Defining parameters
| Level: | \( N \) | \(=\) | \( 6029 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 6029.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(1005\) | ||
| Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6029))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 503 | 503 | 0 |
| Cusp forms | 502 | 502 | 0 |
| Eisenstein series | 1 | 1 | 0 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(6029\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(234\) | \(234\) | \(0\) | \(234\) | \(234\) | \(0\) | \(0\) | \(0\) | \(0\) | |||
| \(-\) | \(269\) | \(269\) | \(0\) | \(268\) | \(268\) | \(0\) | \(1\) | \(1\) | \(0\) | |||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6029))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 6029 | |||||||
| 6029.2.a.a | $234$ | $48.142$ | None | \(-10\) | \(-43\) | \(-24\) | \(-61\) | $+$ | |||
| 6029.2.a.b | $268$ | $48.142$ | None | \(8\) | \(43\) | \(18\) | \(59\) | $-$ | |||