Properties

Label 6023.2
Level 6023
Weight 2
Dimension 1493559
Nonzero newspaces 18
Sturm bound 6029280

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 6023 = 19 \cdot 317 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 18 \)
Sturm bound: \(6029280\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(6023))\).

Total New Old
Modular forms 1513008 1504271 8737
Cusp forms 1501633 1493559 8074
Eisenstein series 11375 10712 663

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(6023))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
6023.2.a \(\chi_{6023}(1, \cdot)\) 6023.2.a.a 98 1
6023.2.a.b 99
6023.2.a.c 138
6023.2.a.d 140
6023.2.b \(\chi_{6023}(1901, \cdot)\) n/a 476 1
6023.2.e \(\chi_{6023}(3488, \cdot)\) n/a 1056 2
6023.2.f \(\chi_{6023}(4958, \cdot)\) n/a 1056 2
6023.2.j \(\chi_{6023}(1584, \cdot)\) n/a 1056 2
6023.2.k \(\chi_{6023}(1586, \cdot)\) n/a 3156 6
6023.2.m \(\chi_{6023}(1471, \cdot)\) n/a 2112 4
6023.2.o \(\chi_{6023}(633, \cdot)\) n/a 3168 6
6023.2.r \(\chi_{6023}(203, \cdot)\) n/a 6336 12
6023.2.s \(\chi_{6023}(438, \cdot)\) n/a 37284 78
6023.2.v \(\chi_{6023}(39, \cdot)\) n/a 37128 78
6023.2.w \(\chi_{6023}(11, \cdot)\) n/a 82368 156
6023.2.y \(\chi_{6023}(18, \cdot)\) n/a 82368 156
6023.2.z \(\chi_{6023}(7, \cdot)\) n/a 82368 156
6023.2.bc \(\chi_{6023}(16, \cdot)\) n/a 247104 468
6023.2.bd \(\chi_{6023}(8, \cdot)\) n/a 164736 312
6023.2.bg \(\chi_{6023}(4, \cdot)\) n/a 247104 468
6023.2.bi \(\chi_{6023}(2, \cdot)\) n/a 494208 936

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(6023))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(6023)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(317))\)\(^{\oplus 2}\)