Properties

Label 6027.2.a.c
Level 6027
Weight 2
Character orbit 6027.a
Self dual Yes
Analytic conductor 48.126
Analytic rank 1
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6027 = 3 \cdot 7^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6027.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.1258372982\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - q^{3} - q^{4} + 3q^{5} + q^{6} + 3q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} - q^{3} - q^{4} + 3q^{5} + q^{6} + 3q^{8} + q^{9} - 3q^{10} - 2q^{11} + q^{12} - 5q^{13} - 3q^{15} - q^{16} + 2q^{17} - q^{18} + 2q^{19} - 3q^{20} + 2q^{22} - 3q^{23} - 3q^{24} + 4q^{25} + 5q^{26} - q^{27} + q^{29} + 3q^{30} + 8q^{31} - 5q^{32} + 2q^{33} - 2q^{34} - q^{36} + q^{37} - 2q^{38} + 5q^{39} + 9q^{40} + q^{41} - 10q^{43} + 2q^{44} + 3q^{45} + 3q^{46} + 9q^{47} + q^{48} - 4q^{50} - 2q^{51} + 5q^{52} - 11q^{53} + q^{54} - 6q^{55} - 2q^{57} - q^{58} + 4q^{59} + 3q^{60} - 2q^{61} - 8q^{62} + 7q^{64} - 15q^{65} - 2q^{66} - 5q^{67} - 2q^{68} + 3q^{69} - 6q^{71} + 3q^{72} - 4q^{73} - q^{74} - 4q^{75} - 2q^{76} - 5q^{78} + 11q^{79} - 3q^{80} + q^{81} - q^{82} - 14q^{83} + 6q^{85} + 10q^{86} - q^{87} - 6q^{88} - 8q^{89} - 3q^{90} + 3q^{92} - 8q^{93} - 9q^{94} + 6q^{95} + 5q^{96} - q^{97} - 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −1.00000 −1.00000 3.00000 1.00000 0 3.00000 1.00000 −3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(7\) \(-1\)
\(41\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6027))\):

\( T_{2} + 1 \)
\( T_{5} - 3 \)
\( T_{13} + 5 \)