Properties

Label 6017.2.a.b
Level 6017
Weight 2
Character orbit 6017.a
Self dual Yes
Analytic conductor 48.046
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6017 = 11 \cdot 547 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6017.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.0459868962\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{3} - 2q^{4} + 4q^{5} + 2q^{7} + q^{9} + O(q^{10}) \) \( q + 2q^{3} - 2q^{4} + 4q^{5} + 2q^{7} + q^{9} + q^{11} - 4q^{12} + q^{13} + 8q^{15} + 4q^{16} + 8q^{17} - 5q^{19} - 8q^{20} + 4q^{21} + 6q^{23} + 11q^{25} - 4q^{27} - 4q^{28} + 5q^{29} + 10q^{31} + 2q^{33} + 8q^{35} - 2q^{36} + 2q^{39} - 10q^{43} - 2q^{44} + 4q^{45} - 9q^{47} + 8q^{48} - 3q^{49} + 16q^{51} - 2q^{52} - 10q^{53} + 4q^{55} - 10q^{57} - 14q^{59} - 16q^{60} - 14q^{61} + 2q^{63} - 8q^{64} + 4q^{65} - q^{67} - 16q^{68} + 12q^{69} + 12q^{71} - 2q^{73} + 22q^{75} + 10q^{76} + 2q^{77} + 4q^{79} + 16q^{80} - 11q^{81} + 6q^{83} - 8q^{84} + 32q^{85} + 10q^{87} - 6q^{89} + 2q^{91} - 12q^{92} + 20q^{93} - 20q^{95} - 13q^{97} + q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 2.00000 −2.00000 4.00000 0 2.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(11\) \(-1\)
\(547\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6017))\):

\( T_{2} \)
\( T_{3} - 2 \)