Defining parameters
Level: | \( N \) | = | \( 6027 = 3 \cdot 7^{2} \cdot 41 \) |
Weight: | \( k \) | = | \( 2 \) |
Character orbit: | \([\chi]\) | = | 6027.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | = | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Sturm bound: | \(1568\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6027, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1600 | 532 | 1068 |
Cusp forms | 1536 | 532 | 1004 |
Eisenstein series | 64 | 0 | 64 |
Decomposition of \(S_{2}^{\mathrm{new}}(6027, [\chi])\) into irreducible Hecke orbits
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6027, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6027, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(287, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(861, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2009, [\chi])\)\(^{\oplus 2}\)