Properties

Label 6019.2.a.c
Level 6019
Weight 2
Character orbit 6019.a
Self dual Yes
Analytic conductor 48.062
Analytic rank 1
Dimension 108
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6019 = 13 \cdot 463 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6019.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.0619569766\)
Analytic rank: \(1\)
Dimension: \(108\)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 108q - 11q^{2} + q^{3} + 95q^{4} - 40q^{5} - 10q^{6} - 8q^{7} - 33q^{8} + 79q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 108q - 11q^{2} + q^{3} + 95q^{4} - 40q^{5} - 10q^{6} - 8q^{7} - 33q^{8} + 79q^{9} - q^{10} - 45q^{11} - 6q^{12} - 108q^{13} - 31q^{14} - 39q^{15} + 73q^{16} + 21q^{17} - 35q^{18} - 19q^{19} - 79q^{20} - 72q^{21} - 26q^{23} - 23q^{24} + 92q^{25} + 11q^{26} + 7q^{27} - 21q^{28} - 94q^{29} - 24q^{30} - 36q^{31} - 77q^{32} - 32q^{33} - 58q^{34} - 10q^{35} + 17q^{36} - 54q^{37} - 12q^{38} - q^{39} - 4q^{40} - 68q^{41} - 11q^{42} - 32q^{43} - 151q^{44} - 121q^{45} - 33q^{46} - 51q^{47} - 27q^{48} + 72q^{49} - 45q^{50} - 24q^{51} - 95q^{52} - 81q^{53} - 29q^{54} + 4q^{55} - 68q^{56} - 45q^{57} - 30q^{58} - 94q^{59} - 108q^{60} - 39q^{61} - 9q^{62} - 52q^{63} + 31q^{64} + 40q^{65} - 40q^{66} - 47q^{67} + 24q^{68} - 60q^{69} - 66q^{70} - 86q^{71} - 91q^{72} - 51q^{73} - 110q^{74} - 7q^{75} - 51q^{76} - 96q^{77} + 10q^{78} - 18q^{79} - 136q^{80} - 24q^{81} - 33q^{82} - 77q^{83} - 113q^{84} - 95q^{85} - 137q^{86} + 23q^{87} + 19q^{88} - 112q^{89} - 19q^{90} + 8q^{91} - 111q^{92} - 124q^{93} - 20q^{94} - 73q^{95} - 77q^{96} - 41q^{97} - 80q^{98} - 154q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.77848 2.29765 5.71995 2.18323 −6.38396 0.752947 −10.3358 2.27917 −6.06605
1.2 −2.73685 −2.13610 5.49032 −3.88543 5.84618 −1.04170 −9.55248 1.56292 10.6338
1.3 −2.64969 −0.413927 5.02086 −1.95969 1.09678 −0.899778 −8.00435 −2.82866 5.19257
1.4 −2.62932 0.928194 4.91333 1.81764 −2.44052 3.79843 −7.66009 −2.13846 −4.77917
1.5 −2.62196 −0.813055 4.87469 0.562087 2.13180 −5.01388 −7.53732 −2.33894 −1.47377
1.6 −2.61467 0.516414 4.83649 −3.96792 −1.35025 3.66433 −7.41648 −2.73332 10.3748
1.7 −2.60952 3.26666 4.80961 −2.76749 −8.52442 −0.615812 −7.33173 7.67107 7.22184
1.8 −2.59599 1.19783 4.73919 −2.90334 −3.10956 −3.26881 −7.11092 −1.56520 7.53704
1.9 −2.56322 −2.39331 4.57009 1.98047 6.13457 1.46442 −6.58772 2.72791 −5.07639
1.10 −2.51181 −2.99105 4.30921 1.76112 7.51295 3.89256 −5.80031 5.94635 −4.42360
1.11 −2.39631 −0.467815 3.74231 2.01057 1.12103 −2.84779 −4.17511 −2.78115 −4.81795
1.12 −2.34535 −1.65067 3.50065 −1.17678 3.87140 2.05341 −3.51955 −0.275278 2.75996
1.13 −2.34425 −1.25776 3.49550 −1.49624 2.94851 5.17811 −3.50582 −1.41803 3.50756
1.14 −2.26345 2.92995 3.12323 0.680242 −6.63181 −3.22192 −2.54237 5.58462 −1.53970
1.15 −2.25939 2.42736 3.10485 −0.500622 −5.48435 4.41326 −2.49629 2.89206 1.13110
1.16 −2.23728 2.31482 3.00542 −4.05108 −5.17891 −5.18040 −2.24940 2.35841 9.06339
1.17 −2.20802 −2.87685 2.87536 1.19118 6.35214 −0.105056 −1.93280 5.27625 −2.63016
1.18 −2.18373 2.09330 2.76866 2.17810 −4.57119 −2.34745 −1.67854 1.38190 −4.75637
1.19 −2.14163 −1.26927 2.58656 2.68002 2.71830 −0.999709 −1.25619 −1.38895 −5.73960
1.20 −2.12654 −0.167601 2.52216 −1.92531 0.356410 0.0410631 −1.11038 −2.97191 4.09424
See next 80 embeddings (of 108 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.108
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(13\) \(1\)
\(463\) \(1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{2}^{108} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6019))\).