Properties

Label 6027.2.a.bo
Level 6027
Weight 2
Character orbit 6027.a
Self dual Yes
Analytic conductor 48.126
Analytic rank 0
Dimension 24
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6027 = 3 \cdot 7^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6027.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.1258372982\)
Analytic rank: \(0\)
Dimension: \(24\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24q + 8q^{2} + 24q^{3} + 32q^{4} + 4q^{5} + 8q^{6} + 24q^{8} + 24q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 24q + 8q^{2} + 24q^{3} + 32q^{4} + 4q^{5} + 8q^{6} + 24q^{8} + 24q^{9} - 4q^{10} + 12q^{11} + 32q^{12} + 4q^{15} + 44q^{16} + 8q^{17} + 8q^{18} - 4q^{19} + 28q^{20} + 16q^{22} + 20q^{23} + 24q^{24} + 48q^{25} + 32q^{26} + 24q^{27} + 24q^{29} - 4q^{30} - 4q^{31} + 36q^{32} + 12q^{33} + 16q^{34} + 32q^{36} + 64q^{37} + 20q^{38} - 48q^{40} - 24q^{41} + 20q^{43} + 48q^{44} + 4q^{45} + 28q^{46} + 32q^{47} + 44q^{48} - 20q^{50} + 8q^{51} + 76q^{53} + 8q^{54} - 24q^{55} - 4q^{57} + 28q^{58} + 28q^{59} + 28q^{60} - 28q^{61} - 4q^{62} + 48q^{64} + 28q^{65} + 16q^{66} + 44q^{67} - 32q^{68} + 20q^{69} + 20q^{71} + 24q^{72} - 16q^{73} + 44q^{74} + 48q^{75} - 16q^{76} + 32q^{78} + 4q^{79} + 44q^{80} + 24q^{81} - 8q^{82} + 8q^{83} + 28q^{85} + 56q^{86} + 24q^{87} + 60q^{88} + 60q^{89} - 4q^{90} + 60q^{92} - 4q^{93} + 24q^{94} + 28q^{95} + 36q^{96} - 48q^{97} + 12q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.69245 1.00000 5.24930 3.40876 −2.69245 0 −8.74860 1.00000 −9.17792
1.2 −2.37986 1.00000 3.66372 3.68734 −2.37986 0 −3.95941 1.00000 −8.77534
1.3 −2.22021 1.00000 2.92934 0.165927 −2.22021 0 −2.06334 1.00000 −0.368393
1.4 −1.96907 1.00000 1.87725 −4.10878 −1.96907 0 0.241710 1.00000 8.09048
1.5 −1.80081 1.00000 1.24292 −2.17778 −1.80081 0 1.36336 1.00000 3.92176
1.6 −1.32413 1.00000 −0.246682 4.03355 −1.32413 0 2.97490 1.00000 −5.34094
1.7 −1.25316 1.00000 −0.429590 −1.76265 −1.25316 0 3.04466 1.00000 2.20889
1.8 −0.844195 1.00000 −1.28734 −1.91229 −0.844195 0 2.77515 1.00000 1.61434
1.9 −0.423828 1.00000 −1.82037 3.41632 −0.423828 0 1.61918 1.00000 −1.44793
1.10 −0.308797 1.00000 −1.90464 −0.898648 −0.308797 0 1.20574 1.00000 0.277499
1.11 −0.0650408 1.00000 −1.99577 −2.65358 −0.0650408 0 0.259888 1.00000 0.172591
1.12 0.154130 1.00000 −1.97624 1.29015 0.154130 0 −0.612860 1.00000 0.198852
1.13 0.368135 1.00000 −1.86448 −0.572097 0.368135 0 −1.42265 1.00000 −0.210609
1.14 1.11646 1.00000 −0.753512 −0.900581 1.11646 0 −3.07419 1.00000 −1.00546
1.15 1.33013 1.00000 −0.230742 −3.44355 1.33013 0 −2.96719 1.00000 −4.58038
1.16 1.50751 1.00000 0.272577 1.10903 1.50751 0 −2.60410 1.00000 1.67187
1.17 1.64420 1.00000 0.703405 3.28206 1.64420 0 −2.13187 1.00000 5.39638
1.18 1.95065 1.00000 1.80504 2.46699 1.95065 0 −0.380308 1.00000 4.81223
1.19 2.26259 1.00000 3.11931 3.51535 2.26259 0 2.53253 1.00000 7.95379
1.20 2.37367 1.00000 3.63432 −3.47491 2.37367 0 3.87933 1.00000 −8.24830
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.24
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(1\)
\(41\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6027))\):

\(T_{2}^{24} - \cdots\)
\(T_{5}^{24} - \cdots\)
\(T_{13}^{24} - \cdots\)