Properties

Label 6017.2.a.a
Level 6017
Weight 2
Character orbit 6017.a
Self dual Yes
Analytic conductor 48.046
Analytic rank 2
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6017 = 11 \cdot 547 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6017.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.0459868962\)
Analytic rank: \(2\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 2q^{4} - 2q^{7} - 3q^{9} + O(q^{10}) \) \( q - 2q^{4} - 2q^{7} - 3q^{9} - q^{11} - 5q^{13} + 4q^{16} - 4q^{17} - 7q^{19} + 2q^{23} - 5q^{25} + 4q^{28} - q^{29} + 4q^{31} + 6q^{36} - 6q^{37} + 2q^{41} - 8q^{43} + 2q^{44} - 9q^{47} - 3q^{49} + 10q^{52} + 2q^{53} - 6q^{59} - 14q^{61} + 6q^{63} - 8q^{64} - 5q^{67} + 8q^{68} + 10q^{71} - 6q^{73} + 14q^{76} + 2q^{77} - 6q^{79} + 9q^{81} + 4q^{83} + 8q^{89} + 10q^{91} - 4q^{92} + 15q^{97} + 3q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 −2.00000 0 0 −2.00000 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(11\) \(1\)
\(547\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6017))\):

\( T_{2} \)
\( T_{3} \)