# Properties

 Label 6027.2.a.s Level 6027 Weight 2 Character orbit 6027.a Self dual Yes Analytic conductor 48.126 Analytic rank 1 Dimension 3 CM No Inner twists 1

# Related objects

## Newspace parameters

 Level: $$N$$ = $$6027 = 3 \cdot 7^{2} \cdot 41$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 6027.a (trivial)

## Newform invariants

 Self dual: Yes Analytic conductor: $$48.1258372982$$ Analytic rank: $$1$$ Dimension: $$3$$ Coefficient field: 3.3.316.1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{1} q^{2} + q^{3} + ( 1 + \beta_{2} ) q^{4} + ( -1 - \beta_{1} + \beta_{2} ) q^{5} + \beta_{1} q^{6} + ( 1 + \beta_{2} ) q^{8} + q^{9} +O(q^{10})$$ $$q + \beta_{1} q^{2} + q^{3} + ( 1 + \beta_{2} ) q^{4} + ( -1 - \beta_{1} + \beta_{2} ) q^{5} + \beta_{1} q^{6} + ( 1 + \beta_{2} ) q^{8} + q^{9} -2 q^{10} + ( -1 - \beta_{1} ) q^{11} + ( 1 + \beta_{2} ) q^{12} + ( -3 + \beta_{1} - \beta_{2} ) q^{13} + ( -1 - \beta_{1} + \beta_{2} ) q^{15} + ( -1 + 2 \beta_{1} - \beta_{2} ) q^{16} + ( -1 + \beta_{1} - 2 \beta_{2} ) q^{17} + \beta_{1} q^{18} + ( -1 + \beta_{1} - \beta_{2} ) q^{19} + ( 2 - 2 \beta_{2} ) q^{20} + ( -3 - \beta_{1} - \beta_{2} ) q^{22} + ( -3 - \beta_{1} + \beta_{2} ) q^{23} + ( 1 + \beta_{2} ) q^{24} + ( 1 + 2 \beta_{1} - 4 \beta_{2} ) q^{25} + ( 2 - 4 \beta_{1} ) q^{26} + q^{27} + ( -1 - 3 \beta_{1} ) q^{29} -2 q^{30} + ( 2 - 4 \beta_{1} - \beta_{2} ) q^{31} + ( 3 - 2 \beta_{1} - \beta_{2} ) q^{32} + ( -1 - \beta_{1} ) q^{33} + ( 1 - 3 \beta_{1} - \beta_{2} ) q^{34} + ( 1 + \beta_{2} ) q^{36} + ( 6 + 2 \beta_{1} - \beta_{2} ) q^{37} + ( 2 - 2 \beta_{1} ) q^{38} + ( -3 + \beta_{1} - \beta_{2} ) q^{39} + ( 2 - 2 \beta_{2} ) q^{40} - q^{41} + ( 4 - 2 \beta_{1} + 5 \beta_{2} ) q^{43} + ( -2 - 2 \beta_{1} - 2 \beta_{2} ) q^{44} + ( -1 - \beta_{1} + \beta_{2} ) q^{45} + ( -2 - 2 \beta_{1} ) q^{46} + ( -1 - \beta_{1} - 2 \beta_{2} ) q^{47} + ( -1 + 2 \beta_{1} - \beta_{2} ) q^{48} + ( 2 - 3 \beta_{1} - 2 \beta_{2} ) q^{50} + ( -1 + \beta_{1} - 2 \beta_{2} ) q^{51} + ( -6 - 2 \beta_{2} ) q^{52} + ( 6 - 4 \beta_{1} + 2 \beta_{2} ) q^{53} + \beta_{1} q^{54} + ( 3 + \beta_{1} - \beta_{2} ) q^{55} + ( -1 + \beta_{1} - \beta_{2} ) q^{57} + ( -9 - \beta_{1} - 3 \beta_{2} ) q^{58} + ( 2 + 2 \beta_{1} + 2 \beta_{2} ) q^{59} + ( 2 - 2 \beta_{2} ) q^{60} + ( 2 + 2 \beta_{1} - \beta_{2} ) q^{61} + ( -13 + \beta_{1} - 5 \beta_{2} ) q^{62} + ( -5 - 2 \beta_{1} - \beta_{2} ) q^{64} + ( -2 + 2 \beta_{1} ) q^{65} + ( -3 - \beta_{1} - \beta_{2} ) q^{66} + ( 2 + 6 \beta_{1} - 4 \beta_{2} ) q^{67} + ( -8 - 2 \beta_{1} ) q^{68} + ( -3 - \beta_{1} + \beta_{2} ) q^{69} + ( -11 + \beta_{1} ) q^{71} + ( 1 + \beta_{2} ) q^{72} + ( -2 + 2 \beta_{1} + 3 \beta_{2} ) q^{73} + ( 5 + 5 \beta_{1} + \beta_{2} ) q^{74} + ( 1 + 2 \beta_{1} - 4 \beta_{2} ) q^{75} -4 q^{76} + ( 2 - 4 \beta_{1} ) q^{78} + ( -8 + 4 \beta_{1} - 2 \beta_{2} ) q^{79} + ( -6 + 2 \beta_{2} ) q^{80} + q^{81} -\beta_{1} q^{82} + ( 5 - \beta_{1} + 3 \beta_{2} ) q^{83} + ( -7 - \beta_{1} + 5 \beta_{2} ) q^{85} + ( -1 + 9 \beta_{1} + 3 \beta_{2} ) q^{86} + ( -1 - 3 \beta_{1} ) q^{87} + ( -2 - 2 \beta_{1} - 2 \beta_{2} ) q^{88} + ( -6 + 4 \beta_{1} ) q^{89} -2 q^{90} -4 \beta_{2} q^{92} + ( 2 - 4 \beta_{1} - \beta_{2} ) q^{93} + ( -5 - 3 \beta_{1} - 3 \beta_{2} ) q^{94} + ( -4 + 2 \beta_{2} ) q^{95} + ( 3 - 2 \beta_{1} - \beta_{2} ) q^{96} + ( 3 + 3 \beta_{1} - \beta_{2} ) q^{97} + ( -1 - \beta_{1} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3q + q^{2} + 3q^{3} + 3q^{4} - 4q^{5} + q^{6} + 3q^{8} + 3q^{9} + O(q^{10})$$ $$3q + q^{2} + 3q^{3} + 3q^{4} - 4q^{5} + q^{6} + 3q^{8} + 3q^{9} - 6q^{10} - 4q^{11} + 3q^{12} - 8q^{13} - 4q^{15} - q^{16} - 2q^{17} + q^{18} - 2q^{19} + 6q^{20} - 10q^{22} - 10q^{23} + 3q^{24} + 5q^{25} + 2q^{26} + 3q^{27} - 6q^{29} - 6q^{30} + 2q^{31} + 7q^{32} - 4q^{33} + 3q^{36} + 20q^{37} + 4q^{38} - 8q^{39} + 6q^{40} - 3q^{41} + 10q^{43} - 8q^{44} - 4q^{45} - 8q^{46} - 4q^{47} - q^{48} + 3q^{50} - 2q^{51} - 18q^{52} + 14q^{53} + q^{54} + 10q^{55} - 2q^{57} - 28q^{58} + 8q^{59} + 6q^{60} + 8q^{61} - 38q^{62} - 17q^{64} - 4q^{65} - 10q^{66} + 12q^{67} - 26q^{68} - 10q^{69} - 32q^{71} + 3q^{72} - 4q^{73} + 20q^{74} + 5q^{75} - 12q^{76} + 2q^{78} - 20q^{79} - 18q^{80} + 3q^{81} - q^{82} + 14q^{83} - 22q^{85} + 6q^{86} - 6q^{87} - 8q^{88} - 14q^{89} - 6q^{90} + 2q^{93} - 18q^{94} - 12q^{95} + 7q^{96} + 12q^{97} - 4q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 4 x + 2$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{2} - 3$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{2} + 3$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.81361 0.470683 2.34292
−1.81361 1.00000 1.28917 1.10278 −1.81361 0 1.28917 1.00000 −2.00000
1.2 0.470683 1.00000 −1.77846 −4.24914 0.470683 0 −1.77846 1.00000 −2.00000
1.3 2.34292 1.00000 3.48929 −0.853635 2.34292 0 3.48929 1.00000 −2.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$7$$ $$-1$$
$$41$$ $$1$$

## Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(6027))$$:

 $$T_{2}^{3} - T_{2}^{2} - 4 T_{2} + 2$$ $$T_{5}^{3} + 4 T_{5}^{2} - 2 T_{5} - 4$$ $$T_{13}^{3} + 8 T_{13}^{2} + 14 T_{13} - 4$$