Properties

Label 6012.2.a.b
Level $6012$
Weight $2$
Character orbit 6012.a
Self dual yes
Analytic conductor $48.006$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 6012 = 2^{2} \cdot 3^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6012.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(48.0060616952\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Defining polynomial: \(x^{3} - x^{2} - 3 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{2} q^{5} + 2 \beta_{2} q^{7} +O(q^{10})\) \( q -\beta_{2} q^{5} + 2 \beta_{2} q^{7} + ( -1 - \beta_{1} - \beta_{2} ) q^{11} + 2 \beta_{1} q^{13} + ( 2 - \beta_{2} ) q^{17} + ( -2 + 2 \beta_{1} + 2 \beta_{2} ) q^{19} -4 \beta_{1} q^{23} + ( -2 - \beta_{1} - \beta_{2} ) q^{25} -4 \beta_{2} q^{29} + ( 2 - 2 \beta_{1} + 2 \beta_{2} ) q^{31} + ( -6 + 2 \beta_{1} + 2 \beta_{2} ) q^{35} + ( 2 + 4 \beta_{1} + 2 \beta_{2} ) q^{37} + ( -4 - 2 \beta_{1} - 3 \beta_{2} ) q^{41} + ( -6 - 2 \beta_{1} + \beta_{2} ) q^{43} + ( 5 + \beta_{1} + \beta_{2} ) q^{47} + ( 5 - 4 \beta_{1} - 4 \beta_{2} ) q^{49} + ( -4 + 6 \beta_{1} + \beta_{2} ) q^{53} + 2 q^{55} + ( -8 + 2 \beta_{2} ) q^{59} + ( -1 + \beta_{1} + \beta_{2} ) q^{61} + ( 2 - 2 \beta_{1} ) q^{65} + ( 4 - 2 \beta_{1} - \beta_{2} ) q^{67} -4 q^{71} + ( -4 + 2 \beta_{1} + 2 \beta_{2} ) q^{73} -4 q^{77} + ( 2 - 8 \beta_{1} - \beta_{2} ) q^{79} + ( -2 + 2 \beta_{1} - 4 \beta_{2} ) q^{83} + ( 3 - \beta_{1} - 3 \beta_{2} ) q^{85} + ( -4 - 4 \beta_{2} ) q^{89} + ( -4 + 4 \beta_{1} ) q^{91} + ( -4 + 4 \beta_{2} ) q^{95} + ( 6 + 6 \beta_{2} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + O(q^{10}) \) \( 3q - 4q^{11} + 2q^{13} + 6q^{17} - 4q^{19} - 4q^{23} - 7q^{25} + 4q^{31} - 16q^{35} + 10q^{37} - 14q^{41} - 20q^{43} + 16q^{47} + 11q^{49} - 6q^{53} + 6q^{55} - 24q^{59} - 2q^{61} + 4q^{65} + 10q^{67} - 12q^{71} - 10q^{73} - 12q^{77} - 2q^{79} - 4q^{83} + 8q^{85} - 12q^{89} - 8q^{91} - 12q^{95} + 18q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 3 x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - \nu - 2 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + \beta_{1} + 2\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.48119
2.17009
0.311108
0 0 0 −1.67513 0 3.35026 0 0 0
1.2 0 0 0 −0.539189 0 1.07838 0 0 0
1.3 0 0 0 2.21432 0 −4.42864 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(167\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6012.2.a.b 3
3.b odd 2 1 6012.2.a.c yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6012.2.a.b 3 1.a even 1 1 trivial
6012.2.a.c yes 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - 4 T_{5} - 2 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6012))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \)
$3$ \( T^{3} \)
$5$ \( -2 - 4 T + T^{3} \)
$7$ \( 16 - 16 T + T^{3} \)
$11$ \( -4 + 4 T^{2} + T^{3} \)
$13$ \( 8 - 12 T - 2 T^{2} + T^{3} \)
$17$ \( -2 + 8 T - 6 T^{2} + T^{3} \)
$19$ \( -32 - 16 T + 4 T^{2} + T^{3} \)
$23$ \( -64 - 48 T + 4 T^{2} + T^{3} \)
$29$ \( -128 - 64 T + T^{3} \)
$31$ \( -32 - 32 T - 4 T^{2} + T^{3} \)
$37$ \( -8 - 20 T - 10 T^{2} + T^{3} \)
$41$ \( -122 + 28 T + 14 T^{2} + T^{3} \)
$43$ \( 118 + 112 T + 20 T^{2} + T^{3} \)
$47$ \( -124 + 80 T - 16 T^{2} + T^{3} \)
$53$ \( -466 - 100 T + 6 T^{2} + T^{3} \)
$59$ \( 400 + 176 T + 24 T^{2} + T^{3} \)
$61$ \( -4 - 4 T + 2 T^{2} + T^{3} \)
$67$ \( 26 + 20 T - 10 T^{2} + T^{3} \)
$71$ \( ( 4 + T )^{3} \)
$73$ \( -40 + 12 T + 10 T^{2} + T^{3} \)
$79$ \( 334 - 200 T + 2 T^{2} + T^{3} \)
$83$ \( 16 - 88 T + 4 T^{2} + T^{3} \)
$89$ \( -320 - 16 T + 12 T^{2} + T^{3} \)
$97$ \( 1080 - 36 T - 18 T^{2} + T^{3} \)
show more
show less