Properties

Label 6012.2.a.d
Level $6012$
Weight $2$
Character orbit 6012.a
Self dual yes
Analytic conductor $48.006$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 6012 = 2^{2} \cdot 3^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6012.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(48.0060616952\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.826865.1
Defining polynomial: \(x^{5} - 2 x^{4} - 5 x^{3} + 6 x^{2} + 6 x - 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 668)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -2 q^{5} + ( 2 - \beta_{3} ) q^{7} +O(q^{10})\) \( q -2 q^{5} + ( 2 - \beta_{3} ) q^{7} + ( -\beta_{1} - \beta_{2} - \beta_{3} ) q^{11} -2 \beta_{1} q^{13} + ( 2 - 2 \beta_{1} + 2 \beta_{4} ) q^{17} + ( 1 - 2 \beta_{1} + \beta_{2} - \beta_{4} ) q^{19} + ( -2 \beta_{2} - 2 \beta_{3} ) q^{23} - q^{25} + ( 2 - 2 \beta_{1} - \beta_{3} ) q^{29} + ( 3 - 3 \beta_{1} + \beta_{2} + \beta_{4} ) q^{31} + ( -4 + 2 \beta_{3} ) q^{35} + ( 2 \beta_{1} + 2 \beta_{2} ) q^{37} + ( 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{4} ) q^{41} + 4 \beta_{1} q^{43} + ( -1 - 2 \beta_{1} - \beta_{2} + \beta_{4} ) q^{47} + ( 4 - \beta_{1} - \beta_{2} - 4 \beta_{3} - \beta_{4} ) q^{49} + ( -2 + 4 \beta_{1} - 2 \beta_{4} ) q^{53} + ( 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{55} + ( -2 + 4 \beta_{1} + 2 \beta_{3} + 2 \beta_{4} ) q^{59} + ( 3 + 2 \beta_{1} - 3 \beta_{2} - 2 \beta_{3} ) q^{61} + 4 \beta_{1} q^{65} + ( 6 + 2 \beta_{1} - 2 \beta_{3} + 2 \beta_{4} ) q^{67} + ( -4 + 2 \beta_{1} + 4 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} ) q^{71} + ( 2 - 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} + 2 \beta_{4} ) q^{73} + ( 4 - 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} - \beta_{4} ) q^{77} + ( -6 + 4 \beta_{1} + 2 \beta_{2} + 4 \beta_{3} - 2 \beta_{4} ) q^{79} + ( 2 - 6 \beta_{1} ) q^{83} + ( -4 + 4 \beta_{1} - 4 \beta_{4} ) q^{85} + ( 5 - 2 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{89} + ( -6 \beta_{1} + 2 \beta_{2} + 2 \beta_{4} ) q^{91} + ( -2 + 4 \beta_{1} - 2 \beta_{2} + 2 \beta_{4} ) q^{95} + ( -6 - \beta_{1} - \beta_{2} - \beta_{3} - 4 \beta_{4} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5q - 10q^{5} + 9q^{7} + O(q^{10}) \) \( 5q - 10q^{5} + 9q^{7} - 5q^{11} - 4q^{13} + 2q^{17} + 5q^{19} - 6q^{23} - 5q^{25} + 5q^{29} + 9q^{31} - 18q^{35} + 8q^{37} + 4q^{41} + 8q^{43} - 13q^{47} + 14q^{49} + 2q^{53} + 10q^{55} - 4q^{59} + 11q^{61} + 8q^{65} + 28q^{67} - 2q^{71} + 8q^{73} + 12q^{77} - 10q^{79} - 2q^{83} - 4q^{85} + 17q^{89} - 12q^{91} - 10q^{95} - 27q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{5} - 2 x^{4} - 5 x^{3} + 6 x^{2} + 6 x - 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - \nu - 2 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - 2 \nu^{2} - 3 \nu + 3 \)
\(\beta_{4}\)\(=\)\( \nu^{4} - 2 \nu^{3} - 4 \nu^{2} + 5 \nu + 2 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + \beta_{1} + 2\)
\(\nu^{3}\)\(=\)\(\beta_{3} + 2 \beta_{2} + 5 \beta_{1} + 1\)
\(\nu^{4}\)\(=\)\(\beta_{4} + 2 \beta_{3} + 8 \beta_{2} + 9 \beta_{1} + 8\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.873948
0.147687
2.75474
−1.69135
1.66287
0 0 0 −2.00000 0 −1.42676 0 0 0
1.2 0 0 0 −2.00000 0 −0.516539 0 0 0
1.3 0 0 0 −2.00000 0 1.53681 0 0 0
1.4 0 0 0 −2.00000 0 4.48567 0 0 0
1.5 0 0 0 −2.00000 0 4.92082 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(167\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6012.2.a.d 5
3.b odd 2 1 668.2.a.b 5
12.b even 2 1 2672.2.a.j 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
668.2.a.b 5 3.b odd 2 1
2672.2.a.j 5 12.b even 2 1
6012.2.a.d 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 2 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6012))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \)
$3$ \( T^{5} \)
$5$ \( ( 2 + T )^{5} \)
$7$ \( -25 - 39 T + 29 T^{2} + 16 T^{3} - 9 T^{4} + T^{5} \)
$11$ \( 25 + 35 T - 29 T^{2} - 12 T^{3} + 5 T^{4} + T^{5} \)
$13$ \( 32 + 96 T - 48 T^{2} - 20 T^{3} + 4 T^{4} + T^{5} \)
$17$ \( 800 + 832 T + 40 T^{2} - 60 T^{3} - 2 T^{4} + T^{5} \)
$19$ \( 445 + 605 T + 101 T^{2} - 42 T^{3} - 5 T^{4} + T^{5} \)
$23$ \( -32 - 288 T - 360 T^{2} - 52 T^{3} + 6 T^{4} + T^{5} \)
$29$ \( -13 + 31 T + 39 T^{2} - 28 T^{3} - 5 T^{4} + T^{5} \)
$31$ \( -365 - 5 T + 207 T^{2} - 36 T^{3} - 9 T^{4} + T^{5} \)
$37$ \( -288 + 192 T + 80 T^{2} - 44 T^{3} - 8 T^{4} + T^{5} \)
$41$ \( 928 + 1472 T + 232 T^{2} - 96 T^{3} - 4 T^{4} + T^{5} \)
$43$ \( -1024 + 1536 T + 384 T^{2} - 80 T^{3} - 8 T^{4} + T^{5} \)
$47$ \( -81 - 423 T - 161 T^{2} + 26 T^{3} + 13 T^{4} + T^{5} \)
$53$ \( -5408 + 3536 T + 208 T^{2} - 124 T^{3} - 2 T^{4} + T^{5} \)
$59$ \( 49696 + 11376 T - 824 T^{2} - 236 T^{3} + 4 T^{4} + T^{5} \)
$61$ \( 877 + 1187 T + 193 T^{2} - 76 T^{3} - 11 T^{4} + T^{5} \)
$67$ \( 64928 - 22944 T + 1888 T^{2} + 156 T^{3} - 28 T^{4} + T^{5} \)
$71$ \( 10784 + 5472 T - 248 T^{2} - 180 T^{3} + 2 T^{4} + T^{5} \)
$73$ \( 8992 - 6928 T + 1720 T^{2} - 124 T^{3} - 8 T^{4} + T^{5} \)
$79$ \( 75104 + 14224 T - 1608 T^{2} - 256 T^{3} + 10 T^{4} + T^{5} \)
$83$ \( -11360 + 10496 T - 8 T^{2} - 236 T^{3} + 2 T^{4} + T^{5} \)
$89$ \( 179 - 793 T + 363 T^{2} + 40 T^{3} - 17 T^{4} + T^{5} \)
$97$ \( 37899 - 141 T - 2417 T^{2} + 36 T^{3} + 27 T^{4} + T^{5} \)
show more
show less