Properties

Label 6026.2.a.c
Level 6026
Weight 2
Character orbit 6026.a
Self dual Yes
Analytic conductor 48.118
Analytic rank 1
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6026 = 2 \cdot 23 \cdot 131 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6026.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.117852258\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - 2q^{3} + q^{4} + 3q^{5} - 2q^{6} + 2q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} - 2q^{3} + q^{4} + 3q^{5} - 2q^{6} + 2q^{7} + q^{8} + q^{9} + 3q^{10} - q^{11} - 2q^{12} - 6q^{13} + 2q^{14} - 6q^{15} + q^{16} + q^{17} + q^{18} - 2q^{19} + 3q^{20} - 4q^{21} - q^{22} - q^{23} - 2q^{24} + 4q^{25} - 6q^{26} + 4q^{27} + 2q^{28} - 2q^{29} - 6q^{30} - 4q^{31} + q^{32} + 2q^{33} + q^{34} + 6q^{35} + q^{36} + 2q^{37} - 2q^{38} + 12q^{39} + 3q^{40} - 9q^{41} - 4q^{42} - 5q^{43} - q^{44} + 3q^{45} - q^{46} - 10q^{47} - 2q^{48} - 3q^{49} + 4q^{50} - 2q^{51} - 6q^{52} - 2q^{53} + 4q^{54} - 3q^{55} + 2q^{56} + 4q^{57} - 2q^{58} + 6q^{59} - 6q^{60} - 7q^{61} - 4q^{62} + 2q^{63} + q^{64} - 18q^{65} + 2q^{66} - 6q^{67} + q^{68} + 2q^{69} + 6q^{70} + 2q^{71} + q^{72} + 4q^{73} + 2q^{74} - 8q^{75} - 2q^{76} - 2q^{77} + 12q^{78} - 4q^{79} + 3q^{80} - 11q^{81} - 9q^{82} - 4q^{84} + 3q^{85} - 5q^{86} + 4q^{87} - q^{88} + 3q^{90} - 12q^{91} - q^{92} + 8q^{93} - 10q^{94} - 6q^{95} - 2q^{96} + 2q^{97} - 3q^{98} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −2.00000 1.00000 3.00000 −2.00000 2.00000 1.00000 1.00000 3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(23\) \(1\)
\(131\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6026))\):

\( T_{3} + 2 \)
\( T_{5} - 3 \)