Properties

Label 6026.2.a.i
Level 6026
Weight 2
Character orbit 6026.a
Self dual Yes
Analytic conductor 48.118
Analytic rank 1
Dimension 25
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6026 = 2 \cdot 23 \cdot 131 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6026.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.117852258\)
Analytic rank: \(1\)
Dimension: \(25\)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 25q - 25q^{2} - 4q^{3} + 25q^{4} - 3q^{5} + 4q^{6} - 11q^{7} - 25q^{8} + 19q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 25q - 25q^{2} - 4q^{3} + 25q^{4} - 3q^{5} + 4q^{6} - 11q^{7} - 25q^{8} + 19q^{9} + 3q^{10} - 12q^{11} - 4q^{12} - 6q^{13} + 11q^{14} + 25q^{16} + 8q^{17} - 19q^{18} - 23q^{19} - 3q^{20} - 16q^{21} + 12q^{22} + 25q^{23} + 4q^{24} + 4q^{25} + 6q^{26} - 13q^{27} - 11q^{28} - 7q^{29} - 7q^{31} - 25q^{32} + 3q^{33} - 8q^{34} - 18q^{35} + 19q^{36} - 7q^{37} + 23q^{38} - 2q^{39} + 3q^{40} - 10q^{41} + 16q^{42} - 26q^{43} - 12q^{44} + 20q^{45} - 25q^{46} - 2q^{47} - 4q^{48} + 2q^{49} - 4q^{50} - 28q^{51} - 6q^{52} + 47q^{53} + 13q^{54} - 38q^{55} + 11q^{56} - 4q^{57} + 7q^{58} - 19q^{59} - 26q^{61} + 7q^{62} - 15q^{63} + 25q^{64} + 13q^{65} - 3q^{66} - 34q^{67} + 8q^{68} - 4q^{69} + 18q^{70} - 10q^{71} - 19q^{72} - 22q^{73} + 7q^{74} - 8q^{75} - 23q^{76} + 28q^{77} + 2q^{78} - 21q^{79} - 3q^{80} - 27q^{81} + 10q^{82} - 16q^{83} - 16q^{84} - 42q^{85} + 26q^{86} - 17q^{87} + 12q^{88} + 27q^{89} - 20q^{90} - 26q^{91} + 25q^{92} - 27q^{93} + 2q^{94} + 4q^{96} + 4q^{97} - 2q^{98} - 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −1.00000 −2.98476 1.00000 1.57995 2.98476 2.90984 −1.00000 5.90879 −1.57995
1.2 −1.00000 −2.94469 1.00000 −3.10338 2.94469 2.18728 −1.00000 5.67118 3.10338
1.3 −1.00000 −2.94225 1.00000 2.28313 2.94225 −4.71427 −1.00000 5.65684 −2.28313
1.4 −1.00000 −2.39972 1.00000 1.46275 2.39972 0.813594 −1.00000 2.75865 −1.46275
1.5 −1.00000 −2.37203 1.00000 3.53118 2.37203 −2.86520 −1.00000 2.62654 −3.53118
1.6 −1.00000 −2.34651 1.00000 −0.801214 2.34651 2.16934 −1.00000 2.50610 0.801214
1.7 −1.00000 −1.97733 1.00000 −3.11644 1.97733 −3.94255 −1.00000 0.909824 3.11644
1.8 −1.00000 −1.70631 1.00000 −2.14849 1.70631 0.462300 −1.00000 −0.0885110 2.14849
1.9 −1.00000 −1.05724 1.00000 −2.13811 1.05724 3.42578 −1.00000 −1.88224 2.13811
1.10 −1.00000 −0.936776 1.00000 1.38125 0.936776 2.49293 −1.00000 −2.12245 −1.38125
1.11 −1.00000 −0.932148 1.00000 −0.513090 0.932148 0.0983188 −1.00000 −2.13110 0.513090
1.12 −1.00000 −0.665355 1.00000 0.670202 0.665355 −3.39786 −1.00000 −2.55730 −0.670202
1.13 −1.00000 −0.0412722 1.00000 −3.47552 0.0412722 −4.67489 −1.00000 −2.99830 3.47552
1.14 −1.00000 0.180068 1.00000 −3.11636 −0.180068 2.83625 −1.00000 −2.96758 3.11636
1.15 −1.00000 0.489389 1.00000 2.70694 −0.489389 1.75684 −1.00000 −2.76050 −2.70694
1.16 −1.00000 0.694821 1.00000 0.658132 −0.694821 −2.75018 −1.00000 −2.51722 −0.658132
1.17 −1.00000 0.888297 1.00000 2.86945 −0.888297 −2.14877 −1.00000 −2.21093 −2.86945
1.18 −1.00000 1.11977 1.00000 0.636447 −1.11977 1.86618 −1.00000 −1.74612 −0.636447
1.19 −1.00000 1.50502 1.00000 −2.72563 −1.50502 −2.36491 −1.00000 −0.734912 2.72563
1.20 −1.00000 1.76687 1.00000 −0.379310 −1.76687 −0.00141487 −1.00000 0.121841 0.379310
See all 25 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.25
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(23\) \(-1\)
\(131\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6026))\):

\(T_{3}^{25} + \cdots\)
\(T_{5}^{25} + \cdots\)