396 0.179023i −0.972896 0.231243i \(-0.925721\pi\)
0.998636 + 0.0522203i \(0.0166298\pi\)
\(660\) 0 0
\(661\) −4.73995 + 10.3790i −0.184362 + 0.403698i −0.979135 0.203210i \(-0.934863\pi\)
0.794773 + 0.606907i \(0.207590\pi\)
\(662\) −1.29152 + 0.379225i −0.0501964 + 0.0147390i
\(663\) 0 0
\(664\) −1.75373 12.1975i −0.0680579 0.473353i
\(665\) −0.162475 + 1.13004i −0.00630053 + 0.0438211i
\(666\) 0 0
\(667\) 21.3069 13.6931i 0.825008 0.530200i
\(668\) −18.3125 + 40.0988i −0.708532 + 1.55147i
\(669\) 0 0
\(670\) −3.37097 + 3.87224i −0.130232 + 0.149598i
\(671\) −46.9817 −1.81371
\(672\) 0 0
\(673\) −25.2653 + 16.2370i −0.973905 + 0.625891i −0.927813 0.373047i \(-0.878313\pi\)
−0.0460922 + 0.998937i \(0.514677\pi\)
\(674\) 16.1114 + 18.5936i 0.620588 + 0.716197i
\(675\) 0 0
\(676\) 4.89174 + 34.0228i 0.188144 + 1.30857i
\(677\) 15.3384 33.5863i 0.589501 1.29083i −0.346242 0.938145i \(-0.612542\pi\)
0.935743 0.352683i \(-0.114730\pi\)
\(678\) 0 0
\(679\) −1.22403 + 2.68025i −0.0469740 + 0.102859i
\(680\) 0.595011 + 0.382391i 0.0228176 + 0.0146640i
\(681\) 0 0
\(682\) −46.1529 13.5517i −1.76729 0.518922i
\(683\) −9.30659 2.73266i −0.356107 0.104562i 0.0987858 0.995109i \(-0.468504\pi\)
−0.454893 + 0.890546i \(0.650322\pi\)
\(684\) 0 0
\(685\) −1.19567 2.61815i −0.0456842 0.100034i
\(686\) −2.34699 + 16.3237i −0.0896085 + 0.623241i
\(687\) 0 0
\(688\) −9.02358 10.4138i −0.344021 0.397021i
\(689\) −2.85517 6.25195i −0.108773 0.238181i
\(690\) 0 0
\(691\) 0.843754 + 5.86844i 0.0320979 + 0.223246i 0.999556 0.0297840i \(-0.00948195\pi\)
−0.967458 + 0.253030i \(0.918573\pi\)
\(692\) 29.5165 + 18.9691i 1.12205 + 0.721098i
\(693\) 0 0
\(694\) 18.1286 20.9216i 0.688153 0.794171i
\(695\) −4.95529 1.45501i −0.187965 0.0551915i
\(696\) 0 0
\(697\) −0.251352 1.74819i −0.00952063 0.0662174i
\(698\) −46.5748 + 13.6756i −1.76288 + 0.517629i
\(699\) 0 0
\(700\) −7.67315 −0.290018
\(701\) 4.58927 1.34753i 0.173334 0.0508955i −0.193914 0.981019i \(-0.562118\pi\)
0.367248 + 0.930123i \(0.380300\pi\)
\(702\) 0 0
\(703\) −15.2967 33.4950i −0.576924 1.26329i
\(704\) 18.9502 + 41.4951i 0.714211 + 1.56390i
\(705\) 0 0
\(706\) −19.7070 + 5.78650i −0.741683 + 0.217778i
\(707\) 9.27136 0.348685
\(708\) 0 0
\(709\) −3.42695 + 1.00624i −0.128702 + 0.0377903i −0.345449 0.938437i \(-0.612273\pi\)
0.216747 + 0.976228i \(0.430455\pi\)
\(710\) 0.394747 + 2.74552i 0.0148146 + 0.103038i
\(711\) 0 0
\(712\) −27.6140 8.10822i −1.03488 0.303868i
\(713\) −29.5919 + 34.1509i −1.10823 + 1.27896i
\(714\) 0 0
\(715\) −0.840982 0.540467i −0.0314510 0.0202123i
\(716\) 5.11233 + 35.5571i 0.191057 + 1.32883i
\(717\) 0 0
\(718\) 22.4125 + 49.0765i 0.836426 + 1.83152i
\(719\) −12.9385 14.9318i −0.482523 0.556862i 0.461329 0.887229i \(-0.347373\pi\)
−0.943852 + 0.330367i \(0.892827\pi\)
\(720\) 0 0
\(721\) 0.0460773 0.320475i 0.00171601 0.0119351i
\(722\) −31.9732 70.0115i −1.18992 2.60556i
\(723\) 0 0
\(724\) 61.5648 + 18.0771i 2.28804 + 0.671829i
\(725\) 16.1459 + 4.74087i 0.599644 + 0.176071i
\(726\) 0 0
\(727\) 38.7246 + 24.8868i 1.43622 + 0.923001i 0.999729 + 0.0232908i \(0.00741435\pi\)
0.436488 + 0.899710i \(0.356222\pi\)
\(728\) 0.420279 0.920283i 0.0155766 0.0341079i
\(729\) 0 0
\(730\) −1.35225 + 2.96102i −0.0500491 + 0.109592i
\(731\) 1.66090 + 11.5518i 0.0614306 + 0.427259i
\(732\) 0 0
\(733\) 3.39442 + 3.91737i 0.125376 + 0.144691i 0.814967 0.579508i \(-0.196755\pi\)
−0.689591 + 0.724199i \(0.742210\pi\)
\(734\) −41.5473 + 26.7008i −1.53354 + 0.985546i
\(735\) 0 0
\(736\) 53.3073 1.96493
\(737\) 28.0692 + 8.31216i 1.03394 + 0.306182i
\(738\) 0 0
\(739\) −6.36588 + 13.9393i −0.234173 + 0.512767i −0.989839 0.142190i \(-0.954586\pi\)
0.755667 + 0.654956i \(0.227313\pi\)
\(740\) −3.42896 + 2.20366i −0.126051 + 0.0810081i
\(741\) 0 0
\(742\) 1.19882 8.33799i 0.0440101 0.306097i
\(743\) 0.254925 + 1.77304i 0.00935228 + 0.0650466i 0.993963 0.109715i \(-0.0349937\pi\)
−0.984611 + 0.174761i \(0.944085\pi\)
\(744\) 0 0
\(745\) 0.710836 0.208720i 0.0260430 0.00764692i
\(746\) −18.3810 + 40.2488i −0.672977 + 1.47361i
\(747\) 0 0
\(748\) 1.91510 13.3198i 0.0700229 0.487020i
\(749\) −0.983209 0.288696i −0.0359257 0.0105487i
\(750\) 0 0
\(751\) −12.1719 14.0471i −0.444159 0.512586i 0.488886 0.872348i \(-0.337403\pi\)
−0.933044 + 0.359762i \(0.882858\pi\)
\(752\) 3.46270 + 7.58226i 0.126272 + 0.276497i
\(753\) 0 0
\(754\) −4.84801 + 5.59490i −0.176554 + 0.203754i
\(755\) 1.71942 + 1.98432i 0.0625762 + 0.0722168i
\(756\) 0 0
\(757\) 6.71681 4.31663i 0.244127 0.156891i −0.412856 0.910796i \(-0.635469\pi\)
0.656983 + 0.753906i \(0.271832\pi\)
\(758\) −7.48998 52.0940i −0.272048 1.89214i
\(759\) 0 0
\(760\) −3.31652 + 2.13140i −0.120303 + 0.0773139i
\(761\) −6.63262 + 7.65445i −0.240432 + 0.277474i −0.863122 0.504995i \(-0.831494\pi\)
0.622690 + 0.782469i \(0.286040\pi\)
\(762\) 0 0
\(763\) −4.17762 + 4.82123i −0.151240 + 0.174540i
\(764\) −4.49039 31.2313i −0.162456 1.12991i
\(765\) 0 0
\(766\) −21.4327 −0.774395
\(767\) 0.857009 0.0309448
\(768\) 0 0
\(769\) 1.75606 + 1.12855i 0.0633253 + 0.0406967i 0.571920 0.820309i \(-0.306199\pi\)
−0.508595 + 0.861006i \(0.669835\pi\)
\(770\) −0.508975 1.11450i −0.0183422 0.0401638i
\(771\) 0 0
\(772\) −7.86292 5.05319i −0.282993 0.181868i
\(773\) 6.90178 2.02654i 0.248240 0.0728898i −0.155246 0.987876i \(-0.549617\pi\)
0.403485 + 0.914986i \(0.367799\pi\)
\(774\) 0 0
\(775\) −30.0228 −1.07845
\(776\) −9.76270 + 2.86659i −0.350460 + 0.102904i
\(777\) 0 0
\(778\) −16.5559 + 19.1065i −0.593558 + 0.685003i
\(779\) 9.44563 + 2.77349i 0.338425 + 0.0993705i
\(780\) 0 0
\(781\) 13.3053 8.55081i 0.476102 0.305972i
\(782\) −18.0826 11.6210i −0.646631 0.415565i
\(783\) 0 0
\(784\) 8.76990 5.63607i 0.313211 0.201288i
\(785\) −1.08659 2.37930i −0.0387820 0.0849208i
\(786\) 0 0
\(787\) 1.20779 1.39386i 0.0430531 0.0496859i −0.733815 0.679350i \(-0.762262\pi\)
0.776868 + 0.629664i \(0.216807\pi\)
\(788\) 10.0996 70.2445i 0.359785 2.50236i
\(789\) 0 0
\(790\) 3.20482 + 3.69856i 0.114022 + 0.131589i
\(791\) −5.65940 1.66175i −0.201225 0.0590850i
\(792\) 0 0
\(793\) 1.83597 12.7695i 0.0651973 0.453457i
\(794\) 57.0668 + 36.6746i 2.02523 + 1.30153i
\(795\) 0 0
\(796\) 34.7810 10.2126i 1.23278 0.361976i
\(797\) 18.5672 40.6564i 0.657682 1.44012i −0.226984 0.973898i \(-0.572886\pi\)
0.884666 0.466225i \(-0.154386\pi\)
\(798\) 0 0
\(799\) 1.00472 6.98800i 0.0355445 0.247218i
\(800\) 23.1933 + 26.7665i 0.820007 + 0.946338i
\(801\) 0 0
\(802\) 13.1609 28.8184i 0.464729 1.01761i
\(803\) 18.5612 0.655011
\(804\) 0 0
\(805\) −1.15102 −0.0405680
\(806\) 5.48689 12.0146i 0.193268 0.423197i
\(807\) 0 0
\(808\) 20.9657 + 24.1958i 0.737572 + 0.851204i
\(809\) −4.51678 + 31.4149i −0.158802 + 1.10449i 0.742044 + 0.670351i \(0.233856\pi\)
−0.900846 + 0.434139i \(0.857053\pi\)
\(810\) 0 0
\(811\) −9.02380 + 19.7594i −0.316869 + 0.693845i −0.999312 0.0370932i \(-0.988190\pi\)
0.682443 + 0.730939i \(0.260917\pi\)
\(812\) −5.12018 + 1.50342i −0.179683 + 0.0527597i
\(813\) 0 0
\(814\) 33.2444 + 21.3648i 1.16521 + 0.748838i
\(815\) 0.449130 3.12377i 0.0157323 0.109421i
\(816\) 0 0
\(817\) −62.4154 18.3268i −2.18364 0.641175i
\(818\) −30.0565 34.6871i −1.05090 1.21280i
\(819\) 0 0
\(820\) 0.155082 1.07862i 0.00541568 0.0376669i
\(821\) −3.62234 + 4.18041i −0.126421 + 0.145897i −0.815431 0.578854i \(-0.803500\pi\)
0.689010 + 0.724752i \(0.258045\pi\)
\(822\) 0 0
\(823\) 4.80851 + 10.5292i 0.167614 + 0.367024i 0.974736 0.223362i \(-0.0717031\pi\)
−0.807122 + 0.590385i \(0.798976\pi\)
\(824\) 0.940551 0.604455i 0.0327656 0.0210572i
\(825\) 0 0
\(826\) 0.883621 + 0.567869i 0.0307451 + 0.0197587i
\(827\) 1.44149 0.926390i 0.0501255 0.0322137i −0.515338 0.856987i \(-0.672334\pi\)
0.565464 + 0.824773i \(0.308697\pi\)
\(828\) 0 0
\(829\) −25.5613 7.50548i −0.887781 0.260676i −0.194120 0.980978i \(-0.562185\pi\)
−0.693661 + 0.720302i \(0.744003\pi\)
\(830\) 2.68354 3.09697i 0.0931469 0.107497i
\(831\) 0 0
\(832\) −12.0188 + 3.52903i −0.416676 + 0.122347i
\(833\) −8.82940 −0.305920
\(834\) 0 0
\(835\) −4.21542 + 1.23776i −0.145881 + 0.0428345i
\(836\) 63.0993 + 40.5515i 2.18234 + 1.40250i
\(837\) 0 0
\(838\) 24.1506 + 52.8824i 0.834268 + 1.82679i
\(839\) 37.5911 + 24.1583i 1.29779 + 0.834038i 0.992969 0.118373i \(-0.0377678\pi\)
0.304819 + 0.952410i \(0.401404\pi\)
\(840\) 0 0
\(841\) −17.2972 −0.596455
\(842\) 11.8403 0.408044
\(843\) 0 0
\(844\) −3.76756 26.2040i −0.129685 0.901978i
\(845\) −2.24335 + 2.58896i −0.0771734 + 0.0890629i
\(846\) 0 0
\(847\) −0.640487 + 0.739162i −0.0220074 + 0.0253979i
\(848\) −9.15859 + 5.88587i −0.314507 + 0.202122i
\(849\) 0 0
\(850\) −2.03240 14.1357i −0.0697109 0.484850i
\(851\) 31.2309 20.0709i 1.07058 0.688022i
\(852\) 0 0
\(853\) −24.0374 27.7406i −0.823024 0.949820i 0.176381 0.984322i \(-0.443561\pi\)
−0.999405 + 0.0345019i \(0.989016\pi\)
\(854\) 10.3543 11.9494i 0.354315 0.408902i
\(855\) 0 0
\(856\) −1.46996 3.21875i −0.0502421 0.110015i
\(857\) 13.5874 + 15.6807i 0.464137 + 0.535643i 0.938772 0.344540i \(-0.111965\pi\)
−0.474634 + 0.880183i \(0.657420\pi\)
\(858\) 0 0
\(859\) 37.7484 + 11.0839i 1.28796 + 0.378179i 0.852830 0.522189i \(-0.174885\pi\)
0.435129 + 0.900368i \(0.356703\pi\)
\(860\) −1.02476 + 7.12735i −0.0349440 + 0.243041i
\(861\) 0 0
\(862\) −29.7713 + 65.1901i −1.01402 + 2.22038i
\(863\) −22.8978 + 6.72340i −0.779450 + 0.228867i −0.647170 0.762345i \(-0.724048\pi\)
−0.132279 + 0.991212i \(0.542230\pi\)
\(864\) 0 0
\(865\) 0.497648 + 3.46122i 0.0169205 + 0.117685i
\(866\) 11.4358 79.5376i 0.388604 2.70280i
\(867\) 0 0
\(868\) 8.00940 5.14733i 0.271857 0.174712i
\(869\) 11.5922 25.3834i 0.393239 0.861074i
\(870\) 0 0
\(871\) −3.35612 + 7.30430i −0.113718 + 0.247497i
\(872\) −22.0291 −0.746001
\(873\) 0 0
\(874\) 100.790 64.7738i 3.40927 2.19100i
\(875\) −1.00983 1.16541i −0.0341385 0.0393979i
\(876\) 0 0
\(877\) 2.65800 + 18.4868i 0.0897543 + 0.624255i 0.984198 + 0.177074i \(0.0566631\pi\)
−0.894443 + 0.447181i \(0.852428\pi\)
\(878\) −18.2847 + 40.0380i −0.617080 + 1.35122i
\(879\) 0 0
\(880\) −0.657800 + 1.44038i −0.0221744 + 0.0485552i
\(881\) −16.1239 10.3622i −0.543227 0.349111i 0.240073 0.970755i \(-0.422829\pi\)
−0.783300 + 0.621644i \(0.786465\pi\)
\(882\) 0 0
\(883\) 38.8494 + 11.4072i 1.30739 + 0.383883i 0.859925 0.510421i \(-0.170510\pi\)
0.447460 + 0.894304i \(0.352329\pi\)
\(884\) 3.54544 + 1.04103i 0.119246 + 0.0350138i
\(885\) 0 0
\(886\) −26.0498 57.0411i −0.875160 1.91633i
\(887\) 6.99387 48.6435i 0.234831 1.63329i −0.441905 0.897062i \(-0.645697\pi\)
0.676736 0.736226i \(-0.263394\pi\)
\(888\) 0 0
\(889\) −3.76761 4.34806i −0.126362 0.145829i
\(890\) −3.97573 8.70563i −0.133267 0.291813i
\(891\) 0 0
\(892\) −0.936776 6.51542i −0.0313656 0.218152i
\(893\) 33.1040 + 21.2746i 1.10778 + 0.711928i
\(894\) 0 0
\(895\) −2.34451 + 2.70571i −0.0783683 + 0.0904418i
\(896\) −7.18361 2.10930i −0.239988 0.0704667i
\(897\) 0 0
\(898\) −12.9020 89.7356i −0.430546 2.99452i
\(899\) −20.0337 + 5.88243i −0.668162 + 0.196190i
\(900\) 0 0
\(901\) 9.22072 0.307187
\(902\) −10.1370 + 2.97648i −0.337524 + 0.0991059i
\(903\) 0 0
\(904\) −8.46114 18.5273i −0.281413 0.616209i
\(905\) 2.65648 + 5.81688i 0.0883045 + 0.193360i
\(906\) 0 0
\(907\) 33.3691 9.79804i 1.10800 0.325339i 0.323975 0.946066i \(-0.394981\pi\)
0.784027 + 0.620727i \(0.213162\pi\)
\(908\) 36.4473 1.20955
\(909\) 0 0
\(910\) 0.322807 0.0947848i 0.0107010 0.00314209i
\(911\) −2.14785 14.9386i −0.0711613 0.494938i −0.993968 0.109674i \(-0.965019\pi\)
0.922806 0.385264i \(-0.125890\pi\)
\(912\) 0 0
\(913\) −22.4197 6.58303i −0.741985 0.217866i
\(914\) −33.2970 + 38.4267i −1.10137 + 1.27104i
\(915\) 0 0
\(916\) 18.2559 + 11.7324i 0.603192 + 0.387648i
\(917\) −1.45494 10.1193i −0.0480463 0.334169i
\(918\) 0 0
\(919\) −21.8018 47.7392i −0.719174 1.57477i −0.815058 0.579379i \(-0.803295\pi\)
0.0958838 0.995393i \(-0.469432\pi\)
\(920\) −2.60284 3.00384i −0.0858132 0.0990337i
\(921\) 0 0
\(922\) −0.854142 + 5.94069i −0.0281297 + 0.195646i
\(923\) 1.80413 + 3.95049i 0.0593837 + 0.130032i
\(924\) 0 0
\(925\) 23.6661 + 6.94899i 0.778136 + 0.228481i
\(926\) 69.6915 + 20.4633i 2.29020 + 0.672465i
\(927\) 0 0
\(928\) 20.7210 + 13.3165i 0.680199 + 0.437137i
\(929\) −6.43052 + 14.0809i −0.210979 + 0.461979i −0.985304 0.170809i \(-0.945362\pi\)
0.774326 + 0.632787i \(0.218089\pi\)
\(930\) 0 0
\(931\) 20.4442 44.7666i 0.670032 1.46716i
\(932\) 5.85899 + 40.7502i 0.191918 + 1.33482i
\(933\) 0 0
\(934\) −6.75742 7.79848i −0.221109 0.255174i
\(935\) 1.12824 0.725076i 0.0368974 0.0237125i
\(936\) 0 0
\(937\) −39.5235 −1.29118 −0.645588 0.763686i \(-0.723388\pi\)
−0.645588 + 0.763686i \(0.723388\pi\)
\(938\) −8.30029 + 5.30729i −0.271014 + 0.173289i
\(939\) 0 0
\(940\) 1.80949 3.96223i 0.0590191 0.129234i
\(941\) −7.18636 + 4.61840i −0.234269 + 0.150555i −0.652509 0.757781i \(-0.726283\pi\)
0.418240 + 0.908337i \(0.362647\pi\)
\(942\) 0 0
\(943\) −1.41248 + 9.82403i −0.0459967 + 0.319914i
\(944\) −0.193191 1.34367i −0.00628783 0.0437328i
\(945\) 0 0
\(946\) 66.9837 19.6682i 2.17783 0.639468i
\(947\) 3.45450 7.56431i 0.112256 0.245807i −0.845163 0.534509i \(-0.820496\pi\)
0.957419 + 0.288702i \(0.0932238\pi\)
\(948\) 0 0
\(949\) −0.725343 + 5.04487i −0.0235456 + 0.163764i
\(950\) 76.3763 + 22.4261i 2.47797 + 0.727599i
\(951\) 0 0
\(952\) 0.888831 + 1.02577i 0.0288072 + 0.0332453i
\(953\) −1.18325 2.59096i −0.0383293 0.0839295i 0.889499 0.456937i \(-0.151054\pi\)
−0.927828 + 0.373008i \(0.878326\pi\)
\(954\) 0 0
\(955\) 2.05928 2.37654i 0.0666369 0.0769031i
\(956\) 41.6078 + 48.0179i 1.34569 + 1.55301i
\(957\) 0 0
\(958\) −61.3150 + 39.4048i −1.98100 + 1.27311i
\(959\) −0.786051 5.46711i −0.0253829 0.176542i
\(960\) 0 0
\(961\) 5.25954 3.38010i 0.169662 0.109035i
\(962\) −7.10603 + 8.20080i −0.229108 + 0.264404i
\(963\) 0 0
\(964\) 43.1602 49.8096i 1.39010 1.60426i
\(965\) −0.132569 0.922035i −0.00426754 0.0296814i
\(966\) 0 0
\(967\) 52.4305 1.68605 0.843025 0.537874i \(-0.180772\pi\)
0.843025 + 0.537874i \(0.180772\pi\)
\(968\) −3.37738 −0.108553
\(969\) 0 0
\(970\) −2.84643 1.82929i −0.0913935 0.0587350i
\(971\) −11.2254 24.5803i −0.360241 0.788818i −0.999798 0.0200748i \(-0.993610\pi\)
0.639557 0.768744i \(-0.279118\pi\)
\(972\) 0 0
\(973\) −8.33731 5.35807i −0.267282 0.171772i
\(974\) 61.5816 18.0820i 1.97320 0.579384i
\(975\) 0 0
\(976\) −20.4347 −0.654097
\(977\) −17.7363 + 5.20786i −0.567436 + 0.166614i −0.552852 0.833280i \(-0.686460\pi\)
−0.0145837 + 0.999894i \(0.504642\pi\)
\(978\) 0 0
\(979\) −35.7366 + 41.2423i −1.14215 + 1.31811i
\(980\) −5.22698 1.53478i −0.166970 0.0490268i
\(981\) 0 0
\(982\) −16.6796 + 10.7193i −0.532267 + 0.342067i
\(983\) −29.6994 19.0866i −0.947264 0.608769i −0.0268181 0.999640i \(-0.508537\pi\)
−0.920445 + 0.390871i \(0.872174\pi\)
\(984\) 0 0
\(985\) 5.94999 3.82383i 0.189582 0.121837i
\(986\) −4.12583 9.03431i −0.131393 0.287711i
\(987\) 0 0
\(988\) −13.4876 + 15.5655i −0.429097 + 0.495205i
\(989\) 9.33349 64.9159i 0.296788 2.06420i
\(990\) 0 0
\(991\) 0.0496487 + 0.0572976i 0.00157714 + 0.00182012i 0.756538 0.653950i \(-0.226889\pi\)
−0.754960 + 0.655770i \(0.772344\pi\)
\(992\) −42.1652 12.3808i −1.33875 0.393092i
\(993\) 0 0
\(994\) −0.757513 + 5.26862i −0.0240269 + 0.167110i
\(995\) 3.03921 + 1.95318i 0.0963494 + 0.0619200i
\(996\) 0 0
\(997\) 41.9162 12.3077i 1.32750 0.389789i 0.460305 0.887761i \(-0.347740\pi\)
0.867193 + 0.497972i \(0.165922\pi\)
\(998\) 7.02438 15.3813i 0.222353 0.486885i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 603.2.u.a.91.1 10
3.2 odd 2 67.2.e.b.24.1 yes 10
67.14 even 11 inner 603.2.u.a.550.1 10
201.14 odd 22 67.2.e.b.14.1 10
201.125 even 22 4489.2.a.h.1.1 5
201.143 odd 22 4489.2.a.i.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
67.2.e.b.14.1 10 201.14 odd 22
67.2.e.b.24.1 yes 10 3.2 odd 2
603.2.u.a.91.1 10 1.1 even 1 trivial
603.2.u.a.550.1 10 67.14 even 11 inner
4489.2.a.h.1.1 5 201.125 even 22
4489.2.a.i.1.5 5 201.143 odd 22