Properties

Label 6029.2.a
Level $6029$
Weight $2$
Character orbit 6029.a
Rep. character $\chi_{6029}(1,\cdot)$
Character field $\Q$
Dimension $502$
Newform subspaces $2$
Sturm bound $1005$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6029 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6029.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(1005\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6029))\).

Total New Old
Modular forms 503 503 0
Cusp forms 502 502 0
Eisenstein series 1 1 0

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(6029\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(234\)\(234\)\(0\)\(234\)\(234\)\(0\)\(0\)\(0\)\(0\)
\(-\)\(269\)\(269\)\(0\)\(268\)\(268\)\(0\)\(1\)\(1\)\(0\)

Trace form

\( 502 q - 2 q^{2} + 502 q^{4} - 6 q^{5} - 6 q^{6} - 2 q^{7} - 6 q^{8} + 498 q^{9} + 2 q^{10} - 6 q^{11} + 2 q^{12} - 4 q^{13} - 6 q^{15} + 498 q^{16} + 6 q^{18} + 10 q^{19} - 22 q^{20} + 4 q^{21} - 12 q^{22}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6029))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 6029
6029.2.a.a 6029.a 1.a $234$ $48.142$ None 6029.2.a.a \(-10\) \(-43\) \(-24\) \(-61\) $+$ $\mathrm{SU}(2)$
6029.2.a.b 6029.a 1.a $268$ $48.142$ None 6029.2.a.b \(8\) \(43\) \(18\) \(59\) $-$ $\mathrm{SU}(2)$